
Canad. J. Math. Vol. 61 (2), 2009 pp. 382–394

Unit Elements in the Double Dual of a
Subalgebra of the Fourier Algebra A(G)

Tianxuan Miao

Abstract. Let Abe a Banach algebra with a bounded right approximate identity and let B be a closed

ideal of A. We study the relationship between the right identities of the double duals B∗∗ and A∗∗

under the Arens product. We show that every right identity of B∗∗ can be extended to a right identity

of A∗∗ in some sense. As a consequence, we answer a question of Lau and Ülger, showing that for the

Fourier algebra A(G) of a locally compact group G, an element φ ∈ A(G)∗∗ is in A(G) if and only if

A(G)φ ⊆ A(G) and Eφ = φ for all right identities E of A(G)∗∗. We also prove some results about the

topological centers of B∗∗ and A∗∗.

Introduction

Let A be a Banach algebra with a bounded right approximate identity and let its

double dual A∗∗ be equipped with the first Arens multiplication (see Arens [1]). If B

is a closed subalgebra of A, then B∗∗ is embedded into A∗∗ by inclusion. We study

the relationship between the right identities of B
∗∗ and A

∗∗. The motivation is that

sometimes we need to reduce a problem to the case of a subalgebra with a sequential

bounded approximate identity (see Corollary 2.4 and Theorem 3.2). Let B be a closed

ideal of A such that there is a projection which is also a multiplier from A to B, i.e., a

bounded linear operator m : A → B satisfying m(ab) = am(b) = m(a)b for a, b ∈ A

and m(c) = c for c ∈ B. Then B∗ is embedded into A∗ by m∗. If we identify a right

unit E of B∗∗ with an element i∗∗(E) in A∗∗, where i : B → A is the inclusion map,

then we prove that E can be extended to a right identity Ẽ of A∗∗ in the sense that Ẽ is

a right identity of A∗∗ and Ẽ = E on m∗(B∗). Then we apply this result to show that

for the Fourier algebra A(G) of a locally compact group G, an element φ ∈ A(G)∗∗ is

in A(G) if and only if A(G)φ ⊆ A(G) and Eφ = φ for all right identities E of A(G)∗∗.

This answers problem h) in Lau and Ülger [13]. In the second part of this paper, we

study the relationship between the topological centers of B∗∗ and A∗∗. We prove that

the topological center of B∗∗ (or A∗∗) can be embedded into the topological center

of A∗∗ (or B∗∗). Then we apply these results to the case of Herz–Figà–Talamanca

algebra Ap(G) of a locally compact group to generalize results in Hu [9] and Hu and

Neufang [10].

This paper is organized as follows. In Section 1, we recall some necessary notations

and some preliminary results. In Section 2, we prove an extension theorem of a right

identity in B
∗∗ to a right identity in A

∗∗ under certain conditions. Let G be a locally
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compact group, G0 an open and closed subgroup and N a compact normal subgroup

of G. We apply this result to extend right identities of Ap(G0)∗∗ and L1(G/N)∗∗ to

Ap(G)∗∗ and L1(G)∗∗, respectively. In Section 3, we use the extension theorem to

answer an open problem and to improve results in [13]. In Section 4, we deal with

the topological center problems for B∗∗ and A∗∗.

1 Preliminaries and Some Notations

Let A be a Banach algebra with a bounded right approximate identity. The duality

between Banach spaces is denoted by 〈 · , · 〉. Recall the definition of the first Arens

product on the double dual A∗∗: for a, b ∈ A and f ∈ A∗, we define f a ∈ A∗ by

〈 f a, b〉 = 〈 f , ab〉. Then, for φ, ψ ∈ A∗∗, ψ f ∈ A∗ is defined by 〈ψ f , a〉 = 〈ψ, f a〉
and finally, φψ ∈ A∗∗ is defined by 〈φψ, f 〉 = 〈φ, ψ f 〉. Throughout this paper, we

regard the first Arens product as the Arens product. It is easy to see that the map

ν → νµ is weak∗ continuous on A∗∗ for any µ ∈ A∗∗. But ν → µν may not be

weak∗ continuous. The set

Λ(A∗∗) = {µ ∈ A
∗∗ : ν → µν is continuous in the weak∗ topology}

is called the topological center of A∗∗. It is obvious that A ⊆ Λ(A∗∗).

Let A∗A be the norm closure of the linear span of { f a : f ∈ A∗, a ∈ A}. Then

the dual of the space A∗A equipped with the multiplication induced by that of A∗∗

is also a Banach algebra. Let M̃ = {µ ∈ (A∗A)∗ : Aµ ⊆ A} and the topological

center of (A∗A)∗ is defined by

Z̃A = {µ ∈ (A∗

A)∗ : ν → µν is continuous in the weak∗ topology }.

An element E in A∗∗ is called a right identity or right unit if φE = φ for all φ ∈ A∗∗.

Let E denote the set of all right identities of A∗∗. It is easy to see that an element of

A∗∗ is a right unit if and only if it is a weak∗ cluster point of some bounded right

approximate identity in A, see [3, p. 146].

Let S be a set. The characteristic function of S is denoted by 1S. A Banach algebra

is said to be weakly sequentially complete if every weakly Cauchy sequence converges

in the weak topology.

