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A FUNCTION THEORETIC PROOF OF AXLER'S ZERO 
MULTIPLIER THEOREM 

BY 

KEIJIIZUCHI 

ABSTRACT. A function theoretic proof of Axler's zero multiplier 
theorem of Bergman spaces is given. 

Let G be an open, connected, nonempty subset of CN. Let dA be the 
normalized Lebesgue measure on CN and w be a positive continuous function 
on G. For 0 < p ^ oo, we denote by LP(G, wdA) the usual Lebesgue space. The 
Bergman space Lp

a(G, wdA) is defined by 

Ifa(G, wdA) = {g e LP(G, wdA); g is analytic in G}. 

We note that L™(G, wdA) coincides with the space of bounded analytic 
functions on G. F o r / e Lp

a(G, wdA), put 

ll/IL 

( sup{ | / (2) |; z e G} if/» = oo 

IJG \f\"wdA\ " if 1 â /» < oo 

L\f\pwdA ÏÎ0 <p < 1. 

Then Z^(G, w<i4 ) becomes a complete metric space with the metric defined by 
d(f, g) = 11/ - g\\p f o r / g e Ifa(G, wdA). 

In [1], Axler showed the following zero multiplier theorem. His paper [1] gives 
good references for multiplier theorems on Bergman spaces. 

THEOREM 1. Suppose that L*a(G, wdA ) has dimension greater than 1 for each 
0 < t < oo. Let 0 < p < s ^ oo, and let g be an analytic function on G such 
that 

gL
p
a(G,wdA) c Ls

a(G,wdA). 

Then g = 0. 
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To prove this theorem, Axler used the Fredholm alternative from operator 
theory as a major tool. In this paper, we shall prove the above theorem without 
using operator theory, giving a purely function theoretic proof. The following is 
our main theorem. As a corollary we can get Theorem 1. 

THEOREM 2. Let 0 < p < oo. Suppose that Lp
a(G, wdA) has dimension 

greater than 1. Let g be an analytic function on G such that 

gL
p
a(G,wdA) c L?(G,wdA). 

Then g = 0. 

PROOF. TO show g = 0, suppose not. We shall get a contradiction. Since 
dim Lp

a(G, wdA) ^ 2, there exists a function h in Lp
a(G, wdA) such that gh is 

nonconstant. Since gh e L™(G9 wdA), we may assume 

(1) HgAlloo = 1-

Hence there is a sequence {\„}™=o in G such that 

(2) | (gh)(Xn) | - M (n -> oo). 

We shall show the existence of increasing positive integers {£„}^Li such that 

oo 

(3) 2 riln{ghf»h e Lp
a(G, wdA) 

n = \ 

and 

(4) g ( S n2\gh)k«h\ £ O G , wdA). 

Then these contradict our assumption. 
To show the existence of {kn} satisfying (3) and (4), first we show by in­

duction that there are increasing sequences of positive integers {kn}^=l and 
{in}^L\ such that 

(5,«) || te/i)*»*!!,, < (1/3)", 

(6, n) \(gh)k»(\j)\<(\/3T 

for every j with 0 ^ j ^ *w-i> 

( 7 , i ) \{gh)k»{\)\ > 1 - \/nl\ 

For convenience, we put i0 = 0. We only prove the general step. We can 
get the first step by the same way. Suppose that there exist kn and in satisfy­
ing (5, n), (6, n) and (7, n). Since gh is a nonconstant analytic function with 
llg l̂loo = 1» (gh)n converges 0 uniformly on each compact subset of G. Since 
h e Lp

a(G, wdA), by the dominated convergence theorem, we can take a 
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sufficiently large positive integer kn+l satisfying (5, n + 1) and (6, n + 1). 
Next, by (2), we can take in + l satisfying (7, n + 1). This completes the 
induction. 

Now we get 

oo 

2 n2"(gh)k"h 
U U 

=i 2 «2"||(g«)H|L 
n = l 

^ 2 «(2/3)" 
n = l 

by (5, it) 
< OO. 

The first inequality is easy to see for 1 ^ p < oo. If 0 < p < 1, it follows 
from 

I OO M OO 

2 «2"(g«)*»« L =ê 2 \\n2n(ghf"h\\p 

oo /• 

= 2 (nlnY J | {gh)k"h\pwdA 

by the definition 

â 2 «2" | | (g/0^IL because «2" ^ 1. 
/!«1 

Hence we get (3). 
Also we have the following inequalities for sufficiently large j . 

g ( \ ) ( 2 n2"{gh)k»h\(\A 

^ I (gh){\) \\jV\ {gh)\\) | 

7 - 1 oo » 

- 2 «2"| (g/*M) | - 2 »2"| (g«M,) | 
« = 1 y n=j+\ ' I 

{ v'-i °° \ 

M l - 1//2'') - 2 "2" - 2 «(2/3)" 
„ = 1 «=7 + 1 J 

by (7,7), (1) and (6, «) 
^ I (g«)(\.) | {y2^ - 1 - ( y ^ - j) - 1} 

= i (g«)(\,) i a - 2). 
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The last inequality follows from 

2 «(2/3)" < 1 

for sufficient large y, and 

7-1 j - \ 

2 nln ^ (j - 1 ) ^ 2 " = 0" - 1)(27 - 1) 
« = 1 n=\ 

= j2J -j - V + 1 <jlJ -j. 

Hence, by (2), we get 

/ O O v I 

ig(\)(2 ^"(gA^W.) 
7 \ „=1 / J 

Thus we get (4). This completes the proof. 

PROOF OF THEOREM 1. Let / be a positive number such that \/s + \/t = \/p. 
For e a c h / G Ls

a(G, wdA) and h e 4 ( G , >W£4), we h a v e ^ G Z£(G, wdA) by 
the generalized Holder's inequality. For each k e Lp

a(G, wdA), by our assump­
tion, gk e L^(G, wdA). Hence 

(gh)k = (gk)h e Ifa(G9wdA). 

Thus 

(gh)Ifa(G, wdA) c Lp
a(G9wdA). 

By Lemma 11 of [2], gA G L~(G, W<£4). Hence g4(G, w<£4) c L^°(G, M*£4). 

By Theorem 2, g = 0. 
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