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Abstract. It is widely accepted that stars do not form in isolation but result from the frag-
mentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters
dissolve or are destroyed by interactions with molecular clouds or tidal stripping, and their
members become part of the general field population. Star clusters are thus among the basic
building blocks of galaxies. In turn, star cluster populations, from young associations and open
clusters to old globulars, are powerful tracers of the formation, assembly, and evolutionary his-
tory of their parent galaxies. Although their importance (e.g., in mapping out the Milky Way)
had been recognised for decades, major progress in this area has only become possible in recent
years, both for Galactic and extragalactic cluster populations. Star clusters are the observational
foundation for stellar astrophysics and evolution, provide essential tracers of galactic structure,
and are unique stellar dynamical environments. Star formation, stellar structure, stellar evolu-
tion, and stellar nucleosynthesis continue to benefit and improve tremendously from the study
of these systems. Additionally, fundamental quantities such as the initial mass function can be
successfully derived from modelling either the Hertzsprung−Russell diagrams or the integrated
velocity structures of, respectively, resolved and unresolved clusters and cluster populations.
Star cluster studies thus span the fields of Galactic and extragalactic astrophysics, while heavily
affecting our detailed understanding of the process of star formation in dense environments.
This report highlights science results of the last decade in the major fields covered by IAU
Commission 37: Star clusters and associations. Instead of focusing on the business meeting - the
out-going president presentation can be found here: http://www.sc.eso.org/ gcarraro/

splinter2015.pdf - this legacy report contains highlights of the most important scientific
achievements in the Commission science area, compiled by 5 well expert members.

1. Embedded and massive star clusters in the Milky Way
Ignacio Negueruela, Universidad de Alicante, Spain

The past decade has been an era of discovery in the Milky Way, ushered in by our
increasing capability to see through dust. This text is a short summary of the observations
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that have helped shape our understanding of massive star formation and young clusters
in the Galaxy. I must apologise from the beginning for all the very relevant work that I
have not been able to review. My reference list is just intended as a collection of examples
to illustrate the broad range of excellent research carried out by our community. It is
only natural that I concentrate on what I know best.

Deep infrared surveys of the Galactic Plane have revealed hundreds of new open clus-
ters hidden by high obscuration. The publication of the 2MASS catalogue was followed
by a number of dedicated searches, some by eye (e.g. Dutra et al. 2003), others using
automated methods (e.g. Froebrich et al. 2007), that resulted in close to one thousand
new cluster candidates. The Spitzer/GLIMPSE survey (Churchwell et al. 2009) presented
us with a mid-IR view of the Galactic Plane at high spatial resolution, leading to a new
collection of even more highly absorbed clusters (e.g. Mercer et al. 2005). The process
has continued as new, deeper surveys, such as VVV, have come on line (e.g. Borissova
et al. 2014; Barbá et al. 2015).

Many of these clusters are low-mass stellar groups still embedded in their parental
clouds (e.g. Soares et al. 2008). Others are more massive young clusters with high-mass
stars (e.g. Messineo et al. 2009; Chené et al. 2013). Finally, a significant number are
simply old open clusters affected by interstellar extinction. Discriminating between these
types is not always easy without more detailed investigation. Even though some semi-
automated methods have been proposed to discern their nature (e.g. Beletsky et al. 2009),
follow-up deep photometry (e.g. Ivanov et al. 2005) and, above all, (in most cases, near-
IR) spectroscopy is necessary for a good characterisation (e.g. Zhu et al. 2009; Messineo
et al. 2010). Because of this, a large number of these candidates still remain unexplored.

Infrared imaging has also resulted in a novel picture of the interstellar medium. Large
numbers of bubble-like structures have been found (Churchwell et al. 2006; Simpson et al.
2012), likely marking sites of massive star formation (Deharveng et al. 2010). Highly red-
dened high-mass stars have been identified in the vicinity of many them (e.g. Marco &
Negueruela 2011; Pinheiro et al. 2012). In less obscured environments, bright-rimmed
clouds also seem to mark sites of ongoing star formation in the immediate neightbour-
hood of high-mass stars (e.g. Panwar et al. 2014). Herschel observations have shown the
concentration of proto-stellar cores along filaments. This increasing body of data sup-
ports a view of massive star formation as a process extending over large spatial scales,
and thus resulting in measurable age spreads in many young regions (e.g. Bik et al. 2012).
Infrared imaging has also allowed the identification of bow-shocks produced by high-mass
stars ejected from massive clusters (e.g. Peri et al. 2012), giving rise to a lively theoretical
discussion on the origin of isolated high-mass stars.

Adopting a more global point of view, statistical studies of the distribution of mid-IR
sources have provided strong constraints on massive star formation in the Milky Way,
providing estimates of the current global star-formation rate (e.g. Robitaille & Whitney
2010), typical duration of different phases (e.g. Mottram et al. 2011; Morales et al. 2013)
or incidence of triggered star formation (e.g. Thompson et al. 2012). More recently, and
in contrast, Herschel has provided a very detailed view of gas and dust around a few
massive star-formation sites (e.g. Russeil et al. 2013).

But the opportunities for discovery do not only come from infrared imaging. The
combination of X-ray imaging of young clusters with IR catalogues has become the pre-
ferred method to investigate the formation of low-mass stars in environments dominated
by high-mass stars (e.g. Prisinzano et al. 2011; Feigelson et al. 2013), providing valu-
able input for theories of high-mass star formation (e.g. Kuhn et al. 2014; Rivilla et al.
2014). Radio surveys have detected large numbers of new H ii regions (e.g. Anderson
et al. 2011), whose ionising stars or clusters remain in most cases still unknown. Radio

https://doi.org/10.1017/S174392131600096X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131600096X


504 DIVISION H COMMISSION 37

observations have also produced one of the most significant advances in the past few
years: the generalised use of geometric parallaxes to masers for determination of dis-
tances to star-forming regions, an extremely powerful tool to probe the structure of the
Milky Way (see references in Reid et al. 2014).