For any locally compact group G equipped with a fixed left Haar measure λ, let

Lp(G), 1 ≤ p ≤ ∞, be the usual Lebesgue spaces on G with norm ‖ · ‖p. Suppose

that 1 < p < ∞ and 1
p

+ 1
q

= 1. The Herz–Figà–Talamanca algebra Ap(G) is the

space of continuous functions u which can be represented as

u =

∞
∑

n=1

fi ∗ ǧi with fi ∈ Lq(G), gi ∈ Lp(G), and

∞
∑

n=1

‖ fi‖q‖gi‖p <∞,

where ǧ ∈ Lp(G) is defined by ǧ(x) = g(x−1), x ∈ G. The norm of u is defined by

‖u‖Ap(G) = inf

∞
∑

n=1

‖ fi‖q‖gi‖p,
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where the infimum is taken over all the representations of u above. It is known that

Ap(G) is a regular tauberian Banach algebra under the pointwise multiplication and

Ap(G) has a bounded approximate identity if and only if the group G is amenable

(see Herz [8], Theorem 6). We emphasize that our Ap(G) coincides with Aq(G),
1
p

+ 1
q

= 1, in [16]. It follows that the dual Ap(G)∗ is the space of convolution opera-

tors on Lp(G), denoted by PMp(G) as in Herz [8]. Let PFp(G) be the norm closure of

L1(G) in Ap(G)∗. Then PFp(G)∗ = Wp(G) is a Banach algebra under pointwise mul-

tiplication. For p = 2, Ap(G) = A(G) is the Fourier algebra of G, PMp(G) = V N(G)

is the group Von Neumann algebra of G, PF2(G) = C∗

ρ (G) is the reduced group C∗

algebra and W2(G) = Bρ(G) (see Eymard [5]). For more properties of PMp(G) and

PFp(G), see Pier [16]. Throughout this paper, B(G) denotes the Fourier–Stieltjes

algebra of G as defined in Eymard [5].

Let UCp(Ĝ) be the norm closure of the subset of PMp(G) consisting of all f u for

u ∈ Ap(G) and f ∈ PMp(G). For f ∈ PMp(G), the support of f is defined to

be the closed subset supp( f ) of G such that x /∈ supp( f ) if and only if there exists

a neighborhood Ux of x in G such that 〈 f , u〉 = 0 for all u ∈ Ap(G) such that

supp u ⊆ Ux as a function on G (see Herz [8, page 101]). Then it is well known

that UCp(Ĝ) is the norm closure of the set of all elements of PMp(G) with compact

support.

Let G0 be an open subgroup of a locally compact group G. It is proved by Herz

[8] (Proposition 5) that Ap(G0) is identified with the subalgebra of Ap(G) consisting

of functions in Ap(G) which vanish outside G0 and the restriction map from Ap(G)

onto Ap(G0), denoted by mG0
, is a contraction. It is obvious that Ap(G0) is a closed

ideal of Ap(G), and mG0
is a projection and is also a multiplier .

Some conventions. Let i : B → A be the inclusion map and m : A → B be any

map. Then B∗∗ is embedded into A∗∗ by i∗∗. In this paper, we write i∗∗(φ) as φ, and

sometimes we consider m as a map from A to A without confusion.

2 Extensions of a Unit

Let B be a subalgebra of a Banach algebra A. In this section, we will extend a unit of

B
∗∗ to a unit of A

∗∗.

Definition Let B be a closed subalgebra of a Banach algebra A. An element E of

A
∗∗ is called a right unit or identity of B

∗∗ in A
∗∗ if φE = φ for φ ∈ B

∗∗.

Clearly, if EB ∈ B∗∗ is a right unit of B∗∗ in the normal sense, then EB is a right

unit of B
∗∗ in A

∗∗.

Proposition 2.1 Let B be a closed subalgebra of a Banach algebra A. Then an element

E of A
∗∗ is a right unit of B

∗∗ in A
∗∗ if and only if there is a net {aα} in A such that

aα → E in the σ(A∗∗,A∗)-topology and ‖baα − b‖ → 0 for b ∈ B.

Proof Let E be a right unit of B∗∗ in A∗∗. By Goldstine’s theorem, there exists a net

{xβ} in A such that ‖xβ‖ ≤ ‖E‖ and xβ → E in the σ(A∗∗,A∗)-topology. Then for

every b ∈ B, it is clear that bxβ → bE in σ(A∗∗,A∗)-topology. Since b ∈ B and E is
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a right unit of B
∗∗ in A

∗∗, we have bE = b. Thus, bxβ → b in the weak topology in

A.

For any finite set Γ of A∗ and any positive integer k, since xβ → E in the

σ(A∗∗,A∗)-topology, there exists βk such that |〈xβ , f 〉 − 〈E, f 〉| < 1
k

for all

f ∈ Γ and β ≥ βk. For every finite set Λ = {b1, b2, . . . , bn} of B, since

(b1xβ − b1, b2xβ − b2, . . . , bnxβ − bn) → (0, 0, . . . , 0) in the weak topology of the

direct sum A ⊕ A ⊕ · · · ⊕ A (n copies), 0 is in the norm closure of the convex

hull of {(b1xβ − b1, b2xβ − b2, . . . , bnxβ − bn) : β ≥ βk}. Hence, there exists a

convex combination of elements from {xβ : β ≥ βk}, denoted by aα, such that

‖(b1aα − b1, b2aα − b2, . . . , bnaα − bn)‖ < 1
k
, and so ‖baα − b‖ < 1

k
for all b ∈ Λ,

where α = (Γ,Λ, k) is directed as usual. Therefore, aα satisfies the requirements.

Conversely, if {aα} is a net in A such that aα → E in the σ(A∗∗,A∗)-topology and

‖baα−b‖ → 0 for b ∈ B, then the weak∗ cluster point E of {aα} is a right unit of B
∗∗

in A∗∗. In fact, for b ∈ B, ‖baα−b‖ → 0 and baα → bE in the σ(A∗∗,A∗)-topology

imply bE = b. If φ ∈ B∗∗, it is routine to check that φE = φ.

Remark. If B is a closed subalgebra of A and m : A → B is a projection, then B∗ is

embedded into A∗ by the mapping m∗ : B∗ → A∗. B∗ is identified with m∗(A∗) as

follows. For any f ∈ B∗, let f̃ be an extension of f to an element of A∗. It is easy

to see that the map f 7→ m∗( f̃ ) is well-defined and is an isomorphism from B∗ onto

m∗(A∗). Furthermore, the map f 7→ m∗( f̃ ) is an isometry from B
∗ onto m∗(A∗) if

‖m‖ = 1. We will extend a right unit of B∗∗ to right units of A∗∗. Precisely, for a

right unit E of B∗∗, we like to find right units Ẽ of A∗∗ such that Ẽ = E on m∗(A∗).

