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Exact solutions of time-dependent oscillations in
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A. Viúdez†

Department of Physical Oceanography and Technology, Institute of Marine Sciences, ICM-CSIC,
Barcelona 08003, Spain

(Received 20 April 2022; revised 26 July 2022; accepted 26 August 2022)

Exact solutions of the time-dependent three-dimensional nonlinear vorticity equation for
Euler flows with spherical geometry are provided. The velocity solution is the sum of a
multipolar oscillatory function and a rigid cylindrical motion with swirl. The multipolar
oscillation is a velocity mode whose radial and angular dependencies are given by
the spherical Bessel functions and vector spherical harmonics, respectively. The local
frequency of the velocity oscillations equals the angular speed of the rigid flow times the
angular azimuthal wavenumber of the oscillating flow. The unsteady motion corresponds
to inertial oscillations in multipolar flows with spatial azimuthal waves (non-vanishing
azimuthal wavenumber) in the presence of a background flow with constant axial vorticity.
In these nonlinear solutions, the curl of the Lamb vector has a linear dependence with the
oscillation velocity, a property that makes it possible for the oscillating motion to satisfy
different linear wave equations. Based on these inviscid time-dependent velocity modes,
new exact solutions to the time-dependent Navier–Stokes equation are also provided.

Key words: waves in rotating fluids, Navier–Stokes equations, vortex dynamics

1. Introduction

Exact solutions of vortices are of fundamental importance in fluid dynamics. In particular,
in geophysical fluid dynamics research, which includes the physical processes in the
Earth’s oceans and atmosphere, there is a large interest in understanding the persistence of
large-scale, mesoscale and submesoscale vortices. An important step in the theoretical
effort to find exact vortex solutions was the discovery, in two-dimensional flows and
circular geometry, of the Lamb–Chaplygin dipole (Chaplygin 1903; Meleshko & van Heijst
1994). The Lamb–Chaplygin vortex solution has relevant applications to ocean eddies
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A. Viúdez

(e.g. Flierl, Stern & Whitehead 1983; Gonzalez & Zavala Sansón 2021). The essential
property of the two-dimensional Lamb–Chaplygin streamfunction solution ψ(ρ, ϕ) lies
in the separation of the radial (ρ) and angular (ϕ) dependence of the vertical vorticity
ζ(ρ, ϕ) in cylindrical Bessel functions of the first kind, Jm(kρ), and sinusoidal modes
exp(−imϕ), for azimuthal wavenumbers m = 0 and m = 1, in such a way that ψ satisfies
the two-dimensional Helmholtz equation ∇2ψ = −k2ψ . The Lamb–Chaplygin vortex
solution may be generalized to include an arbitrary number of Bessel-sinusoidal modes
(Velasco Fuentes 2000; Viúdez 2019). In three-dimensional flows, a similar decomposition
of the velocity field into spherical Bessel functions jm(kr) for the radial (r) and angular
(θ, ϕ) and spherical harmonics Ym

� (θ, ϕ), in the particular case � = 1 and m = 0, lead to
the discovery of the Hicks–Moffatt spherical vortex (Hicks 1899; Moffatt 1969, 2017),
whose limit for vanishing radial wavenumber k → 0 is Hill’s spherical vortex (Hill 1894).
These steady solutions were generalized recently to multipolar spherical vortices with any
degree � and order m (Viúdez 2022). These steady-state, or rigidly translating, vortex
solutions are further generalized in this work. Here, we provide a family of time-dependent
oscillating velocity fields u(x, t), with vorticity ω ≡ ∇ × u, which is an exact solution, in
spherical geometry, to the time-dependent nonlinear vorticity Euler equation

∂ω

∂t
+ ∇ × (ω × u) = 0. (1.1)