The current view of large-scale star formation in the Milky Way, emerging from all these
developments, is complex. A typical configuration may be illustrated by the G305 star-
forming region. High-mass stars in two moderately massive young clusters, Danks 1 and 2,
drive a huge wind-blown bubble, whose rim is teeming with star-formation sites, where
embedded lower-mass proto-clusters are forming just now. A diffuse population of proto-
stars is scattered over the whole region (Hindson et al. 2013 and references). The output of
such a process is a classical OB association with massive central clusters, such as Per OB1
or Cas OB8. Many giant molecular clouds seem to harbour similar configurations, among
them the Carina Nebula (e.g. Preibisch et al. 2011), where Trumpler 14 has a mass
Mcl ≈ 104 M� (Ascenso et al. (2007)), or the W3 region (Román-Zúñiga et al. 2015) that
seems to form a larger structure with W4 and W5, included within Cas OB6. Others,
such as W33 (Messineo et al. 2015) or W51, lack the central massive clusters, and will
very likely evolve into dispersed associations, similar to Cyg OB2 (Wright et al. 2014).
This may also be the future of one of the most powerful star-forming regions known in
the Milky Way, W49A (Homeier & Alves 2005).

As a result of spatially concentrated star formation, we find massive young clusters. For
many years, it was believed that the Milky Way lacked clusters with masses � 104 M�.
Then the obscured open cluster Westerlund 1 (Wd1) was found to host a population of
> 70 supergiants of spectral types ranging from O to M (Clark et al. 2005; Negueruela
et al. 2010). A direct extrapolation of the number of massive stars detected would suggests
a mass Mcl ≈ 105 M� for a standard initial mass function(IMF). Direct star counts in
the infrared give a lower limit of 5 × 104 M� (Gennaro et al. 2011). The cluster seems
to have formed monolithically in a single burst lasting less than 0.4 Ma (Kudryavtseva
et al. 2012).

Many clusters have joined the list of massive clusters over the past decade. Some of
them were already known, but their masses have been revised upwards. For example,
Trumpler 14, mentioned above, or NGC 3603, for which Harayama et al. (2008) derive
a mass in the range Mcl = 1 – 1.6 × 104 M� with indications of a top-heavy IMF. These
mass estimates depend strongly on the distance adopted to the cluster and, hence, the
extinction law. This problem becomes especially acute for the clusters close to the Galac-
tic centre, affected by very heavy and variable reddening, with an extinction law that
deviates strongly from the Galactic average (e.g. Nishiyama et al. 2009). For example,
the mass of the Arches cluster is hotly debated. The extinction law adopted or even pos-
sible colour terms due to the very high reddening affect the luminosity function, which
has to be later translated into a mass function. Masses ranging from Mcl < 104 M� to
several 104 M� have been found depending on assumptions (see references in Clarkson
et al. 2012). But even much less reddened clusters are subject to such uncertainties. An
extreme case is Westerlund 2, for which distances ranging from ∼ 3 to ∼ 8 kpc have been
claimed (Carraro et al. 2013), because of very different estimates of the reddening law.

Besides W49A, the strongest candidate for the most massive star-forming region in
the Milky Way is W43 (Bally et al. 2010; Nguyen Luong et al. 2011), located close to the
point where the Galactic bar joins the Scutum-Crux arm. The vigour of star formation
in this area is likely related to this location, as there are indications of inflows from the
spiral arm towards the densest regions (Motte et al. (2014)). Not far from W43, and
at about the same distance from the Sun, several clusters rich in red supergiants have
been found (e.g. Figer et al. 2006; Davies et al. 2007). These clusters have ages in the
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10 – 20 Ma range, and estimated masses between 2 and > 5× 104 M�. At least two large
associations with > 105 M� have been found around them (Negueruela et al. 2011, 2012).
The presence of so many extreme examples of present or recent star formation within
a small span of the Galactic Plane (∼ 6◦) seems to hint at a very privileged location.
Further support for this interpretation would come from the detection of a similarly hefty
complex at the opposite end of the Bar. Even though at least one massive cluster has
been found in that general direction (Davies et al. 2012), the exact position where we
should expect this starburst region is not certain. The young massive cluster vdBH 222,
though originally thought to mark this far end of the bar (Marco et al. 2014), seems to
be closer to us (and the Galactic Centre), suggesting that very large associations do not
necessarily form at special places, and so hinting at the possibility that star formation
in the inner Milky Way may be rather more vigorous than in the outer spiral arms.

Finding massive young clusters is not an end in itself. They not only inform us about
star formation in violent environments, but also play a significant role as laboratories for
the study of high-mass star evolution. With its huge population of evolved high-mass stars
spanning all stages of evolution, Wd1 is the prime example. The different evolutionary
paths of isolated and binary high-mass stars can be directly observed and documented
within its co-eval population (Clark et al. 2014 and references therein). Similarly, multi-
epoch spectroscopic surveys of young open clusters have become fundamental tools to
understand the physical properties of high-mass stars (Evans et al. 2005, 2011, and related
references). As we move into the era of large spectroscopic surveys, this potential will be
fullfilled. At the same time, ALMA is starting to look at the sites of massive star formation
with unprecedented resolution. In the near future, more advanced instrumentation on
the 10-m class telescopes, the launch of JWST and the advent of giant telescopes with
adaptive-optics-assisted instrumentation offer the promise of not only an extended era
of discovery, but also profound advances in our understanding of how star formation
on large scales proceeds, and how high-mass stars are born, evolve and return to the
interstellar medium the enriched material that will feed the future stellar generations.

2. Open clusters in the Milky Way
Elena Glushkova, Sternberg Observatory, Moscow, Russia

Open star clusters (OCs) have always received special interest, because by studying
these objects, it is possible to make suggestions on the structure and kinematics of the
Galactic disk and its dynamical and chemical evolution. However, there are two major
obstacles to achieve these goals: 1) the sampling of OCs is complete only up to distances
of 800 – 1000 pc and 2) no unbiased, homogeneous collection of fundamental parameters
are available in the literature. Concentration of interstellar gas and dust toward the
Galactic plane makes the detection of new OCs difficult especially in the visible range.
To build a homogeneous catalog of OC parameters, homogeneous observational data and
reliable methods of determination of the distances, ages, and reddening of the clusters
are required. Nonetheless, these obstacles are cleared step by step in numerous studies,
each considering few, sometimes a dozen, clusters at once.