Definition Let B be a closed subalgebra of a Banach algebra A and let m : A → B

be a bounded projection. For a right unit E of B∗∗ in A∗∗, we say that a right unit Ẽ

of A∗∗ is an extension of E if 〈Ẽ,m∗( f )〉 = 〈E,m∗( f )〉 for f ∈ A∗.

A natural question is whether there exists an extension for a given right unit of B∗∗

in A∗∗. The following example shows that the answer to this question is negative in

general.

Example. Let B(G) be the Fourier–Stieltjes algebra of an amenable locally compact

group G (see Eymard [5]). Then B(G) is a unital commutative Banach algebra. So

B(G)∗∗ has a unique unit I. The Fourier algebra A(G) is a closed ideal of B(G). Since

B(G) is a direct sum of A(G) and a subspace of B(G) (see Miao [14]), there is a

projection from B(G) to A(G). From Corollary 2.4 below we know that there are

many right units in A(G)∗∗ if G is not compact. Therefore, the right units of A(G)∗∗

in B(G)∗∗ cannot be extended to right units of B(G)∗∗.

We have to put conditions on B and the projection m. If B is an ideal of A, we say

that an operator m : A → B is a multiplier if m(ab) = m(a)b = am(b) for a, b ∈ A.

Lemma 2.2 If B is a closed ideal of a Banach algebra A such that there is a bounded

projection m : A → B which is also a multiplier, then for any a ∈ A, f ∈ A
∗ and

ϕ ∈ A∗∗, we have

(i) m∗( f a) = f m(a) = m∗( f )a;

(ii) m∗(ϕ f ) = m∗∗(ϕ) f = ϕm∗( f ).
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Proof These can be verified directly by an elementary calculation using the defini-

tion of the Arens product and the fact that m is a multiplier.

Theorem 2.3 Let A be a Banach algebra with a bounded right approximate identity.

If B is a closed ideal of A such that there is a bounded projection m : A → B which is

also a multiplier, then every right unit EB of B∗∗ in A∗∗ can be extended to a right unit

Ẽ of A∗∗.

Proof Since A has a bounded right approximate identity, we can choose a right unit

E of A∗∗. We denote Ẽ = E − m∗∗(E) + m∗∗(EB). We claim that Ẽ is an extension

of EB. We show that Ẽ is a right unit of A∗∗ first. It follows from Proposition 2.1

that there is a net {aα} in A such that aα → EB in the σ(A∗∗,A∗)-topology and

‖baα − b‖ → 0 for b ∈ B. For any a ∈ A, since m(a) ∈ B and m∗( f a) = f m(a) by

Lemma 2.2(i), we have

〈m∗∗(EB) f , a〉 = 〈m∗∗(EB), f a〉 = 〈EB,m
∗( f a)〉 = 〈EB, f m(a)〉

= lim
α

〈aα, f m(a)〉 = lim
α

〈m(a)aα, f 〉 = 〈m(a), f 〉.

Thus, 〈m∗∗(EB) f , a〉 = 〈m(a), f 〉. Similarly, 〈m∗∗(E) f , a〉 = 〈m(a), f 〉. Therefore,

m∗∗(E) f = m∗∗(EB) f . For ϕ ∈ A∗∗, since ϕE = ϕ, we have

〈ϕẼ, f 〉 = 〈ϕE, f 〉 − 〈ϕ,m∗∗(E) f 〉 + 〈ϕ,m∗∗(EB) f 〉 = 〈ϕE, f 〉 = 〈ϕ, f 〉.

Therefore Ẽ is a right unit of A∗∗.

If f ∈ A∗, since m is a projection onto B, m∗(m∗( f )) = m∗( f ). Hence,

〈m∗∗(E),m∗( f )〉 = 〈E,m∗( f )〉, and so we have

〈Ẽ,m∗( f )〉 = 〈E − m∗∗(E) + m∗∗(EB),m∗( f )〉

= 〈m∗∗(EB),m∗( f )〉 = 〈EB,m
∗( f )〉.

So Ẽ is an extension of EB.

Corollary 2.4 Let G be an amenable locally compact group and let G0 be an open and

closed subgroup of G. Then every right unit of Ap(G0)∗∗ in Ap(G)∗∗ can be extended to

a right unit of A(G)∗∗p . In particular, when p = 2 , A(G)∗∗ has a unique right unit only

when G is compact.

Proof Since mG0
: Ap(G) → Ap(G0) is a projection as well as a multiplier, the proof

of the first part of this result is finished by using Theorem 2.3.

If G is not compact, then there is an open, closed σ-compact, and noncompact

subgroup G0 of G. Since G0 is σ-compact, A(G0) has a sequential bounded approxi-

mate identity {an}. Then {an} has at least two distinct w∗ cluster points E1 and E2 in

A(G0)∗∗. In fact, if there were only one w∗ cluster point, then {an} would be a weakly

Cauchy sequence. Since A(G0) is weakly sequentially complete, {an} must converge

to its cluster point in the weak topology in A(G0). Hence the cluster point must be

in A(G0), and so A(G0) is unital. This is impossible since G0 is not compact. Hence

E1 and E2 are distinct right units of A(G0)∗∗ in A(G)∗∗. By Theorem 2.3, there are

extensions of E1 and E2 to A(G)∗∗ that would create two distinct right identities for

A(G)∗∗. This is a contradiction.
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Corollary 2.5 Let G be a locally compact group, and let N be a compact normal

subgroup of G. Then every right unit of L1(G/N)∗∗ in L1(G)∗∗ can be extended to a

right unit of L1(G)∗∗.