The velocity field u(x, t) of the new time-dependent spherical vortex family is described
in § 2. First, u(x, t) is defined in § 2.1 as the sum of a time and space oscillating velocity
function U(x, t) and a constant background rigid flow ū(x). The proof that u(x, t) satisfies
(1.1) is given in § 2.2, and next the streamfunction ψ(x, t) of the total flow (§ 2.3),
the different frequencies and phase speed of the motion (§ 2.4), the divergence of the
Lamb vector (§ 2.5), and the acceleration potential (§ 2.6) are provided explicitly. Next,
oscillating velocity solutions to the Navier–Stokes equation are given (§ 3) in terms of
U(x, t) and ū(x). The transformations of these solutions under a change of reference
frame translating with constant axial velocity and rotating with constant angular speed
are discussed in §§ 4 and 5, respectively. These solutions satisfy several well-known
wave equations in physics, described in § 6, as well as the Maxwell equations for the
propagation of electromagnetic waves in vacuum (§ 7). The velocity solutions u(x, t) may
be considered velocity modes, and they satisfy a superposition condition explained in § 8.
The stability of the zonal vortex solutions (where the order of the spherical harmonics
vanishes, m = 0) is addressed in § 9. Piecewise vortex solutions describing spatially
bounded vorticity fields are considered in § 10, and finally, conclusions are summarized
in § 11.

2. The time-dependent spherical vortex family

2.1. Definition of the time-dependent velocity solution
In order to define the time-dependent velocity solution u(x, t), it is convenient to introduce
first, in spherical coordinates (r, θ, ϕ) and time t, the oscillating, in both space and time,
function

U(r, θ, ϕ, t) ≡ u1

[
�(�+ 1)

j�(kr)
kr

Y m
� (θ, ϕ)+

(
(�+ 1)

j�(kr)
kr

− j�+1(kr)
)
Ψ m
� (θ, ϕ)

+ j�(kr)Φm
� (θ, ϕ)

]
e−im𝔴t, (2.1)
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Time dependent oscillations in multipolar spherical vortices

where j�( · ) is the spherical Bessel function of the first kind and degree �, and the vector set
{Y m

� (θ, ϕ),Ψ
m
� (θ, ϕ),Φ

m
� (θ, ϕ)}, with integers � ≥ 0 and m ∈ {−�, . . . , �}, is the vector

spherical harmonics basis (Barrera, Estevez & Giraldo 1985). The remaining parameters
are the radial wavenumber k, the oscillation velocity amplitude u1, and the frequency, or
angular speed, 𝔴. To simplify the notation, it is only shown explicitly in (2.1) the function
in terms of the spherical Bessel functions of the first kind (hence the subscript 1 in the
velocity amplitude u1). This function assumes implicitly the addition of a similar function
but whose radial dependence is given in terms of the spherical Bessel functions of the
second kind y�( · ) instead of j�( · ), and with a new constant velocity amplitude, say u2
instead of u1. Also, the indices �,m will generally be omitted from the symbols U , etc.
The oscillating function (2.1) is divergence-free (∇ · U = 0), and when 𝔴 �→ 0, equals the
steady multipolar vortex solutions given in Viúdez (2022). We notice that in the general
time-dependent case (m𝔴 /= 0), the time-dependent function (2.1) is not a solution of the
vorticity equation (1.1).

Next, we define the rigid motion

ū(r, θ) ≡ −2
𝔴
k

(
cos θ r̂ − sin θ θ̂

)
+ 𝔴r sin θ ϕ̂ = ρ𝔴ϕ̂ − 2𝔴

k
ẑ, (2.2)

where the last equality, which provides the cylindrical components in cylindrical
coordinates (ρ, ϕ, z), shows more clearly that (2.2) is a cylindrical axial motion with swirl,
having azimuthal velocity ρ𝔴ϕ̂ and axial velocity (−2𝔴/k)ẑ. Hence 𝔴 is the angular
speed of the rigid motion. Finally, from (2.1) and (2.2), we define the time-dependent
velocity field family

u(r, θ, ϕ, t) ≡ U(r, θ, ϕ, t)+ ū(r, θ), (2.3)

which is a time-dependent multipolar solution of (1.1) in spherical geometry. Since the
time-dependent velocity oscillations have a local frequency (m𝔴) proportional to the
angular speed of the background flow (𝔴), the time oscillations in (2.3) may be interpreted
as inertial oscillations in background flow. The next subsection proves that the family of
flows (2.3) satisfies the vorticity equation (1.1).

