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Drag effect 

Brouwer and Hori ( i) have discussed the motion of an artificial satellite through a medium 
causing drag on the motion by generalizing von Zeipel's method. The atmosphere is assumed 
to be spherically symmetric at least upward from the perigee height and stationary with respect 
to the Earth. The law of density is assumed to be isothermal. Hori is now revising this theory. 

The theory of Cook et al. (2) is limited to nearly circular orbits with a slightly different law 
for the density. 

Izsak (3) computed the periodic drag effect by the method of the variation of constants. 
Vinti (4) considered the effect of atmospheric drag on the secular variation of orbital inclination 
following the method of Garfinkel (5). The motion is separated into an initial elliptic stage, a 
quasi-steady spiral stage, and a final ballistic stage. The secular change is deduced separably 
for the spiral and the elliptic stages. 

There are two representations for the effect of atmospheric drag which differ depending on 
the initial values of the orbital parameters. Other theories neglect the atmospheric rotation 
and hence commit errors of several percents. Westerman (6) presented a technique for the 
method which yields a unique expression for the secular change in each standard element, and 
computed (7) the life-time of an artificial satellite. 

Jacchia (8) analyzed the observed drag effect for deducing the variable atmospheric density 
and especially the drag during the November i960 events from the point of view of the solar-
terrestrial relationship. Mace pointed out the effect of the atmospheric turbulence. 
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Radiation pressure 

Mello (1) has established an analytical theory of the motion of an artificial satellite under the 
action of the solar radiation pressure by taking into account the circumstance that the action is 
non-effective during the passage of the satellite in the shadow of the Earth. The effect is 
considered by multiplying the term in the perturbation function due to the radiation pressure 
by a factor called the shadow function. The expansions obtained are analogous to those in the 
satellite theory. Mello used Tchebychev's polynomials for the expansion. He concluded the 
non-existence of the secular terms in the major-axis, eccentricity and inclination, and computed 
the secular terms in the longitudes of the node and the perigee and the mean anomaly, and also 
the principal effect of long periods. He is planning to compute the observations of Echo and 
other satellites by modifying the theory for the case of small eccentricity. 

Musen (2) and Kozai (3) independently worked out the effect of the solar radiation pressure 
on the motion of an artificial Earth satellite and computed the secular effect. Bryant (4) computed 
the effect by the method of Krylov-Bogoliubov. Sehnal (5) discussed the Poynting-Robertson 
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effect on the motion of an artificial satellite. Brouwer (6) discussed analytically the resonance 
caused by radiation pressure on the motion. 
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Critical inclination 

Brouwer's theory (1) on the motion of an artificial Earth satellite is based on von Zeipel's 
method of eliminating all short-period terms by a canonical transformation. Brouwer's elements 
are transformed by Cain (2) to the mean elements in the ordinary sense. Lyddane and Cohn (3) 
computed numerically the motion of an artificial Earth satellite by Cowell's integration method 
for verifying Brouwer's theory. The first-order terms in the semi-major axis are not sufficient. 
By taking the second-order terms in the semi-major axis they could verify Brouwer's theory 
satisfactorily. Lyddane (4) referred to Poincare's canonical variables instead of Delaunay's in 
order to remedy Brouwer's theory on von Zeipel's method from the difficulty for e = o, I = o. 
The same difficulty has been dealt with by Smith (5) by ordinary co-ordinate transformation. 

The expressions in Brouwer's theory show that the method fails when 1 — 5cos2/ = o. It 
corresponds to the inclination 7 = 6 3 ° 26', which is called the critical inclination. There have 
been several hot discussions as regards to the critical inclination whether it is a real existence or 
it is just an illusion caused by the wrong treatment of the problem. As far as the present method 
of perturbation theory is concerned, that is, in separating the perturbation into the short-period, 
the long-period and the secular, the appearance of the critical inclination is essential, although 
it is tacitly assumed that the perturbation is small enough to be divisible into its parts, then 
integrated separately and finally summed over the separately integrated results, irrespective 
of the convergence of the solution. 

Hagihara (6) referred to his general theory (7) of libration based on Poincare-Andoyer's 
theory on the motion of the Hecuba group asteroids. After carrying out von Zeipel's trans­
formation an integral F = constant is obtained, where F is the new Hamiltonian. A pair of 
double points of the curve representing this integral corresponds to the critical inclination. 
It is shown that one of the double points corresponding to the critical inclination is a centre in 
Poincare's terminology and is stable, while the other is a saddle point and is unstable. The orbits 
near the centre are libratory and those near the saddle point are of revolution. The width of the 
libration in inclination is very narrow. The solution is obtained in elliptic functions in both 
cases. It is noticed that there appears no critical inclination in Vinti's treatment with the 
assumption J | + J 4 = o. Garfinkel (8) obtained similar results by a different method based on 
von Zeipel's transformation by making Vinti's parameter J | +Jfi explicitly. 

Hagihara considered only the terms jf2
 ar>d Ji- Kozai (9) extended the discussion to include 

jfs and J6 . Aoki (10) included all these terms from the start. By referring to the elliptic functions 
of Weierstrass he solved the problem completely in each of the different cases arising from the 
values of the constants in the problem. 

Hori (11) expanded the solution in powers of the square root of J% in order to solve the 
problem near the critical point. He obtained the solution in the form of the elliptic integrals of 
the first and the second kinds. 

Izsak (12) noticed that the expansion in powers of \/j2 fails when we include higher order 
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