The situation dramatically changed in the beginning of the 2000s, when large sky
surveys became available. They triggered a new wave of interest to discover new, and
investigate already known, open clusters. The greatest attention was drawn by Two-
Micron All Sky Survey (2MASS, Skrutskie et al. 2006), whose data were collected in
three near-IR bands. Searches for clusters were conducted either visually, on images
recorded in one of the bands, or from the Point Source Catalog using an automated
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routine (Ivanov et al. 2002; Dutra et al. 2003; Bica et al. 2003; Kronberger et al. 2006;
Froebrich et al. 2007; Koposov et al. 2008; Glushkova et al. 2010; Schmeja et al. 2014;
Scholz et al. 2015). They found about 2000 candidates, visible in infrared only. One
thousand cluster candidates more were mined in other surveys: DENIS (Reylé & Robin
2002), USNO-A2.0 (?), GLIMPSE (Mercer et al. 2005; Zasowski et al. 2013), UKIDSS
GPS (Solin et al. 2012), VVV (Borissova et al. 2011, 2012, 2014; Solin et al. 2014),
WISE (Camargo et al. 2015). Rübke et al. (2015) started the program of searching for
MAssive Stars in Galactic Obscured MAssive clusterS (MASGOMAS) and developed a
new automatic tool, which allows the identification of a large number of massive ( a few
1000 solar masses) cluster candidates from the 2MASS and VVV catalogs.

As 2MASS is a homogeneous and all-sky catalog, many attempts were made to derive
a homogeneous list of accurate physical parameter for OCs out of JHKS data: refer, for
example, to the papers by Koposov et al. (2008), Tadross (2008, 2009, 2011), Glushkova
et al. (2010), Bukowiecki et al. (2011), Kharchenko et al. (2013). However, the compar-
ison of parameters obtained in these investigations with respect to the largest catalog
by Kharchenko et al. (2013), gives mean standard deviations for the distance, age and
reddening as 1.2 kpc, 0.5 dex, and 0.27 mag, respectively (Netopil et al. 2015, which
are definitely insufficient for comprehensive studies of the structure of the Galactic disc.
Involving data from large surveys, scientists undertook massive determinations of other
OC characteristics: the radial velocities of 110 OCs and the metallicities of 89 OCs were
derived using data from RAdial Velocity Experiment (RAVE, Conrad et al. 2014), the
mean proper motions and stellar membership probabilities for 1805 open clusters were
found using UCAC4 (Dias et al. 2014).

Since open clusters provide information about the chemical pattern of Milky Way
disk, the study of their chemical composition attracts special interest. Paunzen et al.
(2010) compiled data from the available sources in the literature to make up the catalog
of OC metallicities based on photometric data, which lists 188 clusters (Paunzen et al.
2010) and set of high-quality cluster metallicities based on high-resolution spectroscopic
studies for 78 clusters (Heiter et al. 2014). Heiter et al. 2014 show that none of the current
models are able to satisfactorily describe the OC’s metallicity as function of galactocentric
distance. The present high-resolution spectroscopic Galactic surveys include OCs among
their targets: Apache Point Observatory Galactic Evolution Experiment (APOGEE, the
Gaia-ESO Survey (GES, Gilmore et al. 2012), the GALactic Archaeology with HERMES
(GALAH, Anguiano et al. 2014) supply accurate radial velocities and detailed chemical
abundances. Using 100 OCs from the uniformly observed complete SDSS-III/APOGEE-1
DR12 dataset (OCCAM survey), Frinchaboy et al. 2015 presented age and multi-element
abundance gradients for the disk of Milky Way. The INfrared Survey of Young Nebulous
Clusters (IN-SYNC, Covey et al. 2015) leverages the stability and multiplex capability of
the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths
and to study the dynamics and star formation history of young clusters. Four young stellar
groups in Perseus and Orion molecular complexes were investigated (Covey et al. 2015)
based on homogeneous stellar parameters derived from APOGEE spectra for thousands
of pre-main sequence stars (Cottaar et al. 2014). OCs are also included in the list for the
space missions Gaia and Kepler.

Some projects were delivered especially to investigate OCs and derive their phys-
ical parameters in a precise and homogeneous way: for example, within the frame-
work of Bologna Open Clusters Chemical Evolution project (BOCCE, Bragaglia & Tosi
2006) about 50 clusters were studied. BOCCE uses both comparison between observed
color-magnitude diagrams (CMDs) and stellar evolutionary models, and the analysis
of high-resolution spectra to derive age, distance and chemical composition. The Open
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Clusters Chemical Abundances from Spanish Observatories survey (OCCASO, Casamiquela
et al. 2014) plans to derive abundances for more than 20 chemical species in at least 6
Red Clump stars in 30 northern OCs. Nine clusters have been studied by OCCASO.
Sejong Open Cluster Survey (SOS, Sung et al. 2013) – a project dedicated to provid-
ing homogeneous photometry of a large number of OCs in the SAAO Johnson Cousins’
UBV I system, has many relatively small sparse unstudied clusters among its targets.
The OPD survey (Caetano et al. 2015) is UBVRI photometric survey of southern open
OCs, which is complementary to OAN-SPM UBVRI survey of 406 northern clusters
(Michel et al. (2016)). Lasting 17 years, WIYN Open Cluster Study (WOCS, Mathieu
& WOCS Collaboration 2013) is dedicated to comprehensive photometric, astrometric,
and spectroscopic studies of select OCs. In their recent investigation (Thompson et al.
2014) new deep wide-field optical and near-infrared photometry (UBV RJHKS ) of the
cluster M35 is presented, against which several isochrone systems are compared: Padova,
PARSEC, Dartmouth, and Y 2 . Two different atmosphere models are applied to each
isochrone: ATLAS9 and BT-Setti. For any isochrone set and atmosphere model, ob-
served data are accurately reproduced for all stars more massive than 0.7 M�. For less
massive stars, Padova and PARSEC isochrones consistently produce higher temperature
than observed. Dartmouth and Y 2 isochrones with BT-Setti atmospheres reproduce op-
tical data accurately; however, they appear too blue in IR colors. WIYN’s extension –
the Southern Open Cluster Study (SOCS, Kinemuchi et al. 2010) includes 24 clusters,
wide-field photometry results are already available for three of them. Faria et al. (2014)
determined the radial velocity of stars belonging to a group of open clusters using spec-
tra with spectral resolution of 4000 and plan to calculate the mean radial velocities of
a number of OCs. To investigate star formation processes, Lim et al. (2015a) initiated a
photometric survey of young open clusters in the Galaxy and already studied 13 famous
OCs having a wide range of surface densities (log(σ)=-1 – 3 stars/pc2) and total masses
(500 − 50000 M�) and also distributed in five different spiral arms in the Galaxy. Lim
et al. (2015a) found that the slope of the IMFs in the high-mass regime appears to be
shallow for massive compact clusters, and the mass of the most massive star in a given
cluster also has a tendency to be large in massive clusters. Costa et al. (2015) started a
program that determines the properties of Local (Orion) spiral arm. They plan to carry
on a comprehensive study of 29 young OCs which includes a UBV RI photometric anal-
ysis and determination of their kinematics. The first cluster NGC 2302 has already been
investigated.

