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DIRECT PRODUCT OF DERIVED STEINER 
SYSTEMS USING INVERSIVE PLANES 

K. T. PHELPS 

1. Introduction. A Steiner system S(t, k} v) is a pair (P, B) where P 
is a fl-set and B is a collection of ^-subsets of P (usually called blocks) 
such that every ^-subset of P is contained in exactly one block of B. 
As is well known, associated with each point x £ P is a 5(/ — I, k — 1, 
v — 1) defined on the set Px = P\{x} with blocks 

B(x) = {b\{x}\x e b and b G B}. 

The Steiner system (PX1 B{x)) is said to be derived from (P, £ ) and is 
called (obviously) a derived Steiner (t — 1, k — 1)-system. Very little is 
known about derived Steiner systems despite much effort (cf. [11]). It is 
not even known whether every Steiner triple system is derived. 

Steiner systems are closely connected to equational classes of algebras 
(see [7]) for certain values of k. In particular one can define an equational 
class and hence a direct product for Steiner (/, k)-systems only when 
t — 2 and k is a prime power or t = 3 and k = 4 (see [6], [7]). Thus it 
makes sense to talk of the direct product of an 5(2, q, n) and an 5(2, q, m) 
as an 5(2, q, ntn), at least when q is a prime power. 

One of the first results on derived designs was actually a construction of 
a Steiner quadruple system 5(3, 4, 3n + 1) from an 5(3, 4, n + 1) [8]. 
This has been generalized so that the direct product of derived triple 
systems is a derived triple system ([1], [14], [11]). That is, if there exists 
an 5(3, 4, n + 1) and an 5(3, 4, m + 1) then there exists an 5(3, 4, 
nm + 1). The main purpose of this note is to extend these results to 
Steiner (3, q + 1)-systems. Since these results hinge on the existence of 
orthogonal arrays we will need to consider known results in this area first. 

2. Orthogonal arrays. An nl by k array with entries from an n-set N, 
with the property that for any choice of t columns, the n1 /-tuples formed 
from the rows are all different, is called an orthogonal array of order n, 
depth k and strength t (and index unity [13]). Let us denote such an 
orthogonal array by OA (t, k, n). (Note that when t = 2 such an ortho
gonal array is equivalent to a set of k — 2 mutually orthogonal latin 
squares of order n.) The following results can be found in [13]: 
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THEOREM 2.1 [3]. There exists an OA (t, g + 1, g) whenever qis a prime 
power and t < q. If q = 2r then there exists an OA (t, q + 2, q). 

LEMMA 2.2 [4]. / / there exists an OA(t, k, n) and an OA(t, k, m) then 
there exists an OA (t, k, nm). 

From the construction of OA (t, q + 1, q) when g is a prime power, one 
obtains Corollary 2.3 below. A sketch of the proof for / = 3 is provided 
as this is all that we require. 

COROLLARY 2.3. / / (atj) is the g3 X (q + 1) 0A(3, q + 1, q) where 
dij Ç {1, 2, . . . , q) then one can assume that atj = i for j = 0, 1, . . . , q 
and for i — 1, 2, . . . , q. 

Proof, (cf. [13]). Let GF(q) = {bu b2, . . . , bq} and le t / , (*) , i = 1, 2, 
. . . , g3 be all polynomials of degree 2 or less with coefficients from GF(q) 
Define dfj = k if and only iift(bj) = bkîor i = 1, 2, . . . , g3, j = 1,2, . . . q. 
Define âi0 = k if and only if the leading coefficient of ft(x) is bk. Let us 
assume that fj(x) = bjX2 + x + 1 for j = 1, 2, . . . q. Clearly then 
âji y£ âjci for any j , k £ {1, 2, . . . , q},j T^ k. Define a permutation at for 
i = 0, 1, . . . , q, by a*(â^) = i for each j = 1, 2, . . . , q. Finally let 
a a = cùjiâij) for i = 1, 2, . . . , qz and j = 0, 1, 2, . . . g. Then (atj) will 
be an (X4 (3, q + 1, g) which will have the desired rows. 

Finally the following observation was first made by A. E. Brouwer [2]: 

LEMMA 2.4. If there exists a 5(3, q + 1, n + 1 ), where qis a prime power, 
then there exists an OA (3, q + 1, n). 