Proof Let πN : G → G/N be the canonical map. For any f ∈ L1(G), ḟ (ẋ) =
∫

N
f (xξ) dξ defines a function in L1(G/N), where ẋ = πN (x) for x ∈ G. Moreover,

there is a Haar measure on G/N such that

∫

G/N

{

∫

N

f (xξ)dξ
}

dẋ =

∫

G

f (x)dx

for all f ∈ L1(G) (see Reiter and Stegeman [17, p. 100]). If we regard L1(G/N) as

a subspace of L1(G) consisting of periodic functions on G with respect to N, then

it is routine to check that L1(G/N) is a closed ideal of L1(G). Define m : L1(G) →
L1(G/N) by m( f ) = ḟ for f ∈ L1(G). Since m( f ∗ g) = m( f ) ∗ m(g) = m( f ) ∗ g =

f ∗ m(g) for f , g ∈ L1(G) (see Reiter and Stegeman [17, Theorem 3.5.4]), m is a

multiplier. It follows from Theorem 2.3 that any right unit of L1(G/N)∗∗ can be

extended to a right unit of L1(G)∗∗.

3 Applications of the Extension Theorem to A(G)

In this section we present some applications of the results given in Section 2. Theo-

rem 3.2 settles an open problem in Lau and Ülger [13, open problem h, p. 1211]. To

prove Theorems 3.2 and 4.4, we need the next lemma.

Lemma 3.1 Let G be a locally compact group and ϕ ∈ Ap(G)∗∗. If for every open

σ-compact subgroup G0 of G, m∗∗

G0
(ϕ) is in Ap(G0), then the restriction of ϕ onto

UCp(Ĝ) is in Ap(G).

Proof We will show that for each n, there is a compact subset Kn of G such that

|〈ϕ, f 〉| < 1
n

for f ∈ UCp(Ĝ) with ‖ f ‖ ≤ 1 and supp( f ) ⊆ G \ Kn . Otherwise,

there exists a positive number ǫ > 0 and a function f1 ∈ UCp(Ĝ) which has compact

support, and is such that ‖ f1‖ ≤ 1 and |〈ϕ, f1〉| ≥ ǫ. Since G is locally compact,

let U1 be a symmetric open subset of G with a compact closure U1 such that the

group unit e is in U1 and supp( f1) ⊆ U1. There exists an element f2 ∈ UCp(Ĝ) with

compact support supp( f2) ⊆ G \ U1 and ‖ f2‖ ≤ 1 satisfying that |〈ϕ, f2〉| ≥ ǫ. Let

U2 be a symmetric open subset of G such that supp( f2) ⊆ U2, U2 is compact and

U 2
1 ⊆ U2. By continuing the same process, we have a sequence { fn} in UCp(Ĝ) and

a sequence of symmetric open subsets {Un} of G satisfying for each n,

(1) ‖ fn‖ ≤ 1 and Un is compact;

(2) supp( fn+1) ⊆ G \Un, U 2
n ⊆ Un+1 and supp( fn) ⊆ Un;

(3) |〈ϕ, fn〉| ≥ ǫ. Let G0 =
⋃

n Un.

Then by condition (2), G0 is an open σ-compact subgroup of G. So it is also closed.

Then m∗∗

G0
(ϕ) is in Ap(G0) by hypothesis. It follows that there is a compact subset K

of G0 such that |〈m∗∗

G0
(ϕ), f 〉| ≤ 1

2
ǫ for any f ∈ PMp(G) with supp( f ) ⊆ G \ K (see

Miao [15]). Since K is compact and the sequence {Un} of open sets is increasing,
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there is n such that K ⊆ Un. Hence supp( fn+1) ⊆ G \ Un ⊆ G \ K . It follows that

|〈m∗∗

G0
(ϕ), fn+1〉| ≤

1
2
ǫ. This contradicts the fact that

|〈m∗∗

G0
(ϕ), fn+1〉| = |〈ϕ,m∗

G0
( fn+1)〉| = |〈ϕ, fn+1〉| ≥ ǫ

for each n since supp( fn+1) ⊆ Un+1 ⊆ G0 and so it is clear that m∗

G0
( fn+1) = fn+1 (see

Eymard [5, Proposition 4.8]).

Let G0 be an open, closed and σ-compact subgroup of G containing all Kn. Then

it is easy to see that for any f ∈ UCp(Ĝ) with support in G \ G0, we have 〈ϕ, f 〉 = 0.

For any f ∈ UCp(Ĝ), it is routine to check that supp( f − m∗

G0
( f )) ⊆ G \ G0. Hence

we have

〈ϕ, f 〉 = 〈ϕ,m∗

G0
( f )〉 + 〈ϕ, f − m∗

G0
( f )〉 = 〈m∗∗

G0
(ϕ), f 〉.

Since m∗∗

G0
(ϕ) is in Ap(G0) ⊆ Ap(G), the restriction of ϕ to UCp(Ĝ) is in Ap(G).

Theorem 3.2 Let G be an amenable locally compact group. Then for an element

ϕ ∈ A(G)∗∗, ϕ ∈ A(G) if and only if A(G)ϕ ⊆ A(G) and for any E in E, Eϕ = ϕ.

Proof One direction of the result is trivial. Conversely, let ϕ ∈ A(G)∗∗ satisfy the

two conditions. If G is compact, then A(G) is unital. So the result is trivial. Let

G be noncompact and let G0 be a σ-compact, open and closed subgroup of G. Let

G0 =
⋃

∞

i=1 Ki , where {Ki} is a sequence of compact subsets of G0 such that K1 ⊆
K2 ⊆ K3, . . . . For each i, choose an ai ∈ A(G0) such that ai(x) = 1 for x ∈ Ki and

‖ai‖ ≤ 1 + 1
i

by amenability of G0 (see Pier [16, Proof of Theorem 10.4]). Then

ai → 1G0
in the w∗-topology of B(G0). Hence ‖aia − a‖ → 0 for a ∈ A(G0) (see

Granirer and Leinert [7]).