When large catalogs and data sets became available in the literature, and massive
determination of parameters of clusters became possible, numerous automated and semi-
automated techniques were developed to retrieve these parameters primarily by using
color-magnitude diagrams. One of the most powerful tools is the Automated Stellar
Cluster Analysis package (ASteCA, Perren et al. 2015, which makes use of positional
and photometric data to provide accurate estimates of the cluster’s metallicity, age, ex-
tinction and distance values, and robust stellar cluster image and photometry simulation
package MASSCLEAN (Popescu & Hanson 2010), which creates synthetic clusters and
generate CMD templates for a variety of cluster masses and ages, and which mimic the
observational photometric errors when using isochrone fitting (Popescu et al. 2014).

Thanks to All Sky Automated Survey (ASAS, Pojmanski et al. 2005), a large number of
new Galactic Cepheids have been discovered during the last dozen years. That is why new
attempts were undertaken to find Cepheids attributed to open star clusters. Taking into
account all possible characteristics of these variable stars and OCs, Anderson et al. (2013)
found five new genetic relations between Cepheids and clusters, and Chen et al. (2015)
reported 8 new Chepheid-cluster pairs. Some papers were devoted to photometric and
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spectroscopic observations of known clusters hosting the Cepheids, in order to confirm
membership of Cepheids in OCs and refine cluster’s physical parameters (Majaess et al.
2013a,b, 2012, Turner et al. 2012).

One of the most interesting results of the studies of individual clusters was published
by Davies et al. (2011) on GLIMPSE-C01 referred to in the literature as an old globular
cluster traversing the Galactic disk. The authors obtained high-resolution near-infrared
spectroscopy of over 50 stars in the cluster and found the average radial velocity is
consistent with being part of the disk, and determined the cluster’s dynamical mass to
be 8 × 104 M�. From analysis of the cluster’s M/L ratio and location of the red clump,
Davies et al. (2011) suggested the cluster’s age to be 400–800 Myr and concluded that
GLIMPSE-C01 is the most massive Galactic intermediate-age cluster discovered to date.

This way, the number of known Milky Way open clusters increased from about 1500
to almost 4000 during the last 10 – 15 years. The main physical parameters were derived
for most of them but quality of these determinations is insufficient to study the Galactic
disk comprehensively. That is why a lot of new different surveys were started to measure
a large range of open cluster’s properties.

3. Globular clusters in the Milky Way
Angela Bragaglia & Eugenio Carretta, Osservatorio di Bologna, Italy

The last ten years have seen a renewed interest in Galactic globular clusters (GC),
mainly because they have been demonstrated to be much more complex and intriguing
than believed in the past. The main reason is that spectroscopic and, later on, pho-
tometric observations have driven a dramatic shift from considering GCs as the best
approximation of simple stellar populations (see e.g. the review by Renzini & Fusi Pecci
1988) to the simplest example of multiple stellar populations (e.g. the review by Gratton
et al. 2004). We use here the words “populations” and “generations” as synonym, im-
plying that in the same GC stars of (slightly) different age coexist. This is the generally
accepted scenario, although there are still many problems in explaining the mechanism
of GC formation and internal self-enrichment (in light elements for all GCs, in heavier
elements only for a fraction). For recent reviews see for instance Gratton et al. (2012)
for spectroscopic results, Piotto (2009) for photometry, and Charbonnel (2015) for the-
oretical challenges.

We present here selected highlights in Galactic GC work of the last decade, with a
strong bias towards multiple populations and observations.