Proof. Let G be a sharply triply transitive permutation group acting 
on the set X = {0, 1, . . . , q} and define 

D(X) = { ( 0 ^ V . . , * V . . , ( z ' ) l * e G], 

i.e., D{X) is a collection of row vectors defined on the set X. Let F be a 
g-set and A(Y) be the (X4(3, q + 1, q) constructed in Corollary 2.3 
above. If (P, B) is the 5(3, q + 1, w + 1), then for oo Ç P the collection 
B' = {fr\{oo } \b Ç 5} is a 3-design on P\{oo } with block sizes q and q + 1. 
Let B' = B(co)\J BB where £ (oo ) are the blocks of the derived 5(2, q, n) 
and £i? is the collection of (q + 1)-subsets in B'. Define the following 
collection of distinct row vectors: 

OA = [D(b)\b e BB) U {A(b)\b Ç B(x)}. 

First OA contains nz distinct row vectors; for each b G BB, D(b) contains 
qz — q row vectors; for each b Ç B{oo), A(b) has g3 row vectors but q of 
these are of the form (y, y, . . . , y) for each 3/ Ç è s o ignoring these we 
have g3 — q as well. Since | 5 ' | = (w3 — n)/(qz — q) this gives us nz — n 
row vectors not counting the n row vectors (y, y, . . . , y), y Ç P\{oo }. So 
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OA has nz row vectors and thus it is equivalent to an n3 X (<Z + 1) 
array which is in fact an orthogonal array of strength 3. 

Note that G does not have to be group and as Brouwer remarked there 
are sets of permutations which are sharply 3-transitive. 

3. Product constructions. A Sterner system 5(3, q + 1, q2 + 1) is 
known as an inversive plane; the derived design 5(2, g, q2) is always an 
affine plane. It is well known that such inversive planes exist whenever q 
is a prime power (cf. [5]) and of course they may exist for other values of 
q as well. 

Suppose that there exists an 5(3, q + 1, w + l ) o n a set of P U {oo ( 
with B as the collection of blocks. Let (P, B*) denote the points and 
blocks of the derived 5(2, g, n). Let us assume there exists an 5(3, g + 1, 
q2 + 1) as well as an 0A(3, q + 1, q) and an 0,4(3, q + 1, n) . Finally 
let (Q U {oo }, C) be the point set and block collection for an 5(3, q + 1, 
m + 1) and let (Ç, C*) denote the derived 5(2, g, m) as before. Then we 
have the following construction of an 5(3, q + 1, nm + 1) on P X Q 
U {oo}: 

(1) For each b G B* and c 6 C* form an 5(3, q + 1, q2 + 1) on the set 
{oo} VJ (6 X c) so that {oo} U (b X {i}) is a block for each i £ c and 
{oo } U ({j} X c) is a block for each j G 6. (Here we use the property 
that the derived design is an affine plane.) Let XbtC denote the collection 
of blocks for this 5(3, q + l,q2 + 1), thenZ& ,c C D. 

(2) For each b Ç B, where oo g b and for each c G C* consider an 
OA (3, g + 1, g) on the set c. Assuming that b 

["'0) *^ 1 J * • • J *v Q 

! then 
{(xj, da)\j = 0, 1, , , q) e D for i = 1, 2, . . . , g3 

where a^ 6 C is the entry in row i, column j of the chosen OA (3, g + 1, 
g). (Let us assume that (a*y) is as in Corollary 2.3.) 

(3) For each c Ç C where oo g c choose an CL4(3, g + 1, »), ( r^) ; 
then assuming c = {y0, yïy . . . , ̂ j we have 

{(rijt yj)\j = 0, 1, . . . , q\ € D for each i = 1, 2, . . . , g3. 
THEOREM 3.1. (P X Q W {oo}, D) as defined above is an 5(3, g + 1, 

wm + 1). 

Proof. We must show that every triple of P X Ç W {oo } is contained 
in exactly one block of D. 

(a) {oo, (x, y), (%', y')}. Suppose x ^ x' then there exists a unique 
block b £ B* containing [x,x'\. If y = y then this triple is in the unique 
block {oo } U (fr X {y}) otherwise it must be in a unique block of the 
5(3, q + 1, q2 + 1) defined on {oo } KJ (b X c) where {y, y'} C c Ç C*. 

