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DIFFERENTIAL ALGEBRA OF THE "EVEN ORDER
KORTEWEG-DE VRIES EQUATIONS"

by JOHN M. VEROSKY

(Received 11th May 1989)

In the quotient ring of differential polynomials modulo cubic terms the usual odd order hierarchy of
Korteweg-de Vries equations can be supplemented by an even order hierarchy. The full (even and odd)
sequence is generated by an Olver recursion operator of order one and any pair has zero bracket in the
quotient ring. The even order equations do not possess a Hamiltonian structure and thus their related
Rosencrans densities are considered.

1980 Mathematics subject classification (1985 Revision): 35G20.

1. Introduction

Consider the algebra P of differential polynomials in one dependent variable u and
one independent variable x. It consists of polynomials in the variable uQ,ul,u2,... where
un is the nth derivative of u and it has a Lie algebra structure with bracket
[p, q] = v(p)q — v{q)p where the derivation v{k) is defined by (sum on repeated indices)

»(fc) = !>>(*)/-
ouJ

D' is just the derivative operator D to the jth power. If ut=p and us = q are evolution
equations then the bracket measures the commutativity of the flows: [p, q] = q, — ps =
us, — uts. It is well known that the usual sequence of higher (odd) order Kortweg-de
Vries (KdV) equations k2n+i all have mutually zero brackets and thus have mutually
commuting evolutionary flows (see Olver's book [2] for a thorough exposition of these
and other standard facts from the formal variational calculus). The first three members
of the KdV sequence are

and the whole sequence can be generated by a recursion operator R = D2 +
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where the inverse D~l always acts on polynomials in the image of D in the case of the
KdV sequence and thus poses no problem of definition [3]. Thus k2n+3==Rk2n + x for the
KdV case. If R had a square root S then there would be a complete (both even and
odd) set of KdV equations kn for each n related by kn + 1 = Skm but S does not exist as
an operator expressible without an infinite series of negative powers of D. Thus there
are no even KdV equations in the algebra P.

In this paper we make the observation that if we restrict ourselves to the quotient
ring P/P3 where P3 is the ideal of polynomials of degree three or more (generated by
cubic monomials), then the square root S and the resulting even KdV equations exist in
that quotient ring. The ring P/P3 consists of linear and quadratic differential poly-
nomials, and the complete KdV sequence is

etc.

The odd order ones have the same linear and quadratic terms as the usual KdV
equations. The operator generating this sequence is

which has square

and differs from R by a quadratic term which leads to at least cubic terms when applied
to any polynomial. Thus S2 and R are equivalent on P/P3. Strictly speaking we should
be using P(D~i)/P3(D~i) which is the formal extension of P/P3 by D"1 but the D'1

terms never arise in the generation of the full P/P3 KdV sequence just as they never do
in the ordinary sequence.

2. The recursion operator

It can be shown using Olver's criteria ([2] and [3]) that S is a recursion operator for
k2. In fact we have the following.

Theorem 1. Let kn+1 ^S^^ For any i,j>0 the bracket [£,,&,] = () where = is modP3.
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Proof. Olver's criteria says that S is a recursion operator for k2 if d{ — u, + k2)S —
Sd(-u, + k2)=0 where the differential of the evolution equation ut = k2

is used. D, is the total time derivative. A simple operator computation shows that

which is zero on P/P3 because a quadratic (in u) operator Du0D~lu0 acting on any
element in P always results in an element in P3 (really P3(D~i)) which is equivalent to
zero. Hence we have

= V{k2)kt - d(k2)k( = (v(k2) - d(k2))kt

= -d(-u, + k2)ki= -d(-u, + k2)S
l

using the algebraic relations between v,d, and the bracket (thus any bracket [/c2,fc,] will
contain at least cubic terms). For example [/c2,fe3] = iMo"1. Next, observe that by the
Jacobi identity for the bracket, for any i,j>0 we have [[kj,fcj],/c2] = 0. Obviously
[khkj] = q which is a pure quadratic polynomial but [q,/c2] = \_q,M2] is yet another
quadratic. The only quadratic = 0 is zero. Hence [q, u2] = 0 in P, not just in P3. But by a
standard theorem (Theorem 5.22 in [2]) the only pure quadratic polynomial q
commuting with u2 must be zero. Thus q = 0 and consequently [/cf, /c,-] = 0. This
concludes the proof.

An argument similar to the second part of the above proof also based on the Jacobi
identity and quadratic terms will prove the Tu commutativity theorem for P/P3. (See
[1], [6] for the original theorem, p. 311 in [2] for a simplified proof and [7] for its
occurrence in certain systems.)

3. Rosencrans densities

The odd order mod P3 KdV equations still have Hamiltonian structure u, = D£[//]
(see [2,4]) where the conserved densities H are taken modP4 (P4 is generated by
quartic monomials) since the Euler operator E=( — D)J(d/dUj) takes Uj derivatives
reducing the degree of H by one. For example the Hamiltonian form of the 5th order
mod P3 KdV equation is
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= U5

Rosencrans [5] has observed that if ur=p and us=q are two flows commuting with
a Hamiltonian system M, = D £ [ / / ] then T=pD~lq is a conserved density of the
Hamiltonian system. That is, the integral of T over space is independent of time. We
can modify his proof to obtain:

Theorem 2. Let ur = p and us = q commute with u, = D£[//] in P/P3. Then T = pD~lq
is a conserved density mod P4 for ut = £>£[//].

Proof. Consider the following computation of the integrand (where we may thus
use = mod image of D).

= v(DE[H])p- D

= v(p)DE[H~\D -1q + pD~lv(q)DE[H] mod P4

= ~qD-1v{p)DElH^+pD-1 v(q)DE[H] mod im D

because v(p) and v(q) commute with D

- v(p)(qEim)-(v(q)p ~

since v(p) and v(q) are derivations

modP4

= v(q)(v(p)H) — v(p)(v(q)H) mod im D

by definition of E and v and integration by parts

P = P* = 0 modP4

by a standard identity for v.
In other words D,pD~1q = a + b where aeP* and beimD. Hence
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— \pD~lqdx = \adx where aeP*.

For example

= usual 2nd order KdV conserved density + ygwJ5-

In fact all of the higher order KdV densities H„ can be generated recursively mod P4 by

i modP4.

The orders are correct because £[#„] has order In with highest order term u2n. Thus
k2E[H^\ has highest order term u2u2n= ±u2

+1 modim D.
In general we have

k2mD-%n + l=Hn+m modP4

k2j> ~1 k2n = 0 mod P4, mod im D

k2m + iD~1k2n + l=0 m o d P 4 , mod im D.

The first formula shows how an even KdV equation can be used to produce higher
order conserved densities when the Rosencrans product with an odd K.dV is taken. The
second says that two evens only produce a trivial (in the image of D) density and the
third really says that the Poisson bracket of Hm and Hn is zero, reflecting the
commutativity of k2m+1 and k2n + 1 because for Hamiltonian equations the Rosencrans
density and the Poisson bracket coincide (see [5]).
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