The abundance of light elements in GC stars shows large star-to-star scatter, at vari-
ance with what happens for the bulk of field halo stars; these variations are anti-correlated
(C and N, O and Na, and Mg and Al are depleted and enhanced, respectively). These
so called “anomalies” in light elements had already been detected in many GCs, but
generally only in giant stars. However, the presence of products of hot H-burning also
in main sequence stars called for more massive stars as original polluters (see subsection
on models) and we now speak of first-generation (FG) and second-generation (SG) stars
in GCs. After the first pioneering works, light element (anti-)correlations were routinely
found also among main sequence and unevolved stars, using also high-resolution spectra,
see e.g. Carretta et al. (2005); Cohen et al. (2005); Kayser et al. (2006, 2008); Pancino
et al. (2010); Smolinski et al. (2011); Lardo et al. (2012) for C, N, and Pasquini et al.
(2005); Lind et al. (2009); Bragaglia et al. (2010); D’Orazi et al. (2010); Monaco et al.
(2012); Dobrovolskas et al. (2014) for Na, O, Mg, Al, and Li. This decade saw a wealth
of observations on large samples of stars and of clusters, also thanks to multi-object
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high-resolution spectrographs, like Hydra or FLAMES, so that a quantitative analysis of
the light elements anti-correlation became possible. Large scale studies were conducted,
see the long list of GCs and papers in Gratton et al. 2012, among which we have for
instance the closest GCs, i.e., M 4, NGC 6752, NGC 6397, and M 22 (e.g. Marino et al.
2008; Carretta et al. 2009b,a; Yong et al. 2008; Korn et al. 2007; Marino et al. 2011b),
very massive clusters like ω Cen (Marino et al. 2011a) and M 54 Carretta et al. (2010a),
and low mass GCs like NGC6838 (Cordero et al. 2015). Recently, also high-resolution
surveys produced results in this field (Mészáros et al. 2015; San Roman et al. 2015). All
evolutionary phases were targeted. The red giant branch (RGB) was the favourite, but
also the horizontal branch (HB) was observed and in some GCs also He was measured
(see e.g. Villanova et al. 2009; Marino et al. 2014; Gratton et al. 2015), an important
diagnostics of the multipopulation scenario. Helium has also been measured in RGB
stars, but only in NGC 2808 (Pasquini et al. 2011) and ω Cen (Dupree & Avrett 2013).
More recently, the Asymptotic Giant Branch (AGB) observations showed that at least
in some GCs the AGB stars do not show the same level of modification in light element
abundances (Campbell et al. 2013; Charbonnel et al. 2013, but see also Johnson et al.
2015). Briefly, in all the examined MW GCs (and interestingly, also in GCs of the LMC
(Johnson et al. 2006; Mucciarelli et al. 2009 and Fornax Letarte et al. 2006), a promi-
nent Na-O anti-correlation has been found. Possible, rare, exceptions are very low-mass
GCs, like the two Sgr clusters Ter 7 and Pal 12 (e.g. Sbordone et al. 2005), and Rup106
(Villanova et al. 2013). The Na-O anti-correlation appears almost a defining properties
of (massive) GCs and is not present among field stars or open clusters (Bragaglia et al.
2012, 2014; Cunha et al. 2015; MacLean et al. 2015, but see Geisler et al. 2012 for a
different opinion on NGC6791). An even more extreme departure from the simple stellar
population paradigma comes from the finding of GCs with dispersion in iron and heavy
elements. After ω Cen, also M 22 was found to display an intrinsic metallicity spread by
Da Costa et al. (2009); Marino et al. (2009) (recently challenged by Mucciarelli et al.
2015), correlated with a spread in neutron-capture elements. Among GCs displaying iron
and n-capture element spreads are for instance M 54, NGC 1851, and M 22.

The impact of different abundances of light element ions the photometric properties of
stars in GCs (especially in the filters containing molecular features of CNO elements, see
Sbordone et al. e.g. 2011) is exploited to better understand the origin of GCs. Different
abundances between FG and SG stars translate into spread and even split sequences along
the whole CMD of GCs. These multiple sequences are observed with several photometric
systems, including broad band (e.g. Marino et al. 2008; Milone et al. 2008; Han et al. 2009;
Lardo et al. 2011), intermediate band (Yong et al. 2008; Carretta et al. 2011), and narrow
band (Lee et al. 2009; Lim et al. 2015b). The recent exploitation of the UV Hubble Space
telescope (HST) filters allows to reach also features of OH hydride (see the UV GC survey
described in Piotto et al. 2015). HST observations reveal split sequences all the way from
the main sequence (MS) up to the red giant branch (RGB) and horizontal brand (HB, see
for instance the spectacular main sequence (MS) of NGC 2808, Piotto et al. 2007). The
large photometric samples allow to study the radial distribution of stellar populations
across the cluster area (e.g. Lardo et al. 2011; Milone et al. 2013; Kravtsov et al. 2011).
Usually SG stars are found more centrally concentrated, as predicted by most scenarios
of GC formation. Photometry permits to detect even discrete populations in a single GC,
like NGC 2808 (Milone et al. 2015), confirmed by abundance analysis of individual stars
(Carretta 2015). The coupling between precise spectroscopy and photometry unravels
a variegated landscape for Galactic GCs, that come in different flavours. Most GCs are
monometallic (concerning iron and heavier elements). A growing number of objects shows
a spread in Fe (see above). They also share a few other common properties: a correlation
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between Ca and Fe (suggesting enrichment by type II SNe), and an enhancement of
elements from slow neutron-capture process observed among stars of the more metal-
rich cluster component. This suggests that, like ωCen and M 54, the remnant nuclei of
former dwarf galaxy (e.g. Bekki & Freeman 2003; Bellazzini et al. 2008), these GCs may
be the final products of cluster formation in a dwarf galaxy environment (e.g. Bekki &
Yong 2012). Maybe related to the multiple populations in GCs, in the LMC and SMC
many intermediate-age clusters with extended or even split main sequence turn-off’s and
red clumps have been found (e.g. Milone et al. 2009; Girardi et al. 2009; Correnti et al.
2015). This may be due to extended star formation (e.g. Goudfrooij et al. 2011) or to
stellar rotation (e.g. Bastian & de Mink 2009) or binarity (e.g. Yang et al. 2011). No light
elements anti-correlation has yet been found in these clusters (Mucciarelli et al. 2014).

Observational evidence of multiple stellar populations calls for some FG stars to have
polluted material from which the SG stars formed. The most commonly discussed FG pol-
luters are intermediate mass asymptotic giant branch (AGB) stars (Ventura & D’Antona
2008, e.g.) and fast rotating massive stars (FRMS Decressin et al. 2007, e.g.), but also
interactive massive binaries have been proposed (de Mink et al. 2009), very massive stars
(Denissenkov & Hartwick 2014), or early disk accretion (Bastian et al. 2013). However,
multiple populations also pose tight constraints that challenge (m)any model(s) of GC
formation. The currently observed ratio of FG to SG stars (about 1/3 and 2/3, Car-
retta et al. 2010b; Bastian & Lardo 2015) is not easily reconciled with the amount of
yields provided by any candidate FG polluter (see for instance Bastian et al. 2015).
This “mass budget” problem was often circumvented by scenarios assuming that GCs
were initially from 10 up to 100 times more massive than present-day GCs (Bekki et al.
2007; Decressin et al. 2007; D’Ercole et al. 2008, 2010; Carretta et al. 2010b; Schaerer
& Charbonnel 2011). However, evidence is growing that in external dwarf galaxies har-
bouring old GCs (showing multiple populations) these objects cannot have been more
than 3-4 times more massive at their formation epoch, since they already account for
about 25% of the galaxy mass in metal-poor stars (Larsen et al. 2012, 2014; Tudorica
et al. 2015). Another severe challenge is posed by the very same existence of the observed
anti-correlations, which require a certain amount of pristine gas to be mixed with ejecta
of polluters to reproduce the observations. In some scenario (e.g. with AGBs, D’Ercole
et al. 2010) dilution is mandatory since AGBs produce a correlation between Na and O
abundance. From where this gas with primordial composition came after the GCs were
swept by the first type II Supernovae is an issue still open, widely discussed but with no
completely satisfactory answer up to now. A recent scenario proposed by Trenti et al.
2015 shows a possible way out, with blobs of pristine gas nearby the outcome of a major
mini-halo mini-halo merger at high redshift, which could be later accreted refurbishing
the evolving proto-GC with fresh reservoir of diluting matter. This mechanism could also
be an attractive way to explain the discreteness observed both in CMDs and in the anti-
correlations (see e.g. Milone et al. 2013, 2015 and Carretta et al. 2012; Carretta 2015,
for NGC 6752 and NGC 2808).

