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ABSTRACT. The component of the frequency splitting of solar 
five-minute oscillations observed by Duvall, Harvey and Pomerantz that 
is even in azimuthal degree measures latitudinal and depth variations 
in the structure of the sun. We indicate how the data hint that there 
is a shallow perturbation, possibly associated with a magnetic field, 
that is concentrated at low latitudes. 

1. INTRODUCTION 

This discussion is motivated by a recent paper by Duvall, Harvey and 
Pomerantz (1986) reporting degeneracy splitting of five-minute solar 
oscillations. The splitting is expressed in the form 

5 
s ( L , m ) Ξ ν - ν - L Z a . P . ( - m / L ) , ( 1 ) 

η , 1 , m η , Ι , ο . i l 
9 9 ι = ο 

where v n ^ is the cyclic frequency of the mode of order n, degree I 
and azimutnal order m, L 2 = and P. is the Legendre polynomial of 
degree i. (The dependence of s on η has been suppressed because Duvall 
et al. provide only data that have been averaged over n, and our 
definition of a , which is not directly relevant to this discussion, 
differs from theirs.) The odd terms in the sum measure rotation, and 
the even terms are produced by latitudinal variations in the solar 
structure and any perturbing force (such as a Lorentz force) that 
cannot distinguish between east and west. Here we are concerned only 
with the even terms. 

2. DEPENDENCE ON m 

2 
The m -dependent component of s is plotted against m/L in Figure 1. 
Aside from the modes of lowest and highest degrees, the curves are 
flatter at low values of m/L and relatively steeper at high values 
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Figure 1. Symmetric component of the frequencysplitting factor s/L 
taken from the data of Duvall et al. (1986). The splittings s(L,m/L) 
are averages over all orders η of the modes observed with frequencies 
between 2.4 and 4 mHz and over the degrees β in the ranges indicated in 
the figure. The dashed line is proportional to m 2/L 2> a R d is what is 
obtained from a perturbation proportional to sin 20. 

than the parabolic dashed curve that one would expect from a 
perturbation proportional to sin2 θ, such as is produced by centrifugal 
distortion due to an angular velocity that is independent of 
colatitutde Θ. One would expect this to be a symptom of a perturbation 
δ ( Γ , θ ) from spherical symmetry that is confined to low latitudes, and 
which therefore influences the equatorially concentrated, nearly 
sectoral modes, with m - L, the most strongly. 

The two even m-dependent terms in the expansion (1) permit a 
two-term expansion of the perturbation Δ in powers of sin 2 Q: 

Δ « sin 2 θ - α sin4 θ (2) 

where α = 358^/(408^ - 9 a 2 ) . For modes with 40 ^ ι $ 70, for example, 
a - 2 and Ais substantial only between latitudes ±40°. Its variation 
is not grossly different from the distribution of sunspots 

3. DEPENDENCE ON L 

The L dependence of s determines the variation of the perturbation 
with depth. The coefficients La2, La^ are tabulated by Gough and 
Thompson in these proceedings, and show little evidence of systematic 
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ι =i0 d 

given by 

The crosses represent the even component of the frequency 
s(L,£,/!_) between sectoral and zonal modes (in μΗζ) evaluated 
reported by Duvall et al. (1986). Vertical bars estimate 

errors; horizontal bars the range of I over which the data are 
The continuous line is the theoretical estimate of the same 

obtained by assuming a latitudinally varying mixing length 
+ ε Δ ) , where 1 0 is the mixing length at the poles, Δ( θ) is 
Equation (2) with α = 2, and ε = 0.06. 

variation. This can be seen also in Figure 2, where the splittings 
s(L, i/L) between sectoral and zonal modes are plotted. There is 
perhaps a hint of a slight increase in s with which would imply that 
the influence of Δ on the oscillations decreases with depth. 

We can estimate the frequency splitting from the asymptotic formula 
for p-mode eigenfrequencies ω: 

1 

2 2 il dr ^ π(η + α), 
(cf Gough, 1986) which is derived from a dispersion relation 

(3) 

ω 2 = ω 2 + c 2k 2 

c 
(4) 

for waves with a local wave number k, where r is radius, ω c is Lamb's 
critical acoustic frequency, c is sound speed, α(ω) is a 
frequency-dependent phase factor that depends on conditions near the 
upper turning point Γ 2 , and the integral is actually an appropriate 
average along ray paths in a plane through the centre of the sun whose 
normal subtends an angle sin ~~l(n\/L) with the axis of symmetry. The 
perturbation Δ modifies the dispersion relation (4), which we might 
formally represent as variations δω0, ôc to ω 0 and c. If those 
variations are small, and if furthermore they are not confined solely 
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to a very narrow region near r 2 where ω 0 is important, we can neglect 
u) c and estimate the perturbed frequency δω = 2πδν Œ s by 

δω = /Fe"16c dr ^ 

where 

JT dr 

c'l(l - c 2 L 2 / r 2

W

2 ) * (6) 

and the integrals are evaluated between ^ = ctr^L/o) and - R, 
where R is the radius of the sun. 