2.2. Proof that the velocity (2.3) satisfies (1.1)
First, we notice that the vorticity fields of (2.1) and (2.2) are

W ≡ ∇ × U = −kU and ω̄ ≡ ∇ × ū = 2𝔴ẑ, (2.4a,b)

and therefore the vorticity ω(x, t) of the total flow is

ω = −kU + 2𝔴ẑ. (2.5)

Thus U is a Beltrami function (an eigenfunction of the curl operator), and ω̄ is a constant
vertical vorticity. Consequently,

W × U = 0 and l̄ ≡ ω̄ × ū = −2ρ𝔴2ρ̂, (2.6a,b)

that is, the Lamb vector of the oscillating function vanishes, and the Lamb vector of the
rigid motion is radial. Therefore, the Lamb vector of the total flow l simplifies to

l ≡ ω × u = 𝔴kρϕ̂ × U + l̄, (2.7)

which is the sum of the Lamb vector of the rigid motion l̄ and a nonlinear contribution
from the oscillating and rigid motions. We notice from (2.7) and (2.6b) the important
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A. Viúdez

property that the azimuthal component of the Lamb vector of this vortex family vanishes:

l · ϕ̂ = 0. (2.8)

Property (2.8) implies that the azimuthal component of the acceleration equation simplifies
to

∂Uϕ
∂t

= 1
ρ

∂

∂ϕ

(
P − 1

2
u · u

)
, (2.9)

where Uϕ ≡ U · ϕ is the azimuthal component of the oscillating function, and P is the
acceleration potential (a = ∇P). Clearly, the curl of the Lamb vector of the rigid motion
vanishes,

∇ × l̄ = 0, (2.10)

and the curl of the Lamb vector of the total flow (see Appendix A) is

∇ × l = −im𝔴kU . (2.11)

This is a remarkably property. It states that for the family of vortex solutions (2.3), the
curl of the Lamb vector l, which is defined through the nonlinear relation l ≡ ω × u,
satisfies in fact a very simply linear relation with U . The curl of the Lamb vector of the
total flow l is a rotation by an azimuthal angle increment 	ϕ = π/2 of the oscillating
velocity function −U times m𝔴k. Expression (2.11) is consistent with U being solenoidal
(∇ · U = 0). Generalized Beltrami flows (∇ × l = 0) correspond to the steady states with
m = 0 (Beltrami flow and rigid flow), or 𝔴 = 0 (only Beltrami flow), or k = 0 (Hill’s
spherical vortex).

The local rate of change of (2.3) is

∂u
∂t

= ∂U
∂t

= −im𝔴U , (2.12)

and the local rate of change of the total vorticity ω is, using (2.4a),

∂ω

∂t
= ∂W

∂t
= −k

∂U
∂t

= im𝔴kU , (2.13)

which cancels with (2.11) and therefore proves that u from (2.3) satisfies (1.1).