Clusters lose mass and stars during their evolution (see, e.g., Baumgardt et al. 2008).
Stars probably lost by GCs have been searched for in halo samples using the peculiar SG
chemistry. CN band strength was used by Martell & Grebel (2010); Martell et al. (2011)
on Segue SDSS spectra, while enhanced Na and/or depleted O abundances were consid-
ered by Carretta et al. (2010b); Ramı́rez et al. (2012). These papers provided a fraction of
SG-like halo stars of about 1.5 to 3%. Recently, using data from the public spectroscopic
survey Gaia-ESO Lind et al. (2015) found a probable GC escapee. For a discussion on
the contribution of GC stars to the halo, see for instance Gratton et al. (2012). With the
advent of large photometric surveys such as SDSS, Pan-STARRS, DES, VST ATLAS,
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VVV, etc new GCs have been found, see e.g., Laevens et al. (2014); Belokurov et al.
(2014), even if the objects found are sometimes classified as GCs or ultrafaint dwarfs
depending on the study. The Galactic GC populations has increased in number, but the
newly discovered clusters are all low-mass systems. Wide field imaging has been used
systematically to look for extended and extra-tidal structures (e.g. Jordi & Grebel 2010;
Carballo-Bello et al. 2012) In a few cases, tidal tails or streams still connected to the
originating GC have been found (e.g., NGC 288, Grillmair et al. 2013 or Pal 14, Sollima
et al. 2011), but there are many more without a clearly associated progenitor cluster. Fur-
thermore, streams, moving groups, common proper motions groups have been sometimes
associated to now dissolved clusters, in some cases using chemical tagging. Examples of
a positive and negative identification, respectively, are the Aquarius stream (consistent
with being GC debris, Wylie-de Boer et al. 2012) and the Kapteyn group (not associated
with ω Cen, Navarrete et al. 2015).

“Exotic” objects in GCs comprise for instance blue stragglers stars (BSS), low-mass
X-rays binaries, and millisecond pulsars (MSP), all very good tracers of the evolution of
close binary systems in dense environments and of the dynamical history of the parent
cluster. The study of BSS proceeded with the collection of large samples covering the
entire extension of the GCs (e.g. Dalessandro et al. 2008; Leigh et al. 2011; Salinas et al.
2012), in the determination of their dynamical status (e.g. Ferraro et al. 2009a; Simunovic
& Puzia 2014; Ferraro et al. 2012) and chemical composition (e.g. Lovisi et al. 2012).
For more detailed and recent highlights on BSS, see for instance the contributions in
‘Ecology of Blue Straggler Stars’, held in 2012. Ransom et al. (2014) found 21 new MSP
in tbe massive GC Terzan 5, which shows the largest number of X-ray sources among
GCs. This cluster is particularly interesting also because Ferraro et al. (2009b) found it
hosts two stellar populations with different iron contents and ages and proposed it to be
the remnant of one of the primordial building blocks that formed the bulge (and not a
true GC). The different metallicity was later confirmed by Origlia et al. (2013); Massari
et al. (2014).

4. Extragalactic star clusters
Tom Richtler, Universidad de Concepción, Chile

The following pages try to extract the results from 10 years of world wide intensive
research using the extremely short style of a conference summary and applying a strong
bias to observational work. Brodie & Strader (2006) review “Globular clusters and Galaxy
Formation”, Harris (2010) “massive star clusters in galaxies”, Portegies Zwart et al.
(2010) “young massive clusters”, Kruijssen (2014) concepts of GC formation.

New M31 GCs have been detected, many within the “Pan-Andromeda Archaeological
Survey” (McConnachie et al. 2009) and the data base for M31 GCs has been significantly
increased both in quantity and quality (Puzia et al. 2005; Kim et al. 2007; Lee et al. 2008;
Fan et al. 2010; Huxor et al. 2014; di Tullio Zinn & Zinn 2013, 2015). A updated analysis
of the properties of the M31 GCS is given by Huxor et al. (2011). A flattening of the
surface density profile at a radius of about 30 kpc corresponds to a flattening in the stellar
surface brightness profile, which might indicate an accretion of the outer halo. More
direct evidence for accreted clusters is found in Mackey et al. (2010, 2013). Structural
parameters are presented by Barmby et al. (2007); Peacock et al. (2010). 300 metallicities
of old GCs have been derived by (Caldwell et al. 2011). The metallicity distribution is
unimodal in contrast to that of the Milky Way and giant ellipticals. Detailed element
abundances for GCs from integrated light have been derived by Colucci et al. (2009).
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Strader et al. (2011) combine kinematic data and structure parameters to derive M/L-
ratios for 200 GCs and confirmed previous findings that the M/LV -values decline with
increasing metallicity, contrary to what naively is expected from stellar models. Shallower
mass functions of metal-rich clusters can explain this. M/LV -values also increase with
cluster mass, possibly as a consequence of mass segregation. This is disputed by Shanahan
& Gieles (2015). The kinematics of the outer halo GCs in M31 is studied by Veljanoski
et al. (2014). Groups of GCs are related to the debris of stellar streams. The Fornax
dwarf spheroidal shows an extremely large ratio of stars in GC to field stars of a similar
low metallicity. This constrains the loss of first generation stars in GCs Larsen et al.
(2012).