Suppose now that 6c is nonzero only in a shallow subphotospheric 
layer, extending well beneath r = r 2 to a depth d « R - r 1 # Then the 
numerator of the right-hand side of ( 5 ) depends simply on conditions in 
the superficial layer, whereas the denominator scales with the depth 
R - r of the region within which the mode is trapped, which for 
high-degree modes is proportional to L""1. We illustrate this by 
considering a constant relative perturbation Δ = 6c/c in R - r < d to 
an adiabatically stratified complete plane-parallel polytrope of index 
μ. In that case the integrals in ( 5 ) can be evaluated analytically. 
Provided c W R ^ 2 « ^ for R - r < d, the result is approximately 

Δ c(R-d) 2 d J 
δν - "ο 5 L = — Δ (—̂ v σ L, (7) 

ττ̂  Κ ττ μΚ 

where σ = (GM/R 3)^/2 π -0.1 mHz, Μ being the solar mass and G the 
gravitational constant. This increases with L more rapidly than the 
data in Figure 2. 

A similar result holds for a perturbation Δ = δc/c that varies 
beneath r = r 2 as (1 - r/R)~ with a > J. In that case 

Δ(r ) c(r ) 
δν - — — L (8) 

(2a-l)/ r 2 

for [c(r2)L/ü)r 2 ] 2 - (10~L) 2<<1, which again is proportional to L. 
If, however, a < i, then 

A(r 2) 
δν -

4ττ 

'2 ω Γ 2 l-2a [r(l-a) ] 1 c(r 9) . 
L Z a , (9) 

c(r2)J r(l"2a) r2 

where Γ is the gamma function. In that case δν varies with L more slowly. 

A logarithmic regression of the values of the splittings between 
sectoral and zonal modes deduced from the observations of Duvall, 
Harvey and Pomerantz (1986) plotted in Figure 2 yields s(L,£,/L) s 
0.30Ι_0·2 μΗζ. This can be identified with equation (9), yielding 
a=0.1. Moreover, since the upper turning point is about 10" R 
beneath the photosphere where c s 10 km s" \ and α/2ττ « 3 mHz, it 
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follows that A(r 2) - 4 χ 10
 4 if α = 2. 

4. DIRECT MAGNETIC PERTURBATIONS 

The evidence from the m/L dependence of s that Δ is somewhat 
concentrated near the equator suggests that magnetic perturbations 
might be important. The direct effect of the Lorentz force on wave 
propagation can be represented by a direction-dependent sound-speed 
perturbation to the dispersion relation (4). For example, we deduce 
from the work of Bogdan and Zweibel (1985) that for waves propagating 
perpendicular to a fibril field in a gas with adiabatic exponent γ, 

where f is the fraction of volume occupied by parallel flux tubes in 
temperature equilibrium with their surroundings and 3 is the ratio of 
gas pressure to magnetic pressure in the flux tubes. Δ - 3f/γ when 
3<<1· Waves travelling nearly parallel to the field are influenced much 
less. There are no reliable predictions of how Δ should vary with 
depth; that we must infer from the L dependence of the observed 
frequency splitting. 

It should be appreciated that the formula (10) was deduced for an 
unstratified medium, in which ω α is zero. However, if the value a = 
0.1 is to be believed, the influence of Δ on the waves is greatest near 
the upper turning point. So one might have suspected that the neglected 
perturbation to δω α might be important. It is evident, however, that 
its influence will be confined to a shallow region in the vicinity of 
r^, and therefore its contribution to the frequency perturbation must 
be proportioned to L. The data suggest that any such contribution is 
small. 

Since the dominant influence of Δ is near the top of the acoustic 
cavity r λ <r <r^ where the waves travel almost vertically (except, of 
course, very close to r = r 2 where the waves travel horizontally), the 
fibrils must have a strong horizontal component. Moreover, the 
magnitude of Δ is only weakly dependent on the orientation of the plane 
of propagation of the wave, and hence on m/L. The m dependence would 
therefore be expected to come predominantly from the latitudinal 
dependence of Δ. If we assume the fibrils are horizontal in the 
region where Δ is most important, we thus obtain a pole-equator 
difference in 3f of about 7x10""^ at r = r ?, which is not substantially 
greater than the estimate inferred from the observations of Tarbell et_ 

ί £ = Λ _ I J L 4 + ( r - 2 ) ß f 

c Δ 2 2-3 γ+(γ-2)3 
(10) 

al. (1979). 

5. EFFECT OF VARIATION OF THE THERMAL STRATIFICATION 

Another effect the magnetic field might have is to suppress convection 
preferentially at low latitudes. The effect on the stratification 
would be strongest in the superdiabatic boundary layer at the top of 
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the convection zone, but the influence of that effect would extend to 
greater depths. Therefore we would anticipate values of δν that rise 
with L more slowly than linearly. 

To estimate the effect we computed model solar envelopes to 
represent the polar and equatorial regions, with an equatorial mixing 
length differing from the polar value by a factor 1 - ε . The 
luminosity, effective temperature and surface gravity at the equator 
were adjusted so that in the lower regions of the convection zone, 
where the stratification is adiabatic, the polar and equatorial models 
were indistinguishable. We then compared the adiabatic eigen-
frequencies of the two models. 

The frequency splitting s(L, $/L) computed with a=2 is plotted in 
Figure 2. It is positive, as are the observations, and the variation 
with L, s α L 0* 3, is similar to that observed. However, to obtain 
agreement with the magnitude of the splitting (which is linear in ε 
when ε is small) requires ε = 0.1, which yields a radiative flux from 
the photosphere some 15% smaller at the equator than at the poles. 
This value is unacceptably large, and we deduce that the observed 
frequency splittings cannot be explained solely by a latitudinal 
variation in the mixing length. 
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