2.3. Streamfunctions
Here, we provide the streamfunction ψ(x, t) of the total flow u. First, we notice that for
the oscillating function U , there exists a function

F ≡ −1
k

U , such that ∇ × F = U and ∇ · F = 0, (2.14a–c)

while for the streamfunction ψ̄(ρ) of the rigid motion, we have

ψ̄(ρ) ≡ −𝔴
k
ρ ϕ̂ − 𝔴

2
ρ2 ẑ, with ∇ × ψ̄ = ū and ∇ · ψ̄ = 0. (2.15a–c)

From (2.14) and (2.15), we obtain the streamfunction ψ of the total flow:

ψ ≡ F + ψ̄, with ∇ × ψ = u and ∇ · ψ = 0. (2.16a–c)
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Time dependent oscillations in multipolar spherical vortices

Using the mathematical identity

∇ × (∇ × X ) = ∇ (∇ · X )− ∇2X (2.17)

applied to ψ , we obtain readily the relation between vorticity and the Laplacian of the
streamfunction:

ω = −∇2ψ . (2.18)

2.4. Frequencies and phase speed
The angular phase of u from (2.3) is the phase of U from (2.1) and is given by

Θ(ϕ, t) ≡ m(ϕ − 𝔴t). (2.19)

The local frequency ωl of the oscillating motion is

ωl ≡ −∂Θ
∂t

= m𝔴, (2.20)

while the physical ∇Θ wavenumber is only azimuthal:

∇Θ = m
r sin θ

ϕ̂ = m
ρ
ϕ̂. (2.21)

The intrinsic frequency ωi, defined as the rate of change of the phase Θ from (2.19) for an
observer moving with the background rigid flow ū vanishes since

ωi ≡ −
(
∂Θ

∂t
+ ū · ∇Θ

)
= 0. (2.22)

The phase velocity σ is the velocity satisfying

∂Θ

∂t
+ σ · ∇Θ = 0 and σ × ∇Θ = 0 ⇒ σ = ρ𝔴 ϕ̂, (2.23a–c)

and therefore the phases of the oscillating motion U(x, t) move with the constant
azimuthal flow ρ𝔴ϕ̂, while the angular phase velocity is 𝔴ϕ̂.

2.5. Divergence of the Lamb vector
Besides the curl of the Lamb vector given in (2.11), the divergence of the Lamb vector
∇ · l is also relevant (Hamman, Klewicki & Kirby 2008) because for isochoric flows, it
equals the Laplacian of the acceleration potential. Introducing the potential χ(x, t) given
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by

χ ≡ P − 1
2

u · u (2.24)

in Lagrange’s expression for the acceleration field a(x, t),

a ≡ ∂u
∂t

+ l + 1
2

∇ (u · u) = ∇P, (2.25)

we may write Euler’s equation of motion as

∂u
∂t

+ l = ∇χ, (2.26)

and therefore the divergence of the Lamb vector

∇ · l = ∇2χ (2.27)

equals the Laplacian of the potential χ . If l(x, t) is known, then the potential χ(x, t) can
be obtained by solving the Poisson equation (2.27). Noticing that the divergence of the
Lamb vector of the rigid motion is

∇ · l̄ = −4𝔴2, (2.28)

that ∇ × (ρϕ̂) = 2ẑ, and using the mathematical identity

∇ · (X × Y ) = Y · (∇ × X )− X · (∇ × Y ) , (2.29)

which implies that
∇ · l = u · ∇ × ω − ω · ω, (2.30)

we finally obtain

∇ · l = 𝔴k
(
kρU · ϕ̂ + 2U · ẑ

)− 4𝔴2. (2.31)

Thus the divergence of the Lamb vector is the sum of a constant term (−4𝔴2) associated
with the rigid flow and a term that depends only on the axial and azimuthal components of
the oscillating flow U . The divergence of l is therefore independent of the ρ-component
of the oscillating flow U · ρ̂.

