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ON MEROMORPHIC MAPPINGS INTO
TAUT COMPLEX ANALYTIC SPACES

TOSHIO URATA

In this paper, we study a certain difference between meromorphic
mappings and holomorphic mappings into taut complex analytic spaces.
We prove in §2 that, for any complex analytic space X, there exists a
unique proper modification {M(X) — X} of X with center Sg (X) which

is minimal with respect to the property that M(X) is normal and, for
any T-meromorphic mapping f: X — Y (see Definition 1.3) into a complex
analytic space Y, there exists a unique holomorphic mapping f: M(X) - Y
such that 7 = fox on M(X) except some nowhere dense complex analytic
set, where Sg(X) denotes the set of all singular points of X.

Using the above result, we can prove that the group of all biholo-
morphic mappings of X onto itself is finite for a compact complex ana-
lytie space X which is bimeromorphic with a compact taut complex analytic
space (§3). It is proved that, if there exists an open surjective holo-
morphic mapping of a complex analytic manifold onto a normal com-
plex analytic space X, then M(X) = X (§2), which means that every
T-meromorphic mapping of X into a complex analytic space extends
holomorphically to X. Moreover, we give some sufficient conditions for a
normal complex analytic space X of complex dimension 2 to be M(X) = X

(§3).

I would like to express my sincere thanks to Professor H. Fujimoto
for his valuable suggestions and encouragement during the preparation
of this paper.

In this paper, complex analytic spaces are always assumed to be
reduced and connected.

§1. Preliminaries
Let X and Y be complex analytic spaces. We denote by Hol (X,Y)
Received June 9, 1972.
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the set of all holomorphic mappings of X into Y. A sequence {f};s, in
Hol (X,Y) is said to be compactly divergent on X if, for any compact
sets K in X and L in Y, there exists some 4, such that f,(K) N L =¢
for all integer ¢ > 14,

DEFINITION 1.1. A complex analytic space X is said to be taut, if
Hol (Y, X) is normal for any complex analytic space Y, i.e., any sequence
in Hol (Y, X) contains a subsequence which is either uniformly convergent
on every compact set in Y or compactly divergent on Y.

Let X and Y be complex analytic spaces. A meromorphic mapping
f: X —Y is by the definition of Remmert a set-valued function with
Sf@ Y for any ze X such that the restriction f,,_, of fto X — A
for some nowhere dense complex analytic set 4 in X is a holomorphic
mapping and the graph

I's={x,eXXY:xeX and yef(®)}

is a complex analytic set in X X Y which coincides with the closure of
{@, fx))eX X Y:zeX — A} in X X Y and, in addition, the canonical
projection p:I'; — X is proper.

By virtue of Theorem 4.1 in [3], we have easily

PROPOSITION 1.2. Any meromorphic mapping of a complex analytic
manifold M into a taut complex analytic space is holomorphic on M.

This is also valid for meromorphic mappings into hyperbolic com-
plex analytic spaces in the sense of S. Kobayashi [11] as is shown by
the argument in [12].

DEFINITION 1.3. A meromorphic mapping f: X — Y of a complex ana-
lytic space X into a complex analytic space Y is said to be T-meromorphic
on X if, for any xe¢ X, there exist an open neighborhood U of z in X
and a taut local complex analytic set V in Y such that f(U)C V and
80 fiy: U — V is meromorphic.

PrROPOSITION 1.4. Any T-meromorphic mapping of a complex ana-
lytic manifold M into a complex analytic space is holomorphic on M.

This follows immediately from Proposition 1.2.

REMARK 1.5. By the theorem of resolution of singularities by Hiro-
naka [5] and Kwack’s theorem [12], for a nowhere dense complex ana-
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lytic set A of a complex analytic space X, every holomorphic mapping
of X — A into a compact taut complex analytic space is considered to
be T-meromorphic on X.

Now, let X be a complex analytic space and F' = {f;};c; be a family
of holomorphic mappings f; of X into the complex analytic space Y,;(te D).
We define an equivalence relation R; on X such that

2 Ry v in X if and only if fi(x) = fi(y) in Y, for all 4el. Then,
the quotient space X /R, has the topology with the property that a mapp-
ing f of X/R, into a topological space Y is continuous if and only if
fop: X—Y is continuous, where p: X — X /R is the canonical projection.

In [2], H. Cartan gave the following

PROPOSITION 1.6. (1) For any relatively compact set K in X, there
exists a finite subset J of I such that the equivalence relation Ry on X
coincides with the equivalence relation Ry, on K defined by F; = {f}ics.

(2) If there exists a proper holomorphic mapping f;:X — Y, for
some i,el, then X /R, has a structure of a complex analytic space with
the property that the canonical projection p: X — X /Ry, is holomorphic
and any mapping f of X/Ry into another complex analytic space Y is
holomorphic if and only if fop:X — Y is holomorphic.