Nearby spirals with high star formation rates have been surveyed for clusters by Bastian
et al. (2012) (M83), Larsen et al. (2011) used HST data to measure colour magnitude
diagrams for resolved young massive clusters in nearby spiral galaxies. There is no gap
visible between the H-burning main sequence stars and the He-burning supergiants like
in canonical isochrones. Age spreads of a few Myrs are able to fill this gap, may be also
interacting binaries.

The Initial Cluster Mass Function (ICMF) of young clusters in spiral galaxies has
been investigated by Larsen (2009). A original Schechter function with a cut-off mass
of ≈ 2 × 105M� describes the GC luminosity functions well, if the luminosity evolu-
tion is only secular. (Elmegreen 2006) provides insight into the similarity of cluster and
stellar IMFs. Based on a sample of 37 nearby dwarf galaxies, Cook et al. (2012) study
the relation between SFR and cluster formation. Galaxy mergers can host a plethora of
massive clusters. The Antennae galaxies are prominent targets with age distribution of
GCs studied by Fall et al. 2005, new spectroscopic data (Whitmore et al. 2005; Bastian
et al. 2009), general demographic model and application to the antennae (Whitmore
et al. 2007). The latter work demonstrates that the enhanced number of massive clusters
in mergers is a sample size effect due to the high star formation rate. The Antennae are
also a test ground for the evolution of clusters, in particular the processes of disruption
(Fall et al. 2009; Renaud et al. 2008; Karl et al. 2011; Renaud & Gieles 2013). Some
young clusters in the Antennae have been observed with ALMA, but large reservoirs
of molecular gas in the clusters have not been found (Cabrera-Ziri et al. 2015). Cluster
formation and disruption in mergers through simulations have been investigated by Krui-
jssen et al. (2012). (Bastian et al. 2013) give structural parameters for 36 clusters in NGC
7572. Among them is W3, the most massive cluster known, whose profile extends out to
500 pc.

The nearest merger remnant (and giant elliptical) is NGC 5128 (CenA). Ages, metal-
licities are known for about 400 objects (Gómez et al. 2006; Rejkuba et al. 2007; Wood-
ley et al. 2010a,b). One third of this sample show ages less than 8 Gyr. Taylor et al.
(2010) find an increase of the M/L-values with the dynamical mass. The GCS has been
searched over an area of 1.5deg2 (Harris et al. 2012). More than 1000 GCs are now known.
NGC1316 (Fornax A) is after CenA the closest merger remnant. Its GCS host clusters
of a wide age-range down to 0.5 Gyr (Richtler et al. 2014). Among them are objects as
massive as 1.6 × 107M� (Bastian et al. 2006). There is an isolated young star cluster
complex which demonstrates GC formation outside periods of high star formation rate
(Richtler et al. 2012).

The nearby galaxy clusters Virgo and Fornax have been intensively surveyed with
HST/ACS which produced a bulk of papers. From the Virgo survey: Peng et al. (2008)
study formation efficiencies of GCs. The GC mass fraction is lowest at intermediate host
luminosity, the specific frequency is dominated by blue clusters. Dwarf galaxies near to
M87 seem to be tidally stripped of their GCs. Villegas et al. (2010) on the GC luminosity
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function and distance determination: the dispersion of the GCLF correlated tightly with
the host’s absolute magnitude. Mieske et al. (2006) on colour-magnitude relations in
GCSs, Liu et al. (2011) on colour gradients within GCSs. Georgiev et al. (2010) find that
the total mass in GCs scales with the halo mass of the host galaxy.

A new catalogue by Harris et al. (2013) updates our current knowledge of GCS proper-
ties and relations with host galaxy properties. The number of GCs obeys a fundamental
plane-like relation NGC ∼ (Reσe)1.3 for galaxies of all luminosities. On the other hand the
ratio mass in GCs/halo mass is essentially constant (Hudson et al. 2014), the GC number
also scales with halo dark mass and Harris et al. (2015) even find a strict proportionality
between the number of blue clusters and the halo mass. Harris et al. (2014b) compare
the GC luminosity functions of seven brightest cluster galaxies and find identical shapes.

Dwarf galaxies show a tendency of increasing specific frequency with decreasing lu-
minosity (Miller & Lotz 2007). How the GCSs of dwarf galaxies are affected by galaxy
harassment in clusters, is studied by Smith et al. (2013). The critical parameter is the
dark matter fraction that remains after interaction processes. Brüns et al. (2011) explain
both compact and extended clusters by dynamical evolution in star cluster complexes.
Massive young GCs are also seen in star forming dwarf galaxies (Adamo et al. 2011)
which in the context of hierarchical clustering may have been important for the assembly
of GCSs.

The richest GCs of nearby galaxies are found in the central galaxies of the Virgo (Harris
2009) and Fornax galaxy clusters. As population and dynamical tracers GCs have a high
significance for investigating the dark matter content and distribution as well as the
population structure and formation history of M87 and NGC 1399. Regarding NGC
1399, Schuberth et al. (2010) presented about 700 GC radial velocities within 80 kpc of
galactocentric radius. Blue and red clusters show distinct kinematical properties with a
sharp transition. The red clusters resemble the galaxy light, while blue clusters behave
more erratic and are probably accreted. The best fitting dark halo agrees reasonably well
with that from X-ray studies, but a substructure within the dark halo that has been
suspected in earlier X-ray studies, has not been confirmed.

M87 also received particular attention. Strader et al. (2011) provide a wealth of kine-
matical data for over 700 GCs that Agnello et al. (2014) use for a dynamical analysis.
They found a dark matter fraction of 0.95 within a radius of 135 kpc and an inner
dark matter profile that is steeper than predicted by cosmological simulations. Such
a big sample also permits to analyse the orbital properties of GCs. Remarkably, the
anisotropy seems to be mainly tangential which supports the idea that many objects on
radial orbits have been dissolved. Near M87 has been found the object with the highest
negative radial velocity detected so far, a GC with -1025 km/s (Caldwell et al. 2014). Its
dynamical history is mysterious.