2.6. Acceleration potential
It is possible to obtain the acceleration potential P for the velocity flow solutions u in the
general case. We introduce the spherical velocity components

U(r, θ, ϕ, t) =
(
Us(r, θ) r̂ + Vs(r, θ) θ̂ + Ws(r, θ) ϕ̂

)
exp(im(ϕ − 𝔴t)). (2.32)

From the azimuthal component of (2.26), using the properties (2.8) and (2.12), we obtain

− im𝔴ρU · ϕ̂ = −im𝔴ρWs(r, θ) exp(im(ϕ − 𝔴t)) = ∂χ

∂ϕ
, (2.33)

where Ws(r, θ) exp(im(ϕ − 𝔴t)) is the azimuthal component of U . Since the acceleration
potential of the rigid motion satisfies

∇ · l̄ = −4𝔴2 = ∇2χ̄ , then χ̄ = −𝔴2ρ2. (2.34a,b)
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Time dependent oscillations in multipolar spherical vortices

Integration of (2.33) leads to

χ = −𝔴ρU · ϕ̂ − 𝔴2ρ2 = − (U · ϕ̂ + 𝔴ρ
)
𝔴ρ = −𝔴ρ u · ϕ̂, (2.35)

and therefore the acceleration potential P(x, t) is simply

P = e − 𝔴ρ u · ϕ̂, where e ≡ 1
2

u · u (2.36a,b)

is the kinetic energy density of the total flow.

3. Solutions satisfying the Navier–Stokes equation

The family of vortex solutions û(x, t) defined from U(x, t) in (2.1) and ū(x) in (2.2) as

û(x, t) ≡ U(x, t) e−νk2t + ū(x) (3.1)

satisfies the Navier–Stokes equation

∂ω̂

∂t
+ ∇ × (

ω̂ × û
) = ν ∇2ω̂, (3.2)

where ν is a constant, assumed complex-valued, momentum diffusivity. We notice that
in (3.1), the diffusivity affects the oscillating motion and not the rigid motion ū in (2.2),
whose Laplacian vanishes. In order to prove that (3.1) satisfies (3.2), we define the new
velocity Û(x, t) and vorticity Ŵ(x, t) fields of the oscillating motion as

Û(x, t) ≡ U(x, t) e−νk2t and Ŵ(x, t) ≡ ∇ × Û = −kÛ , (3.3a,b)

which imply that

û(x, t) = Û + ū and ω̂(x, t) ≡ ∇ × û = Ŵ + ω̄ = W e−νk2t + ω̄. (3.4a,b)

Therefore, the local rate of change of vorticity is

∂ω̂

∂t
= −im𝔴Ŵ − νk2Ŵ, (3.5)

while the curl of the Lamb vector and the Laplacian of the vorticity are

∇ × l̂ = im𝔴Ŵ and ∇2ω̂ = −k2Ŵ, (3.6a,b)

which immediately prove (3.2). For complex-valued ν = νr + iνi, where νr, νi ∈ R, the
imaginary part νi represents oscillations of frequency

𝔴̂(k) ≡ νik2 (3.7)

in the flow û(x, t), which may take place even in the particular case where the oscillations
correspond to the zonal spherical harmonics solution (m = 0).
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4. Transformation under a change of frame translating with constant axial velocity

The velocity solution u in (2.3) includes the rigid motion ū(ρ) in (2.2), which includes a
constant vertical velocity (−2𝔴/k)ẑ, and an azimuthal velocity 𝔴ρϕ̂. It therefore becomes
interesting to generalize the solution u so as to make it valid in a reference frame translating
with an arbitrary constant axial velocity (addressed in this section) and rotating with
an arbitrary constant angular velocity (addressed in the next section). The mathematical
expressions involving changes of frame moving with constant axial velocity become
simpler in cylindrical coordinates. We introduce the cylindrical velocity components of
the steady multipolar solution U0(x) ≡ U(x, t;𝔴 �→ 0) from (2.1) as

U0(ρ, ϕ, z) ≡ (Uc(ρ, z) ρ̂ + Vc(ρ, z) ϕ̂ + Wc(ρ, z) ẑ
)

eimϕ. (4.1)

In a reference frame translating with constant axial velocity −wẑ, the time-dependent
solution (2.3), now written using (4.1) as

u(ρ, ϕ, z, t) = U0(ρ, ϕ − 𝔴t, z)+ 𝔴ρϕ̂ − (2𝔴/k)ẑ, (4.2)

is
ũ(ρ, ϕ, z, t) ≡ U0(ρ, ϕ − 𝔴t, z − wt)+ ρ𝔴ϕ̂ + (w − 2𝔴/k) ẑ. (4.3)