Now, let T be the class of all taut complex analytic spaces. Then,
it satisfies the following conditions (P,) and (P,) (c.f. [7], p. 314):

(P,) The product of two spaces in 7 is contained in T.

(P,) If X is a complex analytic space and if, for each point z ¢ X,
there exists a proper holomorphic mapping f of X into some Y in T
such that z is an isolated point of f~'f(x), then X is contained in 7.

For a complex analytic space X, assume that there exists a proper
holomorphic mapping of X into a taut complex analytic space. Let R,
be the equivalence relation on X defined by the family of all holomorphic
mappings of X into taut complex analytic spaces, which we call the taut
proper relation on X. By the theorem of H. Cartan ([2], p. 12), we
have

THEOREM 1.7. In the above situation, the quotient complex analytic
space X /R, satisfies the conditions:

(1) The canonical projection p: X — X /R, is proper surjective and
holomorphic.
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(2) For any holomorphic mapping f of X into a taut complex ana-
lytic space Y, there exists a holomorphic mapping f:X /Ry — Y such
thaot f:fop on X.

3) X/R; is taut.

(4) Each fiber of p: X — X/R; is connected.

(5) If X is mormal, then X/R; is also normal.

§2. Existence and Properties of M(X)

Let X be a complex analytic space. We denote by M, (X) the set
of all T-meromorphic mappings defined on X.

Let n: M — X be a proper holomorphic mapping of a complex ana-
lytic space M onto X. A proper modification {M — X} of X with center

A means that A and z~'(A) are nowhere dense complex analytic sets
in X and M respectively and m,_,-. is a biholomorphic mapping of
M — z'(A) onto X — A. A proper modification {M — X} of X with
center Sg(X) is called a resolution of singularities of X if M is a com-
plex analytic manifold.

Let X be a complex analytic space and let U’ be an open set in X
such that there exists a resolution of singularities {M 5 U’}. Since

f o ¢ has a holomorphic extension ¢*f to M for each f: X — Y, in M (X)
by Proposition 1.4, we may consider ¢*M, (X) = {¢*f: M — Y }rempxy tO
be a family of holomorphic mappings defined on M. Clearly, ¢*M,(X)
contains a proper holomorphic mapping ¢ = ¢*id: M — U’ for the identity
mapping id: X —» X in M,(X). Thus, ¢*M,(X) defines an equivalence
relation Ry : = Ry, on M as stated in §1. We have the following

LEMMA 2.1. Let U be a relatively compact open set in U’. Then,
there exists a T-meromorphic mapping f: X — Y, such that a holomorphic
mapping ¢*f: M — Y, defines an equivalence relation on M which coin-
cides with Ry on ¢ *(U).

Proof. Since ¢~'(U) is relatively compact in M, there exist by Propo-
sition 1.6 finitely many 7T-meromorphic mappings f,: X - Y,: =Y,, -,
fu: X —Y,: =Y, such that {¢*f,: M - Y,,---,¢*f,: M — Y,} defines B,
on ¢ Y(U). As is easily seen, f:=(f}, -, f): X—>Y;:=Y, X - XY,
is T-meromorphic and satisfies the desired condition.

THEOREM 2.2. Let X be a complex analytic space. Then, there ex-
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ists @ unique proper modification {M(X) — X} of X with center Sg(X)

such that the following holds:

1) MX) is normal.

@) For any T-meromorphic mapping f of X into a complex ana-
lytic space Y, there is a holomorphic mapping f:M(X) — Y such that
Ff=forn on M(X) except some nowhere dense complex analytic set.

) If another proper modification {M’ —> X} of X has the above
properties (1) and (2), then there is a holomorphic mapping ¢: M’ — M(X)
such that #’ =rwo¢p on M.

Proof. (a) Construction of M(X). By Hironaka’s theorem of reso-
lution of singularities [6], we can take an open covering {U};.; of X
such that (i) there exists an open covering {V.};.; of X such that each
V, is a relatively compact open taut complex analytic subspace of U,,
and (ii) each U, has a resolution of singularities {M; 75_) U}

We consider the equivalence relation R;: = R,, or; M, defined by
¢FM(X) as in Lemma 2.1 for each iel. Let ¢;%(V,)/R; be the quotient
complex analytic space of ¢;(V,) by the relation R, on ¢;%(V,), and let
Bi: 673 (V) — ¢:7(V,) /R, be the canonical projection (c.f. Proposition 1.6(2)).
We denote by N(¢; (V) /R,) 7—» ¢7Y(V,;) | R; the normalization of ¢;%(V;)/R;.

