
27 Dynamics of string theory at weak coupling

In previous chapters we have seen that string theory at the classical level shows promise of
describing the Standard Model and can realize at least one scenario for the physics beyond:
low-energy supersymmetry. But there are many puzzles, most importantly the existence of
moduli and the related question of the cosmological constant. At tree level, in the Calabi–
Yau solutions the cosmological constant vanishes. But whether this holds in perturbation
theory and beyond requires an understanding of the quantum theory.

In studying string theory, we have certain tools:

1. weak coupling expansions;
2. long-wavelength (low-momentum, α′) expansions.

We have exploited both these techniques already. In analyzing string spectra we worked
in a weak coupling limit. There are corrections to the masses and couplings, for example; in
string perturbation theory all but a few states that we have studied have finite lifetimes. At
weak coupling these effects are small, but at strong coupling the theories will presumably
look dramatically different.

In asserting that Calabi–Yau vacua are solutions of the string equations, we used both
the above types of expansion. We wrote down the string equations both in lowest order
in the string coupling and also with the fewest number of derivatives (two). Even at
weak coupling and in the derivative expansion, we can ask whether Calabi–Yau spaces
are actually solutions of the string equations, both classically and quantum mechanically.
For example, we have seen that, at lowest order in both expansions, there are typically
many massless particles. We might expect tadpoles to appear for these fields, both in the
α′ expansion and in loops. There is in general no guarantee that we can find a sensible
solution by simply perturbing the original one.

Yet there are many cases where we can make exact statements. In both Type II
and heterotic string theories, we can often show that Calabi–Yau vacua correspond to
exact solutions of the classical string equations. We can also show that they are good
vacua – there are no tadpoles for massless fields – to all orders of the string perturbation
expansion. More dramatically, we can sometimes show that these vacua are good, non-
perturbative, states of the theory. This is perhaps surprising since we lack a suitable non-
perturbative formulation in which to address this question directly. The key to this magic
is supersymmetry. In the framework of quantum field theory we have already seen that
supersymmetry gives a great deal of control over the dynamics, both perturbative and non-
perturbative. We were able to prove a variety of non-renormalization theorems from very
simple starting points. The more that supersymmetry is involved, the stronger the results
we could establish simply from symmetry considerations, without a detailed understanding
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398 Dynamics of string theory at weak coupling

of the dynamics. The same is true in string theory. We can easily prove a variety of non-
renormalization theorems for string perturbation theory. We can show that with N = 1
supersymmetry in four dimensions the superpotential is not renormalized from its tree level
form in perturbation theory; the gauge coupling functions are not renormalized beyond
one loop. These same considerations indicate the sorts of non-perturbative corrections
which can (and do) arise. In theories with more supersymmetries one can prove stronger
statements: that the superpotential is not renormalized at all and that there are strong
constraints on the kinetic terms. These sorts of results will be important when we try to
understand weak–strong coupling dualities.

27.1 Non-renormalization theorems

In each superstring theory one can prove a variety of non-renormalization theorems.
Consider, first, the case of ten dimensions. At the level of two derivative terms the actions
with N = 1 or N = 2 supersymmetry (16 or 32 supercharges) are unique. So, both
perturbatively and non-perturbatively, there is no renormalization. This is a variant of
our discussion in four-dimensional field theories. If we dimensionally reduce the Type
II theories on a six-dimensional torus, we obtain a four-dimensional theory with 32
supercharges (N = 8 in four dimensions); if we reduce the heterotic theory we obtain a
theory with N = 4 supersymmetry in four dimensions (16 supercharges). In either case the
supersymmetry is enough to prevent corrections to either the potential or the kinetic terms,
not only perturbatively but non-perturbatively.

These are quite striking results. From this we learn that the question of whether the
universe is four-dimensional or whether it has, say, four or eight supersymmetries, or none,
is not simply a dynamical question (at least in the naive sense of comparing the energies of
different states or their relative stability). Other issues, perhaps cosmological, must come
into play. We will save speculations on these questions for later.

27.1.1 Non-renormalization theorems for world-sheet perturbation theory

Let us turn now to compactified theories. Consider first a Type II theory compactified on
a Calabi–Yau space. In this case the low-energy theory has N = 2 supersymmetry. Again,
this is enough to guarantee that there is no potential generated for the moduli, perturbatively
or non-perturbatively. In other words, starting with a solution of the equations of the low-
energy effective field theory, at lowest order in gs and R2/α′, we are guaranteed that we
have an exact solution to all orders – and non-perturbatively – in both parameters.