A significant increase of the database regarding metallicities (Usher et al. 2012) and
kinematics of GCs in early-type galaxies (Pota et al. 2013a) was achieved by the still on-
going “The SAGES Legacy Unifying Globulars and GalaxieS Survey (SLUGGS)” (Brodie
et al. 2014). Until now, almost 1000 metallicities and 2500 velocities of GCs in a dozen
early-type galaxies have been published. Highlighting a few galaxies: The disputed metal-
licity bimodality of GCs in NGC 3115 has been confirmed by Brodie et al. (2012) through
CaII triplet strengths. Breaking the degeneracy in dynamical models between potential
and orbital anisotropy, (Napolitano et al. 2014) find the dark halo of NGC 5846 to be
consistent with cosmological simulations, that its stellar IMF is Salpeter-like, and that
the GC orbits are isotropic in the central parts and slightly radial at larger distances
(Napolitano et al. 2014). More than 400 GCs with photometry and velocities build the
database for M60 (Pota et al. 2015).
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The correlation between central supermassive black hole masses and properties of GCSs
have been discussed in several papers (Burkert & Tremaine 2010; Sadoun & Colin 2012;
Pota et al. 2013b; Harris et al. 2014a). The latter two contributions could investigate
larger galaxy samples and find the correlations weaker than described before. Massive
nuclear GCs host supermassive black holes. Graham & Spitler (2009) provides a relation
between the masses of a nuclear star cluster, the bulge and the black hole. Antonini et al.
(2015) show how erosion by binary BHs may change the mass of a nuclear star cluster.
Georgiev & Böker (2014) provides a catalogue of 228 nuclear star clusters in nearby
spirals.

The discussion regarding the characteristic parameters and the nature of UCDs is
continuing. Brodie et al. (2011) find, on the basis of a survey in M87, that the colour-
magnitude relation of UCDs is offset from that of GCs. They conclude that the majority
of UCDs are stripped nuclei of former dwarf galaxies. Norris & Kannappan (2011) point
to the dual nature of UCDs characterised by mass. Above 7×107M�, UCDs are predom-
inantly stripped nuclei, while at lower masses, many “normal” GCs may be mixed in.
An interesting finding were the enhanced M/L-values of some UCDs in the Virgo cluster
which could not be explained by stellar population models , perhaps indicative of dark
matter (Haşegan et al. 2005). Later work on UCDs in the Fornax cluster did not confirm
this (Hilker et al. 2007). In particular, the brightest and resolved UCD in the Fornax
cluster shows population properties consistent with existing models Frank et al. (2011),
but the discussion is going on Mieske et al. (2013). The study of a large number of UCDs
around M87 suggests that UCDs are distinct from GCs by their sizes rather than by their
masses. The UCDs in M87 show both radial distributions and orbital properties different
from those of GCs (Zhang et al. 2015). Brüns et al. (2011) explain both compact and
extended clusters by dynamical evolution in star cluster complexes. Convincing evidence
that some UCDs evolve from bigger parent galaxies, is the detection of a supermassive
black hole in a UCD in M60 that has 15% of the mass of its host system Seth et al.
(2014).

Cosmological formation of GCs has not yet been identified, but GCs populating a
galaxy cluster rather than an individual galaxy, have been found by Peng et al. (2011) in
the Coma cluster, West et al. (2011) in Abell 1189, and by Alamo-Mart́ınez et al. (2013)
in Abell 1689. For the latter cluster, the authors quote a number of 160 000 GC within
400 kpc. The other extreme appears as “the most isolated globular clusters in the Local
Universe” in the vicinities of M81 and M82 Jang et al. (2012). The Local Group does
not seem to host very isolated GCs (di Tullio Zinn & Zinn 2013).
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Adamo, A., Östlin, G., Zackrisson, E., & Hayes, M. 2011, MNRAS, 414, 1793
Agnello, A., Evans, N. W., Romanowsky, A. J., & Brodie, J. P. 2014, MNRAS, 442, 3299
Alamo-Mart́ınez, K. A., Blakeslee, J. P., Jee, M. J., et al. 2013, ApJ, 775, 20
Anderson, L. D., Bania, T. M., Balser, D. S., & Rood, R. T. 2011, ApJS, 194, 32
Anderson, R. I., Eyer, L., & Mowlavi, N. 2013, MNRAS, 434, 2238
Anguiano, B., Freeman, K., Bland-Hawthorn, J., et al. 2014, in IAU Symposium, Vol. 298, IAU

Symposium, ed. S. Feltzing, G. Zhao, N. A. Walton, & P. Whitelock, 322–325
Antonini, F., Barausse, E., & Silk, J. 2015, ApJ, 806, L8
Ascenso, J., Alves, J., Vicente, S., & Lago, M. T. V. T. 2007, A&A, 476, 199
Bally, J., Anderson, L. D., Battersby, C., et al. 2010, A&A, 518, L90
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Caetano, T. C., Dias, W. S., Lépine, J. R. D., et al. 2015, New A, 38, 31
Caldwell, N., Schiavon, R., Morrison, H., Rose, J. A., & Harding, P. 2011, AJ, 141, 61
Caldwell, N., Strader, J., Romanowsky, A. J., et al. 2014, ApJ, 787, L11
Camargo, D., Bica, E., Bonatto, C., & Salerno, G. 2015, MNRAS, 448, 1930
Campbell, S. W., D’Orazi, V., Yong, D., et al. 2013, Nature, 498, 198
Carballo-Bello, J. A., Gieles, M., Sollima, A., et al. 2012, MNRAS, 419, 14
Carraro, G., Turner, D., Majaess, D., & Baume, G. 2013, A&A, 555, A50
Carretta, E. 2015, ApJ, 810, 148
Carretta, E., Bragaglia, A., Gratton, R., D’Orazi, V., & Lucatello, S. 2011, A&A, 535, A121
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009a, A&A, 505, 139
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010a, A&A, 520, A95
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009b, A&A, 505, 117
Carretta, E., Bragaglia, A., Gratton, R. G., Lucatello, S., & D’Orazi, V. 2012, ApJ, 750, L14
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010b, A&A, 516, A55
Carretta, E., Gratton, R. G., Lucatello, S., Bragaglia, A., & Bonifacio, P. 2005, A&A, 433, 597
Casamiquela, L., Carrera, R., Jordi, C., & Balaguer-Núñez, L. 2014, in EAS Publications Series,
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