Since this is a Galilean transformation of u(x, t), the acceleration a(x, t) of the flow
remains invariant, which can be verified by noticing that the local and advective rates
of change of velocity transform as

∂ũ
∂t

= ∂u
∂t

− w
∂U0

∂z
and ũ · ∇ũ = u · ∇u + w

∂U0

∂z
, (4.4a,b)

where functions U0 are evaluated at (ρ, ϕ, z − wt), so that the acceleration ã(x, t) remains
unchanged,

ã ≡ ∂ũ
∂t

+ ũ · ∇ũ = a, (4.5)

and, since u is a flow solution (∇ × a = 0), ũ is a flow solution as well (∇ × ã = 0). We
notice also that the phase of this solution,

Θ̃(ϕ, t) = m(ϕ − 𝔴t) = Θ(ϕ, t), (4.6)

is invariant as well. The velocity solution ũ(x, t) in (4.3) has a new free parameter w,
which may be interpreted as the (minus) axial velocity of an axially translating reference
frame relative to which the velocity solution u(x, t) in (2.3) becomes ũ(x, t) in (4.3).
Alternatively, wẑ in ũ(x, t) from (4.3) may be interpreted as the velocity of displacement
of u(x, t) from (2.3). Regardless of the interpretation, the particular case where

kw = 2𝔴 (4.7)

is characterized by a velocity ũ(x, t) from (4.3) without rigid, or background, axial
velocity.

5. Transformation under a change of frame translating and rotating with constant
axial and angular velocities

In this section, we extend the results in the previous section to a reference frame that is both
translating and rotating with constant axial and angular velocities. Using the cylindrical
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Time dependent oscillations in multipolar spherical vortices

velocity components of the steady spatially oscillating vortex solution (4.1), we define the
time-dependent velocity field

û(ρ, ϕ, z, t) ≡ U0(ρ, ϕ − 𝔴t, z − wt)+ ρ𝔴ϕ̂ + (w + w0)ẑ, (5.1)

where w0 is a new vertical velocity parameter. We define, in the usual way, the vorticity
ω̂ ≡ ∇ × û and Lamb vector l̂ ≡ ω̂ × û. From these definitions and applying the chain
rule to (5.1), we obtain

∂ω̂

∂t
= 𝔴k

∂U0

∂ϕ
+ wk

∂U0

∂z
(5.2)

and

∇ × l̂ = −𝔴k
∂U0

∂ϕ
− (2𝔴 + (w + w0)k)

∂U0

∂z
, (5.3)

where U0 in the right-hand side of these and following equations is always evaluated at
(ρ, ϕ − 𝔴t, z − wt), whereas those in the left-hand side are evaluated at (ρ, ϕ, z, t). Since
the curl of the centripetal acceleration vanishes (∇ × (−Ω2ρρ̂) = 0), we need only to add
to the vorticity equation the curl C of the Coriolis acceleration 2Ω ẑ × û,

C ≡ ∇ × (
2Ω ẑ × û

) = −2Ω
∂U0

∂z
, (5.4)

to obtain the vorticity equation in the rotating non-inertial frame

∂ω̂

∂t
+ ∇ × l̂ + ∇ × (

2Ω ẑ × û
) = 0, (5.5)

which implies

− [w0k + 2(𝔴 +Ω)]
∂U0

∂z
= 0. (5.6)

Therefore, the velocity û in (5.1) is a solution of the vorticity equation in a frame of
reference rotating with constant angular velocityΩ ẑ relative to the inertial reference frame
when

w0k = −2(𝔴 +Ω). (5.7)