Now consider the compactification of the heterotic string theory on the same Calabi–
Yau space, with spin connection equal to the gauge connection. Then the world-sheet
theory, as we saw, has two left-moving and two right-moving supersymmetries. It is
identical to the theory which describes the corresponding Type II background. But we have
just established that the Calabi–Yau space is a solution of the classical string equations,
which means that there is a corresponding superconformal field theory with central charge
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399 27.1 Non-renormalization theorems

c = 9. This is an exact statement, so the background corresponds to an exact solution of the
classical string equations. This does not establish that the Calabi–Yau space corresponds
quantum mechanically to an exact vacuum, as it does in the Type II case. For example, the
intermediate states in quantum loops in the two theories are different.

We can establish this result in a different way. Consider the h1,1 (1, 1)-forms b(a)i ī ; one
of these is the Kahler form, where bi, ī = gi, ī. In world-sheet perturbation theory we have
seen that these fields decouple at zero momentum. The fact that all scattering amplitudes
involving external b particles vanish at zero momentum has consequences for the structure
of the low-energy effective Lagrangian: only derivatives of b appear in the Lagrangian.
This is reminiscent of the couplings of Goldstone bosons; the Lagrangian, in world-sheet
perturbation theory, is symmetric under

b(x) → b(x)+ α (27.1)

for constant α. We will refer to fields exhibiting such perturbative shift symmetries quite
generally as axions.

This result implies a non-renormalization theorem for sigma-model perturbation theory;
b lies in a supermultiplet with r2, the modulus which describes the size of the Calabi–Yau
space. This is apparent from the fact that they are both Kaluza–Klein modes associated with
the metric gi, ī; r2 is the symmetric part and b is the antisymmetric part. So this is similar
to the situation in which we could prove non-renormalization theorems in field theory.
Different orders of sigma model perturbation theory are associated with different powers
of r−2. But, in holomorphic quantities such as the superpotential and gauge coupling
function, additional powers of r−2 are accompanied by powers of b. So only terms which
are independent of r−2 are permitted by the shift symmetry. As a result, the superpotential
computed at lowest order is not corrected in sigma model perturbation theory. This means
that particles which are moduli at the leading order in α′ are moduli to all orders of sigma
model perturbation theory.

This non-renormalization theorem does not quite establish that these are good solutions
of the classical string theory; there is still the possibility that non-perturbative effects
in the sigma model will give rise to potentials for the lowest-order moduli. Indeed, our
argument for the vanishing of the b couplings is not complete. At zero momentum the
vertex operator for b, Vb, is topological; while it is the integral of a total divergence,
it does not necessarily vanish. There generally exist classical Euclidean solutions of
the two-dimensional field theory – instantons – for which the vertex operator is non-
zero. These world-sheet instantons raise the possibility that non-perturbative effects on
the world sheet will lift some of or all the vacuum degeneracy. For the (2, 2) theories,
however, we already know that this does not occur. Earlier we argued, by considering the
compactification of the related Type II theories, that the corresponding sigma models are
exactly conformally invariant. It is possible (and not terribly difficult), by examining the
structure of the two-dimensional instanton calculation (i.e. for the “world-sheet instanton”)
to show that no superpotential is generated. While we will not review this analysis here,
the techniques involved are familiar from our discussion of four-dimensional instantons.
One wants to determine whether instantons can generate a superpotential. It is necessary,
as in four dimensions, to count the fermion zero modes and see whether they can lead to a
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non-vanishing correlation function at zero momentum for an appropriate set of fields. In
the (2, 2) case one finds that they cannot. One can then ask whether quantum corrections
(i.e. due to small fluctuations) to the instanton result can yield such a correction. Here one
notes that, as in perturbation theory, holomorphy fixes uniquely the dependence on the
coupling. So if the lowest-order contribution vanishes, higher orders will vanish as well.

In the case of (2, 0) compactifications of the heterotic string the situation is more
complicated. Perturbatively, we can argue, as before, that solutions of the string equations
at lowest order are solutions to all orders in the α′ expansion. Non-perturbatively, however,
the situation is less clear. For such compactifications there is no corresponding Type II
compactification, so we can not rely on the magic of N = 2 supersymmetry; it is necessary
to examine in detail the effects of world-sheet instantons. In general, if one does the
sort of zero-mode counting described above then one finds that it is possible to generate
a superpotential. But in many cases one can argue that there are cancelations, and the
superpotential vanishes.