For each i, aiϕ ∈ A(G) by assumption. We claim that {aiϕ} is a weakly Cauchy

sequence. If not, then there exist two subnets {aiαϕ} and {aiβϕ} of {aiϕ} converge to

different points of A(G)∗∗ in the σ(A(G)∗∗,A(G)∗)-topology. Assume that aiα → E1

and aiβ → E2 in σ(A(G)∗∗,A(G)∗)-topology without loss of generality by taking sub-

nets. Then E1 and E2 are right identities of A(G0)∗∗ in A(G)∗∗ by Proposition 2.1, and

it is obvious that aiαϕ → E1ϕ and aiβϕ → E2ϕ in the σ(A(G)∗∗,A(G)∗)-topology.

Thus, E1ϕ 6= E2ϕ. There exists f ∈ A(G)∗ such that 〈E1ϕ, f 〉 6= 〈E2ϕ, f 〉.
It follows from aiα → E1 in the σ(A(G)∗∗,A(G)∗)-topology, aiα ∈ A(G0), and

Lemma 2.2(ii) that

〈E1ϕ,m
∗

G0
( f )〉 = 〈E1, ϕm∗

G0
( f )〉 = 〈E1,m

∗

G0
(ϕ f )〉

= lim
α

〈aiα ,m
∗

G0
(ϕ f )〉 = lim

α
〈aiα , ϕ f 〉 = 〈E1, ϕ f 〉 = 〈E1ϕ, f 〉.

Similarly, 〈E2ϕ,m
∗

G0
( f )〉 = 〈E2ϕ, f 〉. Hence 〈E1ϕ,m

∗

G0
( f )〉 6= 〈E2ϕ,m

∗

G0
( f )〉.

We extend E1 and E2 to right units Ẽ1 and Ẽ2 of A(G)∗∗ by Corollary 2.4. It follows

from Lemma 2.2(ii), since Ẽ1 is an extension of E1, that

〈Ẽ1ϕ,m
∗

G0
( f )〉 = 〈Ẽ1, ϕm∗

G0
( f )〉 = 〈Ẽ1,m

∗

G0
(ϕ f )〉 = 〈E1,m

∗

G0
(ϕ f )〉

= 〈E1, ϕm∗

G0
( f )〉 = 〈E1ϕ,m

∗

G0
( f )〉.
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By a similar argument we can obtain 〈Ẽ2ϕ,m
∗

G0
( f )〉 = 〈E2ϕ,m

∗

G0
( f )〉. Thus, we have

〈Ẽ1ϕ,m
∗

G0
( f )〉 6= 〈Ẽ2ϕ,m

∗

G0
( f )〉. This contradicts the assumption Ẽ1ϕ = Ẽ2ϕ = ϕ.

Hence {aiϕ} is a weakly Cauchy sequence.

It follows from the fact that A(G) is weakly complete that {aiϕ} converges weakly

to a point in A(G). So the weak limit point of {aiϕ} is uniquely determined by

the elements of L1(G) ⊆ V N(G) (see Eymard [5]). Let f ∈ L1(G) have a com-

pact support. Since each ai ∈ A(G0), we have 〈aiϕ, f 〉 = 〈aiϕ, 1G0
f 〉. It is obvious

〈m∗∗

G0
(ϕ), (1 − 1G0

) f 〉 = 0. Also, m∗

G0
((1G0

f )ai) = (1G0
f )mG0

(ai) by Lemma 2.2(i).

Therefore,

〈aiϕ, f 〉 = 〈aiϕ, 1G0
f 〉 = 〈ϕ, (1G0

f )ai〉

= 〈ϕ, (1G0
f )mG0

(ai)〉 = 〈ϕ,m∗

G0
((1G0

f )ai)〉

= 〈m∗∗

G0
(ϕ), (1G0

f )ai〉 → 〈m∗∗

G0
(ϕ), (1G0

f )〉 = 〈m∗∗

G0
(ϕ), f 〉,

by the property of ai . Hence m∗∗

G0
(ϕ) ∈ A(G). Since each aiϕ ∈ A(G0) and A(G0) is

closed in A(G), we have m∗∗

G0
(ϕ) ∈ A(G0).

Let the restriction ϕ|UC2(Ĝ) = u. Then u ∈ A(G) by Lemma 3.1. Let uα
be an approximate identity of A(G). Then it is obvious that uαϕ → Eϕ in the

σ(A(G)∗∗,A(G)∗) topology for some E ∈ E. By assumption, Eϕ = ϕ. Thus,

uαϕ → ϕ. Since uαϕ = uαu and uαu → u in norm, u = ϕ. Therefore ϕ is in

A(G).

Remark. This is analogous to a result for L1(G) proved by Lau and Ülger [13] (The-

orem 5.4). However, their result for L1(G) holds for all locally compact groups G

because L1(G) always has a bounded approximate identity for any G, and a stronger

condition on the algebra is needed for their result (see Lau and Ülger [13, Theo-

rem 5.4, condition(iii)]). Our result requires G to be amenable since the existence of

a bounded approximate identity in A(G) is essential in Theorem 3.2.

Corollary 3.3 Let G be an amenable discrete group and ϕ ∈ A(G)∗∗. Thenϕ ∈ A(G)

if and only if Eϕ = ϕ for all E ∈ E.

Proof This result follows from that fact that A(G) is an ideal in A(G)∗∗ if G is discrete

(see Lau [11] and Forrest [6]) and Theorem 3.2.

Now we apply Theorem 3.2 to the topological center problem.

Lemma 3.4 Let A be a commutative Banach algebra with a bounded approximate

identity. If µ ∈ Λ(A∗∗), then Eµ = µ for E ∈ E.