(b) {(x, i) , (x, j ) , (y, j ) } . There exists a unique b £ B* and c Ç C* 
such that {x, y} C, b and {i, j} C c This triple is contained in a unique 
block of the 5(3, g + l,q2 + l)on{oo} \J (b X c ) . 
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(c) {(x, i), (y, i), {z,j)\. {x, yj z) is contained in a unique block b G B 
and {i,j} is contained in a unique block c G C*. If b\{co } G 5 * then, as 
before, this triple is contained in a unique block of type (1) otherwise it 
will be contained in a unique block of type (2). 

(d) {(x, i) , (x, j ) , (y, k)}. The argument is similar to case (c) above; 
there exists a unique b G B* containing {x, y] and a unique c G C, {i, j , &} 
C c. If oo Ç c (i.e., c\{co } G C*) then this triple is contained in a unique 
block of type (1) otherwise it will be contained in a unique block of type 
(3). 

(e) {(x, i), (y, i), (z, i)) or {(x, i) , (x, j), (x, &)}. There exists a 
unique block, b £ B, containing {x, y, z}. If oo G & then this triple is 
contained in the unique block {oo } VJ (6\{oo}) X {i}] otherwise it is 
contained in a unique block of type (2) because the OA (3, q + 1, q) used 
contains rows of the form (atj = i\ j = 0 , 1 , . . . , q) for each i = 1, 2 , . . . , 
q. For the triple {(x, i), (x, j), (x, k)} the argument is similar but much 
simpler because since it will be contained in a unique block of type (1) or 
type (3) ; no special assumptions about the OA (3, q + 1, n) are necessary. 

(f) {(x, i), (y, j), (z, k)}. {i, j , k} is contained in a unique c G C. 
If oo G c then this triple will be contained in a unique block of type (3) ; 
if oo G c then {x, y, z) will be contained in a unique block b G B. If 
oo G & then this triple is contained in a unique block of type (2) ; other
wise it will be contained in a unique block of type (1). 

Since most of the assumptions needed in this construction are valid 
whenever g is a prime power we have the following corollaries: 

COROLLARY 3.2. If there exists an 5(3, q + 1, n + 1) and an 5(3, q + 1, 
m + 1) where qis a prime power then there exists an 5(3, q + 1, nm + 1). 

Proof. This follows from Lemmas 2.1 and 2.4 and Theorem 3.1. 

COROLLARY 3.3. / / there exists an 5(3, q + 1, m + 1) wftere g is a prime 
power, then there exists anS(3,q + 1, gm + 1 ). 

In closing this section we remark that the construction presented 
allows for a significant amount of freedom; the consequence of this is 
that as m (or n) grows the number of nonisomorphic systems that can be 
constructed increases. To illustrate this point take Corollary 3.3 and 
consider only the blocks of type (3) in the construction of the 5(3, g + 1, 
qm + 1). Let c be the number of distinct OA (3, q + 1, q) then (q\)q~2 is 
a trivial lower bound for c. Let r be the number of blocks of an 5(3, g + 1, 
m + 1) which do not contain a fixed point oo , then 

_ (m + l)m(m — 1) m(m — 1) 
r ~ (q + DçCç - 1) <Z(<7 - 1) " 

Now one can construct cr distinct 5(3, g + 1, qm + 1) from the same 
5(3, q + 1, m + 1) and as cT grows faster then {qm + 1) ! we have that 
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the number of non-isomorphic 5(3, q + 1, qm + 1) increases with m. 
This argument is presented in more detail in [11] for the case q = 3. 

4. Problems. Since Steiner quadruple systems, (i.e., 5(3, 4, n)) are 
also co-extensive with a variety of algebras it is natural to ask whether 
similar results hold for 5(4, 5, n + 1). Unfortunately an analogous con
struction fails to work because one needs a 4-skein of order 4 such that 
g(x, x, x,x) = x and every 2-generated sub-4-skein has order 2. (A 4-skein 
defined on an n-set N is a mapping g: N4 —> N such that the w 4 X 5 array 
with row vectors (x, y, z, w, g(x, y, z, w)) is an OA (4, 5, n).) So the ques
tion as to whether a direct product of derived Steiner quadruple systems 
is derived remains open. 

Finally E. Mendelsohn [9] has shown that the direct product of 
''derived" Steiner loops is derived, cf. [11]. R. Quackenbush [12] has 
shown that a loop product (or idempotent reduct) theorem exists for 
(2, &)-Steiner systems for certain other values of k. Can E. Mendelsohn's 
results be generalized to these designs? 
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