It is important to understand that the non-renormalization theorems do not imply that the
Calabi–Yau manifold is itself an exact solution to the classical string equations; rather, the
point is that a solution is guaranteed to exist nearby. There can be – and are – tadpoles for
massive particles in sigma model perturbation theory. A tadpole corresponds to a correction
of the equations of motion as follows:

∇2h + m2h = �. (27.2)

This is solved by a perturbatively small shift in, the h field;

h = − �

m2 . (27.3)

For the massless fields, however, one cannot find a solution in this way, and in general, if
there is a tadpole, there is no nearby (static) solution of the equations. This is why the low-
energy effective action is such a useful tool in addressing such questions: it is precisely the
tadpoles for the massless fields which are important.

27.1.2 Non-renormalization theorems for string perturbation theory

In field theory we proved non-renormalization theorems by treating couplings as back-
ground chiral fields and exploring the consequences of the holomorphy of the effective
action as a function of these fields. In string theory we have no coupling constants, but the
moduli determine the effective couplings and, since they are themselves fields, they are
restricted by the symmetries of the theory. We exploited this connection in the previous
subsection to prove non-renormalization theorems for sigma model perturbation theory. In
this subsection we prove similar statements for string perturbation theory.

We begin with the heterotic string theory, on a Calabi–Yau manifold or an orbifold. In
this case we have seen that there is a field S which we called the dilaton (it is sometimes
called the four-dimensional dilaton). The vertex operator for the imaginary part of this
field, a(x), at k = 0 is simply
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401 27.2 Fayet–Iliopoulos D terms

Va =
∫

d2σ εab ∂aXμ∂bX νbμν . (27.4)

This is, again, a total derivative on the world sheet. So this particle, which we saw earlier
is an axion, decouples at zero momentum. Again there is a shift symmetry – this is just the
axion shift symmetry. Again, this means that the superpotential must be independent of S.
But, since powers of perturbation theory come with powers of S, this establishes that the
superpotential is not renormalized to all orders of perturbation theory!

As in the world-sheet case there can be non-perturbative corrections to the superpoten-
tial, and this raises the possibility that potentials will be generated for the moduli. We will
see shortly that gluino condensation, as in supersymmetric field theories, is one such effect.

First, we consider other string theories. In the case of Type II compactified on a
Calabi–Yau space, the N = 2 supersymmetry is enough to ensure that no superpotential
is generated perturbatively or non-perturbatively: Calabi–Yau spaces correspond to exact
ground states of the theory, and the degeneracies are exact as well. As in field theories
with N = 2 supersymmetry, corrections to the metric (the Kahler potential (26.44)) are
possible. Theories with more supersymmetry (heterotic on tori, or Type II theories on K3
with N = 4 supersymmetry or Type II theories on tori with eight supersymmetries) are
even more restricted.

27.2 Fayet–Iliopoulos D terms

In deriving non-renormalization theorems for string perturbation theory, we established
that there is no renormalization of the superpotential or of the gauge coupling function
beyond one loop. But this is not quite enough to establish that there is no renormalization
of the potential. We must also check whether Fayet–Iliopoulos terms are generated. From
field-theoretic reasoning we might guess that any renormalization would occur only at one
loop. In globally supersymmetric theories in superspace, a Fayet–Iliopoulos term has the
form

ζ 2D =
∫

d 4θ V. (27.5)

This term is just barely gauge invariant: under V → V + � + �† it is invariant because∫
d 4 θ� = 0 since � is chiral. If we treat the gauge coupling (or any other couplings) as a

background field, any would-be corrections to D would have the form∫
d 4θ g(S, S†)V, (27.6)

which is only invariant if g is a constant. Thus any D term is independent of the coupling,
in the normalization where 1/g2 appears in front of the gauge terms. So at most there is a
one-loop correction.