Proof Since A is commutative, it is easy to check that aϕ = ϕa for any a ∈ A and

ϕ ∈ A∗∗. Let E ∈ E. There is a net {aα} in A such that ‖aα‖ ≤ ‖E‖ and aα → E in

the weak∗ topology by Goldstine’s theorem. So if µ ∈ Λ(A∗∗), we have

Eµ = lim
α

aαµ = lim
α
µaα = µE = µ.
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It is proved in Lau and Losert [12, Theorem 6.5] that for a big class of groups,

including amenable discrete groups, Λ(A(G)∗∗) = A(G). The following corollary

is a result in this direction and also a version of Theorem 2.1(i) in Baker, Lau and

Pym [2] without assuming the sequential bounded approximate identity in the case

of A(G) (see also [2, Theorem 2.2 and Corollary 2.3]).

Corollary 3.5 Let G be an amenable locally compact group. If µ ∈ Λ(A(G)∗∗) and

A(G)µ ⊆ A(G), thenµ ∈ A(G). In particular, if G is discrete, then Λ(A(G)∗∗) = A(G).

Proof This corollary is a direct consequence of Theorem 3.2 and Lemma 3.4.

It is an open question of Lau and Ülger [13, question (g), p. 1211] as to whether

E distinguishes the points of M̃ \ A from those of A (i.e., if φ ∈ M̃ \ A, let φ̃ be

an extension of φ to an element in A∗∗. Then there exist E1 and E2 in E such that

E1φ̃ 6= E2φ̃ ) when A is sequentially complete and nonunital (see Lau and Ülger

[13, p. 1208]). The following result answers this question in the case of A(G) and

removes the condition of σ-compactness in Lau and Ülger [13, Lemma 5.13].

Corollary 3.6 Let G be an amenable locally compact group and A = A(G). Then E

distinguishes the points of M̃ \ A from those of A(G)

Proof Let φ ∈ M̃. Extend φ to an element of A(G)∗∗, and denote it by φ̃. It is

obvious that aφ̃ = aφ for a ∈ A(G). Hence A(G)φ̃ ⊆ A(G) . Let E be in E. If E

does not distinguish the point φ from those of A(G), then E1φ̃ = E2φ̃ for any E1 and

E2 in E (see Lau and Ülger [13], p 1208). Fix a E0 from E and let ψ = E0φ̃. For

any right unit E ∈ E, we have Eψ = EE0φ̃ = Eφ̃ = E0φ̃ = ψ. For any a ∈ A(G),

aψ = aE0φ̃ = aφ̃ ∈ A(G). Hence A(G)ψ ⊆ A(G). By Theorem 3.2, ψ is in A(G).

Let uα → E0 in the σ(A(G)∗∗,A(G)∗) topology for a bounded approximate identity

{uα} of A(G). For each f ∈ V N(G) and a ∈ A(G),

〈ψ, f a〉 = 〈E0φ̃, f a〉 = lim 〈uαφ̃, f a〉 = lim 〈uαφ, f a〉

= lim 〈uα, φ( f a)〉 = lim 〈φ, ( f a)uα〉 = 〈φ, f a〉.

Hence φ = ψ on A
∗
A. Therefore φ ∈ A(G).

It is shown in Lau and Losert [12] that for a large class of locally compact groups

G, if A = A(G), then Z̃A = B(G). The following result is due to Lau and Losert

[12, Theorem 6.4]. It follows immediately from our Corollary 3.6 and Lau and Ülger

[13, Theorem 5.12] (see also Lau and Ülger [13, Corollary 5.14]).

Corollary 3.7 Let G be an amenable locally compact group and A = A(G). Then

Λ(A(G)∗∗) = A(G) whenever Z̃A = B(G).

4 Topological Center of a Subalgebra

Let A be a Banach algebra. Then A ⊆ Λ(A∗∗) holds. It is well known that

Λ(L1(G)∗∗) = L1(G) for all locally compact groups G, and Λ(A(G)∗∗) = A(G) for

a large class of groups G (see in Lau and Losert [12]). It is natural to ask: for what
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kind of locally compact group G does Λ(Ap(G)∗∗) = Ap(G)? For a subalgebra B of

A, we study the relationship between the topological centers Λ(B∗∗) and Λ(A∗∗). As

a consequence, we show that the problem of whether Λ(Ap(G)∗∗) = Ap(G) can be

reduced to that for an open σ-compact subgroup. We generalize some results in Hu

[9] and Hu and Neufang [10].

Lemma 4.1 If B is a closed ideal of a Banach algebra A such that there is a bounded

projection m : A → B which is also a multiplier, then we have

(i) i∗(ψ f ) = m∗∗(ψ)i∗( f ) for f ∈ A
∗ and ψ ∈ A

∗∗;

(ii) m∗(ϕg) = i∗∗(ϕ)m∗(g) for g ∈ B∗ and ϕ ∈ B∗∗.

Proof These follow from a routine verification by using the Arens product and the

properties of i and m.

The following result is an abstract version of Lemma 8.1 in Hu and Neufang [10].

Theorem 4.2 Let B be a closed ideal of a Banach algebra A. If there exists a bounded

projection m : A → B which is also a multiplier, then

i∗∗(Λ(B∗∗)) ⊆ Λ(A∗∗) and m∗∗(Λ(A∗∗)) ⊆ Λ(B∗∗).

Proof Let ϕ ∈ Λ(B∗∗). If ψα ∈ A∗∗ and ψα → 0 in the σ(A∗∗,A∗) topology, it is

easy to see that m∗∗(ψα) → 0 in the σ(B∗∗,B∗) topology. Moreover, for any f ∈ A∗,

i∗(ψα f ) = m∗∗(ψα)i∗( f ) by Lemma 4.1(i), we have

〈i∗∗(ϕ)ψα, f 〉 = 〈ϕ, i∗(ψα f )〉 = 〈ϕ,m∗∗(ψα)i∗( f )〉

= 〈ϕm∗∗(ψα), i∗( f )〉 → 0

by the hypothesis ϕ ∈ Λ(B∗∗). Hence i∗∗(ϕ) ∈ Λ(A∗∗).

