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A FUNCTION THEORETIC PROOF OF AXLER’S ZERO
MULTIPLIER THEOREM

BY
KENI IZUCHI

ABSTRACT. A function theoretic proof of Axler’s zero multiplier
theorem of Bergman spaces is given.

Let G be an open, connected, nonempty subset of C". Let d4 be the
normalized Lebesgue measure on C" and w be a positive continuous function
on G. For 0 < p = oo, we denote by I (G, wdA) the usual Lebesgue space. The
Bergman space I2(G, wdA) is defined by

(G, wdA) = {g € I’ (G, wdA); g is analytic in G}.

We note that L2(G, wdA) coincides with the space of bounded analytic
functions on G. For f € I2(G, wdA), put

sup{ |f(z)|;z € G} ifp = 0
1/
i, = (fc Ifl”wdA) ’ if1 =p<oo

_/(;IflpwdA fo<p<l.

Then I2(G, wdA) becomes a complete metric space with the metric defined by
d(f, 8) = IIf — gll, for f, g € L(G, wdA).

In [1], Axler showed the following zero multiplier theorem. His paper [1] gives
good references for multiplier theorems on Bergman spaces. -

THEOREM 1. Suppose that LZ(G, wdA) has dimension greater than 1 for each
0<t<oo Let 0 < p < s = o0, and let g be an analytic function on G such

that
gLo(G, wdA) C L(G, wdA).

Then g = 0.
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To prove this theorem, Axler used the Fredholm alternative from operator
theory as a major tool. In this paper, we shall prove the above theorem without
using operator theory, giving a purely function theoretic proof. The following is
our main theorem. As a corollary we can get Theorem 1.

THEOREM 2. Let 0 < p < oo. Suppose that L(G, wdA) has dimension
greater than 1. Let g be an analytic function on G such that

gLl (G, wdAd) C L(G, wdA).
Then g = 0.

Proor. To show g = 0, suppose not. We shall get a contradiction. Since
dim L(G, wdA) = 2, there exists a function & in I2(G, wdA) such that gh is
nonconstant. Since gh € L.(G, wdA), we may assume

M llghlloo = 1.
Hence there is a sequence {A,},~ in G such that
@) | (gh)A,) | = 1 (n — o).

We shall show the existence of increasing positive integers {k,}.> | such that

3) > n2"(gh)h € I2(G, wdA)
n=1
and
4) g(E n2"(gh)k"h) & LG, wdA).
n=1

Then these contradict our assumption.

To show the existence of {k,} satisfying (3) and (4), first we show by in-
duction that there are increasing sequences of positive integers {k,},~, and
{i,}o2 | such that

(5. n) Il (gh)*mll, < (1/3)",

(6, n) | (gh)"(\) | < (173)"

for every jwith0 =j = i,_,,

(7, n) | (gh)"(\ )| > 1 — 1/n2".

For convenience, we put i; = 0. We only prove the general step. We can

get the first step by the same way. Suppose that there exist &, and i, satisfy-
ing (5, n), (6, n) and (7, n). Since gh is a nonconstant analytic function with
llghlleo = 1, (gh)" converges 0 uniformly on each compact subset of G. Since
h € I2(G, wdA), by the dominated convergence theorem, we can take a
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sufficiently large positive integer k, ,, satisfying (5, n + 1) and (6, n + 1).
Next, by (2), we can take i,,, satisfying (7, n + 1). This completes the

induction.
Now we get
oo oo
> nz"(gh>k~h[,, = 2 n2"ll (gh)hl,
n=1 n=
oo
= > n/3)y
n=1
by (5, n)
< oo.

The first inequality is easy to see for | = p < oo. If 0 < p < 1, it follows
from

(o0}

> n2”(gh)"nhL = : |[n2"(gh)k"hHP

n=1 n=

= 3 o2y [ 1 henirwaa
n=1

by the definition

[e]

> n2"|| (gh)*hl], because n2" = 1.

n=1

IA

Hence we get (3).
Also we have the following inequalities for sufficiently large ;.

(o]

e (2 oo

n=1

= | (gh)™;) |{jzf| @n),) |

Jzl x
= 2 2 = 2 a2l (gh) o) |}

n=1 n=j+1
Jj—1 oo
= I(gh)O\,-,)l{ij(l — 12y - X2t - X n(2/3)"}
’ n=1 n=j+1
by (7, ), (1) and (6, n)
=[O =1 - G2 =) — 1)
= [ (ghA;) | G =2
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The last inequality follows from

[ele]

> n@/3) <1
n=j+1
for sufficient large j, and

j—1 j—1 4
D2 =EG-) 22l =G-D2 -1

n=1 n=1
= —j-2+1<j2 —

Hence, by (2), we get
[ee]

lg(x,-,)( > n2"(gh )k"h)(x,-,)‘ — 00 (j = o).

n=1
Thus we get (4). This completes the proof.

ProoF oF THEOREM 1. Let ¢ be a positive number such that 1/s + 1/t = 1/p.
For each f € L)(G, wdA) and h € L(G, wdA), we have fh € LG, wdA) by
the generalized Holder’s inequality. For each k € L2(G, wdA), by our assump-
tion, gk € L}(G, wdA). Hence

(gh)k = (gk)h € LI(G, wdA).
Thus

(8h)LL(G, wdA) < Li(G, wdA).
By Lemma 11 of [2], gh € L(G, wdA). Hence gLfI(G, wdA) < L;(G, wdA).
By Theorem 2, g = 0.
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