Before going on to string theory, it is interesting to look at the structure of any one-loop
term. Call the associated U(1) generator Y. If the supersymmetry is unbroken then massive
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Fig. 27.1 The Feynmann diagram which contributes to the D term.

fields come in pairs with opposite values of Y, so only massless fields contribute. The
Feynman diagram which contributes to the D term is shown in Fig. 27.1. It is given by:

ζ 2 = Tr Y
∫ d 4k
(2π) 4

1
k2 . (27.7)

So a vanishing D term requires that the trace of the U(1) generator vanish. The one-loop
diagram is quadratically divergent, but let us rewrite Eq. (27.7) in a way which resembles
expressions we have seen in string theory. We can introduce a “Schwinger parameter,”
which we will call τ2. Then

ζ 2 = 2π Tr Y
∫ ∞

0
dτ1

∫ d 4k
(2π)4

e−2πτ2k2
(27.8)

= 1
32π3 Tr Y

∫ ∞

0

dτ2

τ 2
2

∫ 1/2

−1/2
dτ1.

We have written the expression in this way because we want to consider it as an integral
over the modular parameter of the torus. At this stage the integral is still quadratically
divergent. But, under modular transformations, the complex τ plane is mapped into itself
an infinite number of times. We can define a fundamental domain,

−1
2

≤ τ1 ≤ 1
2

, |τ | ≥ 1. (27.9)

If we restrict the integration to the fundamental domain, the result is finite. In string
theories, the correct answer terms out to be

ζ 2 = 1
192π2 Tr Y. (27.10)

This result can be derived by a straightforward string computation. However, in string
models where Tr Y is non-zero we can give a low-energy field theory argument which
completely fixes the coefficient of the D term and also sheds light on possible perturbative
corrections. If Tr Y �= 0, the low-energy theory has a gravitational anomaly. This anomaly
is rather similar to the gauge anomalies we discussed in the context of field theory. It
arises from a diagram with one external gauge boson and an external graviton. String
models with such anomalies typically have gauge anomalies as well, which we can readily
evaluate. As an example, consider the compactification of the O(32) heterotic string on
a Calabi–Yau space, with spin connection equal to the gauge connection. In this case the
low-energy gauge group is SO(26)× U(1). There are h1,1 26s with U(1) charge 1, and h2,1
26s with U(1) charge −1. There are also corresponding singlets, with charges +2 and −2
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respectively. These are in precise correspondence with the fields we found in E6; the 26s
arise in parallel to the O(10) 10s and the singlets arise in parallel to the O(10) singlets. But
now it is clear that there are anomalies in the gauge symmetries. For example, there is a
U(1)× O(26)2 anomaly proportional to

A = h2,1 − h1,1 (27.11)

and a U(1)3 anomaly given by

A′ = (h2,1 − h1,1)(26 − 8). (27.12)

This is, however, a modular invariant configuration of string theory, so there should not
be any inconsistency, at least in perturbation theory. Therefore something must cancel the
anomaly. The cancelation is actually a variant of the mechanism discussed originally by
Green and Schwarz in ten dimensions, now specialized to four dimensions. We know that
there is a coupling: ∫

d2θ SW2
α . (27.13)

This gives rise to a coupling of the axion to the FF̃ terms of each group. The anomaly
calculation in the low-energy theory implies a variation of the action proportional to the
anomaly coefficient and FF̃. So, if the axion transforms under the gauge symmetry as

a(x) → a(x)+ cω(x) (27.14)

then this can cancel the anomaly. It is crucial that the anomaly coefficients are the same for
each group.

We can check whether this hypothesis is correct. If a(x) transforms as above then it must
couple to the gauge field. The required covariant derivative is

Dμa = ∂μa − 1
c

Aμ. (27.15)

So, from the kinetic term in the action there is a coupling of Aμ to a. One can compute this
coupling without great difficulty and verify that it has the required magnitude.

More interesting, however, is to consider the implications of supersymmetry. We can
generalize the coupling above to superspace. The transformation law for a now becomes a
transformation law for S:

S → S +�+�†, (27.16)

where � is the chiral gauge transformation parameter. The gauge-invariant action for S is

−
∫

d 4θ ln

(
S + S† − 1

c
V
)

. (27.17)

If we expand this Lagrangian in a Taylor series, we see that, in addition to the Aμ∂μa
coupling, we generate a Fayet–Iliopoulos D term,∫

d 4θ
1

c(S + S†)
V. (27.18)
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404 Dynamics of string theory at weak coupling