We have a holomorphic 1;1apping a;: ¢ (V) /R, — V; by Proposition
1.6(2) such that ¢, = a;0 8; on ¢;'(V,) for each ¢e€l. By Lemma 2.1, we
can choose a T-meromorphic mapping f;: X — Y; such that {¢¥f;: M;— Y,
and ¢;: M; — U;} induces on ¢;'(V,) the equivalence relation E; on M,
for each ieI. Then, a proper holomorphic mapping

Si,50 = (¢z’¢:kfz, b J'):Mz"_’ U, XY; X Yj

induces also the equivalence relation R; on ¢;(V,) and there exists a
holomorphic homeomorphism ¢;; of ¢;%(V,)/R; onto a complex analytic
subvariety of V, X Y; X Y; with s,; = ;;08; on ¢;'(V,) for any i,jel.
Now, we suppose that V;, N V,; is not empty. Since ¢, maps M; — ¢;*
(Sg (X)) biholomorphically onto U, — Sg (X), we see that

Si,j(¢i_l(Vi N Vj)) = Uy, j° 3j,i(¢}l(Vi nvy
and

b, @ (Vi N V) =ty 0 85,(a5* (V. N V),
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where u (20,0 =@, 2, PelV,NV,IX Y, XY,
for (2,9, 0)elV,NV,IxXY, XY, Gjel).

Then, the holomorphic mapping
tiiotsioty; i (ViN V) — a7 (V, N V)

induces a biholomorphic mapping 4;,: #;"(V, N V) — z;(V, N V;), where
Tt =azo7; on N(@;7(V)/R,) (i,7el). We see easily that n,02,; = 7; on
'V, N Vy and 2;,;04;, =2, on =z'(V, NV, NV (7, kel). Now,
as the required normal complex analytic space M(X), we take the quo-
tient (complex analytic) space of | J;c; N(¢;(V)/R;) by the equivalence
relation defined by the identification of points z in z;(V, N V;) and y
in ;% V, N Vy with 2, ;@) =y @ jel).

Then, the family {z;: N(¢;'(V;))/R;) — V:};ic; induces a proper sur-
jective holomorphic mapping =: M(X) — X such that {M(X) — X} is a
proper modification of X with center Sg(X).

(b) Proof of property (2) for M(X). Letf: X — Y bea T-meromorphic
mapping. Then, by Proposition 1.6(2), there exists f; ¢ Hol (M;/R;, Y;) such
that fo ¢i,-1vy = Jio pson ¢;(Vy) foreach cel.  So, {f;07:: N(g;'(Vy)/R,)
~ Y};er induces a holomorphic mapping f: M(X)—Y such that f = for
on M(X) except some nowhere dense complex analytic set.

(¢) Proof of property (3) for M(X). We have only to prove that
a meromorphic mapping z~': X — M(X) is T-meromorphic on X. Indeed,
in this case, if {M’ — X} is a proper modification of X satisfying the
conditions (1) and (2) in Theorem, there exists a holomorphic mapping
¢: M — M(X) such that ¢ = z7'on’ on M’ except some nowhere dense
complex analytic set and then zo¢ =z’ on M’ which asserts the property
3) for M(X).

Now, let xe X. There exists some V, (1¢l) and a T-meromorphic
mapping f;: X — Y, such that zeV, and g;: = (a;, a¥f): ¢; (V) /R; —
V, X Y, is a holomorphic homeomorphism onto a complex analytic sub-
variety of V; X Y,;, where «ff;: ;% (V,))/R; — Y, is a naturally induced
holomorphic mapping from ¢¥f;: M; — Y, (cf. Proposition 1.6(2)). On
the other hand, since f;: X — Y, is T-meromorphic, there exists a taut
open neighborhood U’ of # in X and a taut local complex analytic set
V in Y, such that f(U’) Cc V. We see easily that U: =U' N7V, is a
taut complex analytic space. Thus, g,: a;(U) — U X V is a holomorphic
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homeomorphism onto a complex analytic subvariety of U X V. By the
fact that the class of all taut complex analytic spaces satisfies the con-
ditions (P, and (P, in §1, o;(U) is taut and hence its normalization
z;%(U) is also taut. Since z: M(X) — X is induced from {z;: N(¢;(V,)/R,)
— Vi}ier, We conclude that z7': X — M(X) is T-meromorphic on X.

(d) The uniqueness of {M(X) — X} up to complex analytic isomor-

phisms follows from the property (3) of M(X).

PROPOSITION 2.3. If V s a taut open complex analytic subspace of
a complex analytic space X,z (V) is also taut for the proper modifica-
tion {M(X) — X} of X in Theorem 2.2.

Proof. By virtue of [1], it suffices to show that Hol (4, (V)) is
normal for the unit disc 4 = {|2| <1} in the complex plane C. Let
F = {fu}wse be a sequence in Hol (4,z7%(V)). Then, {ro f, € Hol (4, V)}.s,
is normal, because V is taut. Assume that F' is not compactly divergent
on 4. Since n: M(X) — X is proper, we may assume that there exists
limzof, =g in Hol(4,V). As in the proof of Theorem 2.2, any xe 4

hz:s an open neighborhood U in 4 such that, for an open neighborhood
D of gx) in V, (i) =~'(D) is taut, and (i) {faz}tusn, € Hol (U,z 4(D)) for
some 7,. By the diagonal argument, we see that F' has a subsequence
which is uniformly convergent on every compact set in 4. This shows
that Hol (4, z7(V)) is normal.