Thus û in (5.1) is a flow solution in an inertial reference frame (Ω = 0) when w0 =
−2𝔴/k, which corresponds to the time-dependent oscillating vortex solution u(x, t) in
(2.3). Replacing w0 from (5.7) in (5.1), we finally write the solution

û(ρ, ϕ, z, t) ≡ U0(ρ, ϕ − 𝔴t, z − wt)+ ρ𝔴ϕ̂ +
(

w − 2(𝔴 +Ω)

k

)
ẑ. (5.8)

Thus û in (5.8), with the free parameters u1, k, l,m,𝔴,w,Ω , is a flow solution of the
vorticity equation in a reference frame (which is non-inertial when Ω /= 0) moving with
velocity ρΩϕ̂ relative to the inertial one. We notice that now all the terms in the solution
û in (5.8) are relative to the rotating reference frame; for example, 𝔴 in (5.8) is the relative
angular speed of the background flow. Solution (5.8) is relevant to geophysical flows as it
describes inertial oscillations in vortices relative to a rotating sphere.

Though inertial oscillations are frequently associated with flows observed in a rotating
non-inertial reference frame, we have seen here that this is not the case, since the waves
exist in an inertial reference frame as long as there is a background rotation 𝔴 /= 0 and
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the oscillating function has a wavenumber m /= 0. When the flow is steady in the inertial
reference frame (and in the general case the oscillating flow has any wavenumber m), we
have that 𝔴 = −Ω in the rotating frame (we notice that this is consistent with 𝔴 = 0 in
the inertial reference frame characterized byΩ = 0), and w = 0, so solution (5.8) reduces
to

û(ρ, ϕ, z, t) ≡ U0(ρ, ϕ +Ωt, z)− ρΩϕ̂, (5.9)

which clearly differs from the solution u in (2.3) after the substitution 𝔴 → −Ω . The fact
that (5.9) represents steady motion in the inertial reference frame is immediately proven
by setting Ω = 0.

Clearly, for zonal spherical harmonics (m = 0) the flow has no azimuthal dependence,
so we may write U(ρ, ϕ − 𝔴t, z − wt) = U(ρ, ·, z − wt) in (5.8), and the relative angular
speed 𝔴 has no effect in U , so the vortex remains steady in a reference frame translating
with velocity wẑ. This fact, and the resulting exterior inertial waves associated with the
axial translation of the vortex w and with the angular speed of the rotating frame Ω , was
addressed by Scase & Terry (2018) in the particular case � = 1 for the spherical vortex of
Hill (k = 0) and the swirling spherical vortex of Hicks–Moffatt (k /= 0).

Let us now consider a solution û from (5.1) in an inertial reference frame (Ω = 0). The
flow with

w = 2𝔴/k (5.10)

is a velocity solution with vanishing background axial flow. The velocity ǔ(x, t) of this
particular solution is

ǔ(ρ, ϕ, z, t) ≡ U0(ρ, ϕ − 𝔴t, z − (2𝔴/k)t)+ ρ𝔴ϕ̂. (5.11)

Applying the chain rule to the solution with no background axial flow ǔ(x, t) in (5.11), we
find that the displacement velocity v̌ of the velocity field ǔ, that is, satisfying the equation

∂ǔ
∂t

+ v̌ · ∇ǔ = 0, is v̌ = ρ𝔴ϕ̂ + 2𝔴
k

ẑ. (5.12a,b)

Thus an observer moving with velocity v̌ from (5.12b) will see no rate of change of
velocity, as is also inferred directly from (5.11). The phase velocity σ = ρ𝔴ϕ̂ in (2.23)
is azimuthal, therefore transverse to the axial direction, and it remains invariant to any
inertial observer moving with an arbitrary axial velocity.

The velocity fields found here – u in (2.3), and its generalization to a translating and
rotating reference frame û in (5.8) – are solutions to the nonlinear vorticity equation (1.1).
However, since the nonlinear term ∇ × l = −im𝔴kU in (2.11) becomes a linear function
of the velocity oscillation U , these solutions satisfy different linear wave equations as well.
These wave equations are considered in the next section.