Conversely, let ψ ∈ Λ(A∗∗) and let ϕα ∈ B∗∗ and ϕα → 0 in the σ(B∗∗,B∗)

topology. For any g ∈ B∗, since m∗(ϕαg) = i∗∗(ϕα)m∗(g) by Lemma 4.1(ii), and

i∗∗(ϕα) → 0 in the σ(A∗∗,A∗) topology,

〈m∗∗(ψ)ϕα, g〉 = 〈ψ,m∗(ϕαg)〉 = 〈ψ, i∗∗(ϕα)m∗(g)〉 = 〈ψi∗∗(ϕα),m∗(g)〉 → 0.

Therefore, m∗∗(ψ) ∈ Λ(B∗∗).

If H is an open subgroup of a locally compact group G, we denote the inclusion

map from Ap(H) to Ap(G) by iH . So we have the following result.

Corollary 4.3 Let G be a locally compact group. Then for any open subgroup H of G,

the following is true

i∗∗H (Λ(Ap(H)∗∗)) ⊆ Λ(Ap(G)∗∗) and m∗∗

H (Λ(Ap(G)∗∗)) ⊆ Λ(Ap(H)∗∗).

Theorem 4.4 Let G be an amenable locally compact group. Then Λ(Ap(G)∗∗) =

Ap(G) if and only if Λ(Ap(H)∗∗) = Ap(H) for any open σ-compact subgroup H of G.
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Proof Assume Λ(Ap(G)∗∗) = Ap(G). For any open σ-compact subgroup H of G, if

ϕ ∈ Λ(Ap(H)∗∗), then i∗∗H (ϕ) ∈ Λ(Ap(G)∗∗) by Corollary 4.3. So i∗∗H (ϕ) ∈ Ap(G).

It is clear that i∗∗H (ϕ) = 0 on G \ H. By identitifying an element of Ap(H) with an

element in Ap(G) as usual, we have i∗∗H (ϕ) = ϕ is in Ap(H).

Conversely, assume Λ(Ap(H)∗∗) = Ap(H) for any open σ-compact subgroup

H of G. For any ψ ∈ Λ(Ap(G)∗∗), it follows from Corollary 4.3 that m∗∗

H (ψ) ∈
Λ(Ap(H)∗∗) for any open σ-compact subgroup H of G. Hence m∗∗

H (ψ) ∈ Ap(H). By

Lemma 3.1, the restriction of ψ onto UCp(Ĝ) denoted by uψ is in Ap(G). Since G is

amenable, Ap(G) has a bounded approximate identity {aα}. Assume aα → E in the

σ(Ap(G)∗∗,Ap(G)∗) topology without loss of generality. For any f ∈ PMp(G), since

f aα ∈ UCp(Ĝ) and f aα = aα f , we have

〈ψ, aα f 〉 = 〈uψ, aα f 〉 = 〈uψaα, f 〉 → 〈uψ, f 〉.

On the other hand, since E ∈ E and ψ ∈ Λ(Ap(G)∗∗),

〈ψ, aα f 〉 = 〈ψaα, f 〉 → 〈ψE, f 〉 = 〈ψ, f 〉.

Hence, ψ = uψ is in Ap(G).

Let B be a closed ideal of a Banach algebra A. Next, we study the relationship

between Z̃B and Z̃A. Assume that there is a bounded projection m : A → B which is

also a multiplier. Then i∗ maps A∗A to B∗B. In fact, if f ∈ A∗ and a ∈ A, we have

〈i∗( f a), b〉 = 〈 f a, b〉 = 〈 f , ab〉 = 〈 f ,m(ab)〉 = 〈 f ,m(a)b〉 = 〈i∗( f )m(a), b〉

for any b ∈ B. Hence i∗( f a) = i∗( f )m(a) is in B∗B. Therefore, i∗(A∗A) ⊆ B∗B.

Similarly, it is easy to see that for any g ∈ B∗ and b ∈ B, m∗(gb) = m∗(g)b. So

m∗ : B∗ → A∗ maps B∗B to A∗A.

Theorem 4.5 Let B be a closed ideal of a Banach algebra A. If there exists a bounded

projection m : A → B which is also a multiplier, then

i∗∗(Z̃B) ⊆ Z̃A and m∗∗(Z̃A) ⊆ Z̃B.

Proof Let ϕ ∈ Z̃B. If ψα ∈ (A∗A)∗ and ψα → 0 in the σ((A∗A)∗,A∗A) topology,

it is easy to see that m∗∗(ψα) → 0 in the σ((B∗B)∗,B∗B) topology. Let ψ̃α be an

extension of ψα to an element of A∗∗. For any f ∈ A∗A, it is clear that ψα f = ψ̃α f

as elements in A∗, and m∗∗(ψα)i∗( f ) = m∗∗(ψ̃α)i∗( f ) as elements of B∗∗. Hence,

by Lemma 4.1(i), i∗(ψ̃α f ) = m∗∗(ψ̃α)i∗( f ). It follows that

〈i∗∗(ϕ)ψα, f 〉 = 〈ϕ, i∗(ψα f )〉 = 〈ϕ, i∗(ψ̃α f )〉

= 〈ϕ,m∗∗(ψ̃α)i∗( f )〉 = 〈ϕ,m∗∗(ψα)i∗( f )〉

= 〈ϕm∗∗(ψα), i∗( f )〉 → 0

by the hypothesis ϕ ∈ Z̃B. Hence i∗∗(ϕ) ∈ Z̃A.

https://doi.org/10.4153/CJM-2009-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-020-0


Unit Elements in the Double Dual of a Subalgebra of the Fourier Algebra A(G) 393

Conversely, letψ ∈ Z̃A and letϕα ∈ B
∗
B

∗ andϕα → 0 in the σ((B∗
B)∗, (B∗

B))

topology. Let ϕ̃α be an extension of ϕα to an element in B∗∗. Then for any g ∈ B∗B,

it is clear that ϕαg = ϕ̃αg as elements in B∗ and i∗∗(ϕ̃α)m∗(g) = i∗∗(ϕα)m∗(g) as

elements of A∗∗. By Lemma 4.1(ii), m∗(ϕ̃αg) = i∗∗(ϕ̃α)m∗(g), and i∗∗(ϕα) → 0 in

the σ((A∗A)∗,A∗A)) topology. Thus, we have

〈m∗∗(ψ)ϕα, g〉 = 〈ψ,m∗(ϕαg)〉 = 〈ψ,m∗(ϕ̃αg)〉 = 〈ψ, i∗∗(ϕ̃α)m∗(g)〉

= 〈ψ, i∗∗(ϕα)m∗(g)〉 = 〈ψi∗∗(ϕα),m∗(g)〉 → 0.