REMARK 2.4. We can prove also that, if X is a (complete) hyper-
bolic complex analytic space in the sense of S. Kobayashi, then M(X) is
also (complete) hyperbolic.

PROPOSITION 2.5. Let f: X — Y be a holomorphic mapping of a com-
plex analytic space X into another Y such that f~'(Sg (Y)) is nowhere
dense in X. Then, there is a holomorphic mapping f: M(X) — M(Y) such
that nyof = forxy on M(X) for the proper modifications {M(X) —7? X}
of X and {M(Y) - Y} of Y as in Theorem 2.2.

Proof. Since z3':Y — M(Y) is T-meromorphic on Y,zz'of: X —
M(Y) is also T-meromorphic on X. By the property (2) in Theorem 2.2,
there exists a holomorphic mapping f: M(X) — M(Y) with nyof = fony
on M(X).
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REMARK 2.6. Let X be a taut complex analytic space with a reso-
lution of singularities {M 5 X} of X. By Theorem 1.7, for the taut
proper relation R, on M,M/R; is a normal taut complex analytic space
and we have a commutative diagram

B M \#1
M(X) |s M/R,
T X T

for the canonically defined holomorphic mappings. Since M(X) is taut
(Proposition 2.3), there exists a holomorphic mapping s: M /R, — M(X)
such that sog=p on M by Theorem 1.7. On the other hand, we see
easily that {M /R, — X} is a proper modification of X with center Sg(X)
and r7': X - M/R; is T-meromorphic. So, there exists a holomorphic
mapping t: M(X)— M /R, such that zot{ == on M(X) by the property (2) in
Theorem 2.2. From the fact that {M(X) — X}and {M/R, - X} are
both proper modifications of X with center Sg (X), we see that ros =1~
on M/R,, whence t: M(X) — M /R, is biholomorphie, i.e., {M(X) — X}
={M/R; — X}.

PROPOSITION 2.7. Let N be a connected complex analytic manifold
with a monconstant proper holomorphic mapping ¢: N — X into o taut
complex analytic space X. Then, for the quotient complex analytic space
N/R; of N, we have M(N/R;) = N/R;, t.e., the canonical holomorphic
mapping n: M(N/R;) — N /R, is bikolomorphic.

Proof. By Proposition 2.5, we have a holomorphic mapping 7: N —
M(N/R;) with 707 =y on N for the canonical holomorphic mapping
y:N— N/R;. Since N/R, is taut, M(N/R;) is also taut by Proposition
2.3. Then, by the property (2) in Theorem 1.7, there exists a holomor-
phic mapping s: N/R; — M(N/R;) such that soy =7 on N. From the
fact that {M(N/R,) — N/R;} is a proper modification of N/R;, we see

that z: M(N/R;) — N /R, is biholomorphiec.
PROPOSITION 2.8. Let X be a normal complex analytic space such
that there exists an open surjective holomorphic mapping ¢ of a com-

plex analytic manifold N onto X. Then, it holds that M(X) = X, i.e.,
every T-meromorphic mapping defined on X is holomorphic on X.
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Proof. Without loss of generality, we may assume that X and N
are both connected. By Proposition 2.5 we have a holomorphic mapp-
ing ¢: N — M(X) such that zod =¢ on N for the proper modification
{M(X) — X} of X, because M(N) = N obviously. We can prove that
$: N — M(X) is surjective. Letpe M(X). If pe M(X) — = (Sg (X)), for
ze N with ¢() = z(p) e X, ¢(x) = pe M(X) by the definition of §: N —
M(X). We suppose that p e z7(Sg (X)). Then there exists a point xe N
and a relatively compact open neighborhood U of z in N such that
#(x) = n(p) e X. Since V: = ¢(U) is an open neighborhood of #(x) = n(p)
in X, there exists a sequence of points {p, ez~ (V — Sg (X))}., such that,
for some {z, € U}, $(x,) = n(p,) in X for all n > 0 and limp, = p € M(X).

Then, $(x,) = p, in M(X) for all » > 0. Since U C N 71'Ls relatively com-
pact in N, we may assume that 11m %, = %€ N and then ¢(z,) = hm B(x,)

=limp, = peM(X). Thus ¢: N——»M(X) is surjective. We see easily

that z: M(X) — X is open, because ¢: N — X is open surjective and
é: N — M(X) is surjective. By the Remmert’s theorem for open holomor-
phic mappings, r: M(X) — X is of finite-fibers. It means that =: M(X) - X
is biholomorphic by the uniqueness of normalizations of complex analytic
spaces.

