A REMARK ON CRITICAL GROUPS

L. G. KOVACS
(Received 9 October 1967)

Problem 24 of Hanna Neumann's book [3] reads: Does there exist, for a given integer $n>0$, a Cross variety that is generated by its k-generator groups and contains $(k+n)$-generator critical groups? In such a variety, is every critical group that needs more than k generators a factor of a k generator critical group, or at least of the free group of rank k ? In a recent paper [1], R. G. Burns pointed out that the answer to the first question is an easy affirmative, and asked instead the question which presumably was intended: Given two positive integers k, l, does there exist a variety \mathfrak{B} generated by k-generator groups and also by a set S of critical groups such that S contains a group G minimally generated by $k+l$ elements and $S \backslash\{G\}$ does not generate \mathfrak{B} ? The purpose of this note is to record a simple example which shows that the answer to the question of Burns is affirmative at least for $k=2, l=1$, and also that the answer to the second question of Hanna Neumann's Problem 24 is negative.

Let \mathfrak{B} be the variety defined by the law $x^{9}[x, y, u]^{3}[x, y, u, v]$. It can be read off from Bjarni Jónsson's description [2] of the lattice of nilpotent varieties of class at most 3 that \mathfrak{B} has precisely two maximal subvarieties: the subvariety \mathfrak{l} defined by the additional law $[x, y, y]$, and the subvariety \mathfrak{W} defined by the additional law $[x, y]^{3}$; moreover, \mathfrak{l} is certainly not of class 2. Since \mathfrak{W} is defined (within \mathfrak{B}) by a two-variable law, it cannot contain the \mathfrak{B}-free group F of rank 2 ; nor can F be contained in \mathfrak{U}, for the twogenerator groups of \mathfrak{U} are all of class at most 2 while \mathfrak{B} contains the wreath product of two cyclic groups of order 3, a two-generator group of class 3 . Thus F generates \mathfrak{B}. A direct calculation shows that the proper subgroups of F are all of class at most 2 : this, and a similar calculation below, is somewhat simplified by the observation that the Frattini subgroup of any group in \mathfrak{B} is contained in the second term of the upper central series of the group.

Next, consider the \mathfrak{U}-free group H of rank 3 , on the free generators a, b, c. As the only relators of these generators are the laws of \mathfrak{U}, neither $[a, b]^{3}$ nor $[a, b, c]$ can be 1 . On the other hand, as $\mathfrak{l l}$ has class 3 and $\left[[x, y]^{3}, u\right]$ is a law even in \mathfrak{B}, the element $[a, b]^{3}[a, b, c]$ is central in H. Let N be maximal among the normal subgroups of H which contain $[a, b]^{3}[a, b, c]$ but not $[a, b, c]$, and put $H / N=G$. By construction, G is
monolithic, has class precisely 3 , and does not belong to \mathfrak{W}. As $G \in \mathfrak{U}$ and the two-generator groups of \mathfrak{U} are all of class at most 2 , it follows that G cannot be generated by two elements. It is now easy to see that G cannot be isomorphic to any factor of F, and that no proper factor of G can have class greater than 2: in particular, G is critical. If S is the set consisting of G and of the critical groups of \mathfrak{M}, then S generates \mathfrak{F} but $S \backslash\{G\}$ does not.

References

[1] R. G. Burns, 'Verbal wreath products and certain product varieties of groups', J. Austral. Math. Soc. 7 (1967), 356-374.
[2] Bjarni Jónsson, 'Varieties of groups of nilpotency 3', Notices Amer. Math. Soc. 13 (1966), 488.
[3] Hanna Neumann, Varieties of groups (Springer, Berlin etc., 1967).
Australian National University
Canberra