Therefore, m∗∗(ψ) ∈ Z̃B.

It is proved by Derighetti, Filali, and Monfared [4] that Wp(G) can be embedded

into UCp(Ĝ)∗ as follows. For b ∈ Wp(G) and f u ∈ UCp(Ĝ), where u ∈ Ap(G)

and f ∈ PMp(G), 〈b, f u〉 = 〈 f , bu〉. It is proved in Lau and Losert [12] that for

p = 2, Bρ(G) is contained in Z̃UC2(Ĝ). Their proof works for the case of p 6= 2 as

well. In fact, we only need to show that, for b ∈ Wp(G) and ϕ ∈ UCp(Ĝ)∗, we

have bϕ = ϕb under the first Arens multiplication as the proof of Proposition 4.5

in Lau and Losert [12]. Since it is routine to check that 〈bϕ, f u〉 = 〈ϕb, f u〉 for

any u ∈ Ap(G) and f ∈ PMp(G), therefore, bϕ = ϕb and so Wp(G) ⊆ Z̃UCp(Ĝ).

The question is whether Z̃UCp (Ĝ) = Wp(G). Lau and Losert in [12] showed that if G

is second countable and the commutator subgroup [G,G] is not open in G, then it

is true that Z̃UC2(Ĝ) = Bρ(G). The following result is the p-version of Theorem 3.6

in Hu [9], showing that this problem can be reduced to that for σ-compact open

subgroups .

Corollary 4.6 Let G be a locally compact group. Then

(i) Wp(G) ⊆ Z̃UCp (Ĝ);

(ii) Z̃UCp(Ĝ) = Wp(G) if and only if Z̃UCp (Ĝ0) = Wp(G0) for all σ-compact open and

closed subgroups G0 of G.

Proof (i) is proved above. To prove (ii), suppose Z̃UCp (Ĝ) = Wp(G). Let G0 be a

σ-compact open and closed subgroup of G. If ϕ ∈ Z̃UCp (Ĝ0), since PFp(G0) is a closed

subspace of UCp(G0), we denote the restriction of ϕ onto PFp(G0) by bϕ. Then

bϕ ∈ Wp(G0). We claim that ϕ = bϕ. By (i), we have bϕ ∈ Z̃UCp (Ĝ0). It follows from

Theorem 4.5 that i∗∗G0
(ϕ − bϕ) ∈ Z̃UCp(Ĝ) = Wp(G). For any f ∈ L1(G), it is easy to

see that i∗( f ) = f 1G0
is in L1(G0). Hence

〈i∗∗G0
(ϕ− bϕ), f 〉 = 〈ϕ− bϕ, i

∗

G0
( f )〉 = 〈ϕ− bϕ, f 1G0

〉 = 0.

Thus, i∗∗G0
(ϕ−bϕ) = 0. For any f u ∈ UCp(Ĝ0), where f ∈ PMp(G0) and u ∈ Ap(G0),

we can extend f to an element f̃ of PMp(G). Then f̃ u ∈ UCp(G). It follows from

the fact i∗( f̃ u) = f u that

〈ϕ− bϕ, f u〉 = 〈ϕ− bϕ, i
∗( f̃ u)〉 = 〈i∗∗(ϕ− bϕ), f̃ u〉 = 0.
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Therefore, ϕ = bϕ is in Wp(G0).

Conversely, let ϕ ∈ Z̃UCp (Ĝ). Note that PFp(G) is a closed subspace of UCp(Ĝ).

The restriction of ϕ onto PFp(G), denoted by bϕ, is in Wp(G). Let ϕ̃ = ϕ − bϕ.

If ϕ̃ 6= 0 as an element of UCp(Ĝ)∗, then there is f u in UCp(Ĝ) for f ∈ PMp(G)

and u ∈ Ap(G) such that 〈ϕ̃, f u〉 6= 0. Assume the support of u, denoted by K , is a

compact subset of G without loss of generality. There is a σ-compact open subgroup

G0 of G such that K ⊆ G0. By the hypothesis, Z̃UCp (Ĝ0) = Wp(G0). It follows from

Theorem 4.5 that m∗∗

G0
(ϕ̃) ∈ Wp(G0). Since f u ∈ UCp(Ĝ0) and 〈m∗∗

G0
(ϕ̃), f u〉 =

〈ϕ̃,m∗

G0
( f u)〉 = 〈ϕ̃, f u〉 6= 0, m∗∗

G0
(ϕ̃) 6= 0. It follows from Wp(G0) = PFp(G0)∗ and

m∗∗

G0
(ϕ̃) ∈ Wp(G0) that there is g ∈ L1(G0) such that 〈m∗∗

G0
(ϕ̃), g〉 6= 0. On the other

hand, since L1(G0) ⊆ L1(G), we have 〈m∗∗

G0
(ϕ̃), g〉 = 〈ϕ̃, g〉 = 〈ϕ, g〉 − 〈bϕ, g〉 = 0.

This is a contradiction. Hence ϕ = bϕ as elements in UCp(Ĝ)∗ is in Wp(G).
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