PROPOSITION 2.9. Let X be a complex analytic space with the proper
modification {M(X) —> X} of X in Theorem 2.2. Let f be a T-meromorphic
T

mapping of an open set U in X into a complex analytic space Y such
that, for some nowhere dense compact complex analytic set A of U,
Siv-a 8 holomorphic on U — A. Then, there exists a holomorphic mapp-
ing f:xW(U)—Y such that 5= forn on =~ '(U — A).

Proof. Let I'yc U X Y be the graph of f. Then, there exists a
biholomorphic mapping ¢: U — A — I'; — pr~'(4) for the canonical projec-
tion pr:I'; — U. We can consider a quotient complex analytic space

=X —-A) UTI;/~ by the identification between zeU — A and
é(x)e 'y — pr~'(4). This is possible, because Z with the quotient topology
is a Hausdorff space. Moreover, we have a holomorphic mapping
g: X —A—Z with g@) = y(x)e Z (xe¢ X — A) for the canonical projec-
tion v: (X —A) U TI'y—Z. Since ¥,,: Iy — (') is a biholomorphic
mapping onto an open set Y(I';) of Z by the definition of the complex
analytic structure on Z, g: X — Z is T-meromorphic on X. So, there
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exists a holomorphic mapping §: M(X) — Z such that § = g oz on M(X).
It is easy to see that g(="'(U)) C ¥(I'y) in Z. Then, for the natural pro-
jection pry: I'; > Y, fi=pryodtog:n (U)— Y is the desired holomor-
phic mapping.

REMARK 2.10. Let f: X — Y be a meromorphic mapping of a com-
plex analytic space X into a hyperbolic complex analytic space Y. Let
I'sC X XY bethe graph of f:X—Y, and let px:[';—X and py:[';—Y
be the canonical projections. Then, we can define a meromorphic mapp-
ing 9: X—>TI; by 9@ ={&,9:yef(@®}Cc X XY for xeX. We shall
prove that ¢g: X — I', is T-meromorphic. From this, we can conclude
that the assertion (2) in Theorem 2.2 and Proposition 2.9 hold for arbitary
meromorphic mapping into any hyperbolic complex analytic space. For
our purpose, it suffices to show that, for any point x e X, there exists
an open neighborhood U of « in X such that p7(U) < I'; is taut. Now,
we choose an open neighborhood U of z in X such that U is complete
hyperbolic. Then, p3z(U) is complete hyperbolic, because (i) pz(U) C
U X Y is hyperbolic, (ii) pz(x) is a compact hyperbolic complex analytic
space for any xze U, and (iii) U is complete hyperbolic. It is easy to
see that a complete hyperbolic complex analytic space is taut (c.f. [9]).
This completes the proof.

§ 3. Applications

Let X and Y be complex analytic spaces. We denote by Mero (X, Y),
Aut (X) and Aut,, (X) the set of all meromorphic mappings of X into Y,
the group of all biholomorphic mappings of X onto X and the group of
all bimeromorphic mappings of X onto X respectively.

We suppose that Y is taut. By Theorem 2.2, there exists a bijective
mapping «: Mero (X,Y) — Hol (M(X),Y) such that a(f) = foz on M(X)
except some nowhere dense complex analytic set for any fe Mero (X,Y),
where {M(X) — X} is the proper modification of X constructed in

Theorem 2.2. If Y is a compact taut complex analytic space, then we
have a natural bijective mapping f: Hol (X — Sg (X),Y) — Hol (M(X),Y)
from Remark 1.5.

Now, Proposition 2.3 asserts that, if Y is taut, then M(Y) is also
taut for the proper modification {M(Y) — Y} of Y. This shows that

7 lo f1 Y — M(Y) is T-meromorphic on Y for any f e Aut,, (Y). By Theo-
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rem 2.2, there exists a holomorphic mapping y(f): M(Y) — M(Y) such
that # o y(f) = fomx on M(Y) except some nowhere dense complex analytic
set for any fe Aut, (Y). We see easily that y(f)e Aut (M(Y)) since
feAut,, (Y) and then y: Aut,, (Y) — Aut (M(Y)) is a group-isomorphism.
We have

PRrROPOSITION 8.1. Let X be an irreducible tout complex analytic space
of complex dimension n. Then, Aut, (X) admits a structure of a real
Lie group of real dimension < 2n + n®. In particular, if X is compact,
it s a finite group.

Proof. By Proposition 2.3, M(X) is taut. Proposition 3.1 follows
easily from Satz 1.8 and 5.2 in [7].

COROLLARY 3.2. Let X be a compact complex analytic space which
18 bimeromorphic with a compact taut complex analytic space X by
¢: X > X. Then, Aut(X) is a finite group.

Proof. The bimeromorphic mapping ¢: X — X induces an injective
group-homomorphism ¢*: Aut (X) — Aut,,(X) with ¢*(f)=g¢ o fog' € Aut,, (X)
for any fe Aut(X). Corollary 8.2 is a direct result of Proposition 3.1.