One can verify that this term – and the other terms implied by this analysis – are present.
First, we can ask: at what order in perturbation theory should each of these terms appear?
To establish this we need to remember that the standard supergravity Lagrangian is written
in a frame where M2

p appears in front of the Einstein term in the effective action. In the
string frame, it is the dilaton – essentially S – which appears in front. If we rescale the
four-dimensional metric according to

gμν → Sgμν (27.19)

then S appears in front of the Lagrangian. With this same rescaling, the “kinetic” term,
which had an S in front, has S3. The Fayet–Iliopoulos D term, originally had a 1/S in front.
Correspondingly, the resulting scalar mass term would be proportional to 1/S2. After the
metric rescaling this would be independent of S; that is, in the heterotic string theory the
D term should appear at one loop, in accord with our field theory intuition. Similarly,
the coupling Aμ∂μa should appear at one loop, while there should be a contribution to the
cosmological constant at two loops. All these results can be found by straightforward string
computations (some of them are described in the suggested reading).

In essentially all the known examples this one-loop D term does not lead to supersym-
metry breaking. There always seem to be fields which cancel the D term. Consider, again,
the O(32) theory. Here we can try to cancel the D term by giving an expectation value
to one of the singlets, 1−2. The question is whether this gives a non-zero contribution
to the potential when we consider the superpotential. The most dangerous coupling is a
term 1−21+2 involving some other singlet. But such terms are absent at lowest order, and
their absence to higher orders is guaranteed by the non-renormalization theorems. Charge
conservation forbids terms of the form 1n−2; there are no other dangerous terms. So this
corresponds to an exact “F-flat” direction of the theory, in which all F vevs vanish. So, in
perturbation theory there exists a good vacuum. While a general argument is not known,
empirically this possibility for cancelation appears to arise in every known example.

What does the theory look like in this new vacuum?

1. Supersymmetry is restored and the vacuum energy vanishes.
2. The U(1) gauge boson has a mass-squared of order g2

s times the string scale.
3. The longitudinal mode of the gauge boson is principally the imaginary part of the

charged scalar field whose vev canceled the D term. There is still a light axion.

From the perspective of a very low energy observer, the D term is not a dramatic
development. It plays some role in determining the physics at a very high energy scale
(albeit not quite as high as the string scale). What is perhaps most impressive is the utility
of effective-field-theory arguments in sorting out a microscopic string problem. Prior to
the discovery of the D term, for example, there had been many papers “proving” a strict
non-renormalization theorem for the potential; this, we see, is not correct (it is not hard
to determine, in retrospect, what went wrong in the original proofs). The effective-field-
theory arguments make clear when the potential is renormalized in perturbation theory and
when it is not. They also permit one to easily find the “new vacuum” in cases where a
Fayet–Iliopoulos term appears. It is possible, in principle, to find this vacuum by string
methods, but this is distinctly more difficult. Finally, these arguments give insight into the
non-perturbative fate of the non-renormalization theorems.
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27.3 Gaugino condensation: breakdown of axion shift symmetries
beyond perturbation theory

We have seen that, in string theory, if supersymmetry is unbroken at tree level in some
particular constructions then it is unbroken to all orders of perturbation theory. The
argument, as in field theory, allows exponential dependence on the coupling. In the case
of a heterotic string compactified on a Calabi–Yau space, gaugino condensation, as in
supersymmetric field theories, generates a superpotential on the moduli space.

Consider the E8 × E8 theory compactified on a Calabi–Yau space, with spin connection
equal to the gauge potential and without Wilson lines. In this case there is an E6 ×E8 gauge
symmetry. There are typically several fields in the 27 of E6, but there are no chiral fields
transforming in the E8. One has a pure E8 supersymmetric gauge theory. The couplings
of the E6 and E8 are equal at the high scale, so the E8 coupling becomes strong first. This
leads, as we have seen, to gaugino condensation. We have also seen that at tree level there
is a coupling

SW2
α . (27.20)

Just as before, this leads to a superpotential for S,

W(S ) = Ae−3S/b0 . (27.21)

One often hears this described as a “field theory analysis,” as if it is not necessarily
a feature of the string theory. But string theory obeys all the principles of quantum field
theory. If we correctly integrate out the high-energy string effects then the low-energy
analysis is necessarily reliable. So the only question is: are there terms in the low-energy
effective action that lead to larger effects? One might worry that, since we understand so
little about non-perturbative string theory, it would be hard to address this. But, with some
very mild assumptions, we can establish that the low-energy effects are parametrically
larger than any high-energy string effects.