PROPOSITION 3.3. Let X be a compact taut complex analytic space
and A a nowhere dense complex analytic set in X. If f is a holomor-
phic mapping of X — A into itself, then there exists a positive integer
n such that g: = f"= fofo---0ft X —A—-X—A is a holomorphic
retraction, t.e., gog =9 on X — A. Moreover, if f: X —-A—>X—A
s surjective, it is biholomorphic on X — A.

Proof. By Remark 1.5, f: X — X is meromorphic on X. Therefore,
there is a holomorphic mapping f: M(X) — X such that f = for on M(X)
except some nowhere dense complex analytic set, where {M(X) —7:—>X}
is the proper modification of X as in Theorem 2.2. We put Y: =
JM(X)) c X. It is easy to see that ¥ N A is nowhere dense in ¥ and
f(X —A)cY — A. Since Y is a compact taut complex analytic space
and fly_4,: Y —A—Y — A, it suffices to show that this Proposition is
true for fiy_4: Y —A—->Y — A.

Succeeding this process, we have a finite sequence
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of compact taut complex analytic subvarieties Y DY, D .--.- DY,inX
and holomorphic mappings fi: = fiy_4: Y — Ay —> Y, — Ay, fit = fiy, oyt
Y., —A_,—»Y,—A;, (t>1) such that 4;: =Y NAand 4;,: =Y, N A
(¢ > 0) are nowhere dense in Y and Y, (¢ > 0) respectively and such that
Sfivn-a,: Yy, — A, —Y, — A, is surjective. Thus, if the second part in
Proposition 3.3 is proved, then fy,_,,:Y, —A,— Y, — A, is biholomor-
phic and so bimeromorphic on Y, by Remark 1.5. It means that (f,y,)?
=1d in Aut, (Y,) for some positive integer p by Corollary 3.2 and then
Jret: X — A — X — A is a holomorphic retraction.

Now, we shall prove that, if f: X — A - X — A is surjective, it is
biholomorphic on X — A. We suppose that f: X — A - X — A is sur-
jective. Since X is compact, f~'(Sg (X) N (X — A)) is nowhere dense in
X — A. Thus, we have a T-meromorphic mapping z7'o f: X — M(X)
because of (i) Remark 1.5, and (ii) the fact that M(X) is taut. By
Theorem 2.2, there exists a holomorphic mapping f: M(X) — M(X) such
that 7o f = for on M(X) except some nowhere dense complex analytic
set. Since n7Y(A4) is nowhere dense in M(X) and f: X —A - X — A is
surjective, f: M(X) — M(X) is surjective and so biholomorphic on M(X)
by Satz 5.2 in [7]. There exists a positive integer m such that f™ = id
on M(X) by Corollary 3.2, and then f™ =4id on X — A. This means
that fe Aut (X — A). '

PROPOSITION 3.4. Let X be a compact irreducible complex analytic
space and Y a compact taut complex analytic space whose universal cover-
ing does mnot contain compact complex analytic subvarieties of positive
complex dimension. Then, {fe Hol(X — A,Y): f(x) = ye Y} is finite for
any nowhere dense complex analytic set A in X and re X — A andyeY.

Proof. Let {M(X)—;—» X} be the proper modification of X as in

Theorem 2.2. By Remark 1.5 and Theorem 2.2, for any fe Hol(X — A,Y)
there exists a holomorphic mapping f: M(X) — Y such that f = fox on
M(X) except some nowhere dense complex analytic set. Thus, we see
that, if fe Hol(X — A,Y) and f(x) = ye Y for ze X, then f(z () = {y}
in Y. On the other hand, {y € Hol (M(X),Y): ¥(z"'(x)) = {y} C Y} is finite
by Satz 5.4 in [7] and then {feHol(X — A4,Y): f(x) = ye Y} is finite
for xte X — A and yeY.

Now, we shall give some sufficient conditions for a normal complex
analytic space X with only one singular point to be M(X) = X.
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ProrosITION 3.5. Let X be a taut normal complex analytic space
with an isolated singularity pe X. Suppose that there exists a resolu-
tion of singularity {M 7—) X} of X such that dy(x,y) = 0 for any points

x and y i ¢~ (p), where dy is the Kobayashi pseudodistance on M (cf.
[11). Then M(X) = X, i.e., n: M(X) — X 1is biholomorphic for the proper
modification {M(X) — X} of X as in Theorem 2.2.

Proof. Since ¢: M — X is a proper holomorphic mapping onto a taut
complex analytic space X, we can consider the taut proper relation R,
on M. By Theorem 1.7, we have a quotient complex analytic space
X':=M/R; of M by the taut proper relation R, on M such that there
exists a holomorphic mapping z: X’ — X which satisfies the condition
¢ =7op on M for the canonical projection p: M — X’. By Remark 2.6,
0.¢ — X} is a proper modification of X with center Sg(X) = {p} and
{M(X) — X} ={X - X}. Therefore, it suffices to show that r: X’ —» X
is biholomorphic.

We shall show that z: X’ — X is injective. Then z: X’ — X is an
open holomorphic mapping by Remmert’s theorem on open holomorphic
mappings, which means that r: X’ — X is biholomorphic since r is an
open bijective holomorphic mapping between normal complex analytic
spaces X’ and X. Now, if r: X’ — X is not injective, z~(p) contains,
at least, two distinet points of X’ because 7x/_,_1p: X' — 7)) —» X — {p}
is biholomorphic. This means that there exists a holomorphic mapping
f of M into a taut complex analytic space Y such that fi,—.;): ¢ () —Y
is non-constant since X’ = M/R;. On the other hand, every holomorphic
mapping g of M into a taut complex analytic space is constant on ¢~'(p)
because d;y = 0 on ¢~'(p) (cf. [11]). This is a contradiction. Thus, we
proved that z: X’ — X is injective. This completes the proof.

COROLLARY 3.6. Let X be a mormal complex analytic space of com-
plex dimension 2 with o rational or elliptic isolated singularity pe X.
Then, M(X) = X for the proper modification {M(X) —> X} of X as in

Theorem 2.2.

Proof. Let {U’ i U} be a resolution of singularity of an open

neighborhood U of p in X. Taking a taut open neighborhood of p in U,
we may assume that U is taut. Moreover, we may assume that ¢ '(p)
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is connected and is the union of irreducible nonsingular curves (cf. [13]).
If p is a rational (resp. elliptic) singularity of X, then each irreducible
curve of ¢ '(p) is a rational (resp. rational or elliptie) curve (cf. [13]).
Let dy. be the Kobayashi pseudodistance on U’ and d the Kobayashi
pseudodistance on ¢~'(p). Since the Kobayashi pseudodistances on compact
Riemann surfaces of genus < 2 are trivial and ¢ '(p) is connected, d is
trivial, i.e., d =0 on ¢7'(p). Let i: ¢ %(p) — U’ be the natural injection.
It is well-known that dg.(i(x), i(y)) < d(x,y) = 0 for any points « and ¥
in ¢ %(p) € U’, which means that d;, = 0 on ¢ (p) € U’. By Proposition
3.5, M(U) = U for the proper modification {M(U)7> U} of U as in
Theorem 2.2.

From this, we see that every T-meromorphic mapping defined on X
is extended holomorphically to X and then M(X) = X by the uniqueness
of {M(X) — X} of X in Theorem 2.2,

PROPOSITION 3.7. Let V be a normal irreducible complex analytic
space of complex dimension 2 with an isolated singularity pe V. IfV is
taut and dimy Aut (V) = 2 for the real Lie group Aut (V), then M(V) =V
for the proper modification {M(V) — V} of V as in Theorem 2.2.

Proof. Since V and M(V) are taut (cf. Proposition 2.3) and irre-
ducible, Aut (V) and Aut (M(V)) are both real Lie groups. Moreover,
Aut (V) is a compact real Lie group, because V is taut and f(p) = p in
V for all fe Aut (V). By Proposition 2.5, we have a group-homomorphism
y 1 Aut(V) — Aut (M(V)) such that 7o y(f) = for on M(V) for any fe Aut (V).
We can easily see that y: Aut (V) — Aut (M(V)) is continuous. Therefore,
Aut (V) is isomorphic to a compact real Lie subgroup H of Aut (M(V))
as a real Lie group. Since f(z~(p)) = = %p) for any fe H, the quotient
group H/G is considered as an effective transformation group on =7 '(p)
for a subgroup G: = {feH: f=1d on z7'(p)} of H. Then it is a finite
group, because = (p) is a compact taut complex analytic space. Thus,
we have dimp Aut (V) = dim, H = dim; G.

Now, we assume that dim,z7(p) 1. Then, (M(V) — Sg (M(V))) N
=~X(p) % ¢. We consider an unitary isotropy representation of G at a
suitable point xe (M(V) — Sg (M(V))) N ="' (p), that is, a homomorphism
x: G— U(C? defined by assigning the differential of f at x for each
fe @G, where U(C? is the unitary group in GL(C*» with respect to some
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fixed hermitian product on C?. TUsing this, we conclude that dim, G =
dimz Aut (V) = 1, because y is injective and f.-., = id on z~'(p) for any
fe@G (c.f. [8]). ' This contradicts the assumption of Proposition 8.7. We
proved that dim;z"'(p) =0 and then z: M(V)— V is biholomorphic as
eagsily seen.

Proposition 3.7 was communicated to the author by Professor H.
Fujimoto, who has proved a more general result that, for any taut normal
irreducible complex analytic space X of complex dimension # with an iso-
lated singularity pe X, if dimgz"'(p) = m for the proper modification
{M(X) — X} of X, then dimj Aut(X) £ (n — m)*

We can give some examples of non-taut projective algebraic varie-
ties which are bimeromorphic with compact taut complex analytic spaces,
using the taut proper relation on complex analytic spaces (see §1).