The basic assumption is that, as in field theory, non-perturbatively the theory obeys a
discrete shift symmetry (for a suitable normalization of a):

a(x) → a(x)+ 2π . (27.22)

When we discuss non-perturbative string theory, we will give some evidence for this
assumption; it will turn out to be one of the milder assertions on the subject of string
duality. For now, we note that if we accept this assumption then, any superpotential for S
arising from high-energy string effects will be of the form

Wnp = Cne−nS (27.23)

for integer n. So, such effects are exponentially smaller than gaugino condensation.
What does the low-energy theory look like? The dilaton potential goes rapidly to zero

for large S, i.e. in the weak coupling limit. We might have hoped that somehow we would
find that supersymmetry is broken and the moduli fixed. But, instead, gaugino condensation
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leads to a runaway potential. At large S we have just argued that no additional string effects
can stabilize this behavior.

We can imagine more elaborate versions of this phenomenon, involving matter fields as
well, in some sort of hidden sector. But it is difficult to construct models where the moduli
are stabilized in any controlled fashion along these lines.

27.4 Obstacles to a weakly coupled string phenomenology

We have seen that string theory is a theory without dimensionless parameters. This is an
exciting prospect, but it also raises the question: how are the parameters of low-energy
physics then determined? We have argued that the answer to this question lies in the
dynamics of the moduli: the expectation values of these fields determine the couplings
in the low-energy Lagrangian.

In non-supersymmetric string configurations, perturbative effects already lift the degen-
eracy among different vacua, giving rise to a potential for the moduli. In the previous
section we have learned that in supersymmetric compactifications non-perturbative effects
generically lift the flat directions of the potential. In other words, the moduli are not truly
moduli at the quantum level. At best, we can speak of approximate moduli in regions of
the field space where the couplings are weak. The potentials, both perturbative and non-
perturbative, all tend to zero at zero coupling. This is not surprising; with a little thought
it becomes clear that this behavior is not specific to perturbation theory or some particular
non-perturbative phenomenon such as gaugino condensation; at very weak coupling, we
expect that the potential always tends rapidly to zero. This means that if the potential has
a minimum, this occurs when the coupling is not small. This is troubling, for it means that
it is likely to be hard – if possible at all – to do computations which will reveal detailed
features of the state of string theory which describes the world we see around us.

In the next chapter we will see that much is known about non-perturbative string physics.
Most striking is a set of dualities which relate regimes of very strong coupling in one string
theory to weak coupling in another. While impressive, these by themselves do not help
with the strong coupling problem we have elucidated above; if, at very strong coupling,
the theory is equivalent to a weakly coupled theory then the potential will again tend to
zero. In other words, it is likely that stable ground states of string theory exist only in
regions where no approximation scheme is available.

Perhaps just as troubling is the problem of the cosmological constant. Neither pertur-
bative nor non-perturbative string theory seems to have much to say. The potentials are
more or less of the size one would guess from dimensional analysis (and the expected
dependence on the coupling). Perhaps most importantly they are, up to powers of the
coupling, as large as the scale set by supersymmetry breaking.

There are, however, some reasons for optimism. Perhaps the most important is provided
by nature itself: the gauge and Yukawa couplings of the Standard Model are small. Another
is provided by string theory. As we will discuss later, there are ways in which large
pure numbers can arise dynamically in the theory. These might provide mechanisms
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to understand the smallness of couplings, even in situations where asymptotically the
potential vanishes. Finally, we will see that there is, at present, only one proposal to
understand the smallness of the cosmological constant, and string theory may provide a
realization of this suggestion.

Suggested reading

The result that there are no continuous global symmetries in string theory is fundamental.
For the heterotic theory, it appears in Banks and Dixon (1988). Non-renormalization
theorems for world-sheet perturbation theory and issues in the construction of (0, 2)models
were described by Witten (1986) and by Green et al. (1987). The non-renormalization
theorem for string perturbation theory is described in Dine and Seiberg (1986). The space–
time argument for the Fayet–Iliopoulos D term appears in Dine et al. (1987c); world-sheet
computations appear in Atick et al. (1987) and Dine et al. (1987a). World-sheet instantons
are discussed in Dine et al. (1986, 1987b); cancelations of instanton effects relevant to
(0, 2) theories were studied by Silverstein and Witten (1995).
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