PRrOPOSITION 3.8. Let X be a compact irreducible complex analytic
space and A o nowhere dense complex analytic set in X. Suppose that
there exists a holomorphic mapping with discrete fibers f: X — A —-Y
nto a compact taut complex analytic space Y. Then, there exists a
compact taut complex analytic space X and a bimeromorphic mapping
¢: X — X holomorphic on X — (A U Sg (X)).

Proof. Let {M(X) —,,’X} be the proper modification of X as in

Theorem 2.2. Since f is considered to be T-meromorphic on X by Remark
1.5, there exists a holomorphic mapping f: M(X) — Y such that f = for
on M(X) except some nowhere dense complex analytic set. Since f: M(X)
— Y is proper, we can consider a quotient complex analytic space X =
M(X)/R; of M(X) with the canonical projection p: M(X) — X for the
taut proper relation R, on M(X) by Theorem 1.7. Then, X is obviously
compact, normal, irreducible and taut. Since x|y x)_-1ause iy MX) —
™' (A U Sg (X)) - X — (A U Sg (X)) is biholomorphic, f o ) r-104use )
= fiana -s-r0avse oy - M(X) — n7(A U Sg (X)) —» Y has discrete fibers and
then Py - z-1use @y : MX) — z7'(4 U Sg (X)) — X has discrete fibers.
On the other hand, p:M(X) —» X has connected fibers by Theorem
1.7. Therefore, P, s-1ause an i M(X) — z7(A U Sg (X)) — X is injec-
tive, moreover, X = p(M(X) — =74 U Sg (X)) U p(z"{(4 U Sg(X))) and
p(M(X) — (A U Sg (X)) N p(z(A U Sg (X)) =¢ in X. The proper
mapping theorem asserts that p(z~'(A U Sg (X)) C X is a nowhere dense
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complex analytic set in X. Then, by the theorem of Remmert on open
holomorphic mappings, P x)_.-1use x» 15 & biholomorphic mapping onto
an open set p(M(X) —z7(4A U Sg (X)) = X — p(z(4 U Sg (X)) in X.
Thus, we obtain a bimeromorphic mapping ¢: =por~': X — X whieh
is holomorphic on X — (4 U Sg (X)).

ExaMPLE 3.9. Let n be the canonical projection of C*— {0} onto
the complex projective manifold P,(C) and let {x,, x,, x;} be the complex
analytic coordinates on C® which give also homogeneous coordinates on
P,(C). Let

Yyt = {oa™ 4 bag™ — caj?xj? = 0} in C°
and
Xpqrt = (¥ p,q., — {0 C PyO),

where a,b,ce C with abec x 0 in C, m,p,q,r are integers with p = 0,
g>0,r>0and m=p+q. PutY,:=Y,,, and X,: = X,,,. Then,
the genus of X, is (r — 1)(r — 2)/2, because X, is a nonsingular complex
projective curve of degree r in P,(C). In the following, we assume
that » > 4 and then X, is taut. We consider holomorphic mappings
Ay, 2y ) 2 = (@, ap, P of Yy, into Y, and ¢: X, ,, — S — X, such that
pox=mxo¢ on Y, ,,— T, where T: = {®, = 0} € C* and S: = (T — {0}
C P,(C). We see easily that ¢: X, ,, — S — X, is of finite-fibers. By
Proposition 3.8, X, ,. is a compact taut complex analytic space, because
dimy X, .., = 1.

Let X: = {axi™ + ba;™ — c(x,h(x,))™ = 0} in C° for a non-constant
polynomial i(z,) and positive integers s, t,p,q with m =p + ¢ and n = p
+gs=qt (eg.,, p=1,qg=1,8=2,t=238). Let Cx = X N {xh(x;) = 0}
C X. Then, Cy is nowhere dense in X. Consider holomorphic mappings
@y, Ty, )+ = (2, 27, 2PM(x)™) of X — Cx into Y, and B, @, 2): =
(2, %, 23h(2,)") of X — Cy into Y, ,, and put ¢,: =zo4, and ¢,: = wo &,
We see easily that a holomorphic mapping ¢: =(¢,,¢,): X —Cx—> X, X X, 4.
is of finite-fibers. By Proposition 3.8, the natural projective compactifica-
tion X of X in P,(C) is bimeromorphic with a compact taut complex
analytic space. On the other hand, X is not taut, because there exists
a holomorphic mapping f(2): = (z,(e/b)/™™z,2,) of the complex plane C
into X with A(z) = 0 (e.f. [11], p. 69).
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In this manner, we can construct also higher dimensional, non-taut,
projective algebraic varieties which are bimeromorphic with compact
taut complex analytic spaces.
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