6. Wave equations

In order to obtain the wave equations for u and ω (as well as for all their higher-degree
curl fields), we notice that since ∇ × U = −kU from (2.4a), and ∇ · U = 0, the velocity
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Time dependent oscillations in multipolar spherical vortices

oscillations U , W , and all successive curls, satisfy the Helmholtz equations

∇2u = ∇2U = −k2U and ∇2w = ∇2W = −k2W . (6.1a,b)

Using the local rate of change of u from (2.12) and ω from (2.13), we see that U , and hence
u, ω, and all successive curls, satisfy

i
∂u
∂t

= −m𝔴
k2 ∇2u and i

∂ω

∂t
= −m𝔴

k2 ∇2ω. (6.2a,b)

These equations are similar to the time-dependent Schrödinger equations for a massive free
particle. The similarity of these equations to the Schrödinger and Klein–Gordon equations
is addressed in Appendix B. The second partial time derivatives of (6.2) imply that

∂2u
∂t2

= ∂2U
∂t2

= −m2𝔴2U and
∂2ω

∂t2
= ∂2W

∂t2
= −m2𝔴2W, (6.3a,b)

and therefore u and ω satisfy the classical wave equations

1
c2
∂2u
∂t2

− ∇2u = 0 and
1
c2
∂2ω

∂t2
− ∇2ω = 0, (6.4a,b)

where the squared wave speed is

c2 ≡ m2𝔴2

k2 . (6.5)

The fact that both velocity u and vorticity ω satisfy the wave equations (6.4a,b) makes it
appealing to investigate the analogy between the propagation of these vortex oscillations
and the propagation of electromagnetic waves in vacuum (see § 7). This analogy is
interesting also because the angular phase velocity 𝔴ϕ̂ is transverse to the axial velocity
and therefore is independent of the inertial reference frame translating with constant axial
velocity addressed in § 4.

7. Maxwell equations for the propagation of electromagnetic waves in vacuum

We define the time-dependent fields E and B from the velocity u(ρ, ϕ, z, t) as

cE ≡ ∂u
∂t

and B ≡ −∇ × u = −ω, (7.1a,b)

where c is a constant identified with the speed of the electromagnetic waves in vacuum,
but in principle independent of c. Fields E and B are solenoidal and therefore satisfy
Gauss’s laws for the magnetic (∇ · B = 0) and electric (∇ · E = 0) fields in the absence
of electric charges. Fields (7.1), in the Gaussian units convention, satisfy also Faraday’s
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law of induction

∇ × E + 1
c

∂B
∂t

= 0, (7.2)

for any u(x, t). We note that

1
c

∂E
∂t

= −m2𝔴2

c2 U and ∇ × B = −k2U . (7.3a,b)

If the density current J is defined as

4π

c
J ≡

(
m2𝔴2

c2 − k2
)

U , (7.4)

then Ampère’s law,

∇ × B − 1
c

(
4πJ + ∂E

∂t

)
= 0, (7.5)

is also satisfied. Though the current density is J /= 0, there is no charge density since
∇ · J = 0. The fulfilment of the Maxwell equations in the absence of charge density,
using the definitions (7.1), does not suffice to obtain wave equations for E and B. The
additional constraint that the density current vanishes, J = 0, must be assumed in (7.4), or
equivalently set the wave speed

c = c = m𝔴
k
, (7.6)

then Ampère’s law in the absence of charge density,

∇ × B − 1
c
∂E
∂t

= 0, (7.7)

is also satisfied. In this case, both E and B, as defined by (7.1), satisfy wave equations with
phase velocity c,

1
c2
∂2E
∂t2

− ∇2E = 0,
1
c2
∂2B
∂t2

− ∇2B = 0, (7.8a,b)

which are the Maxwell equations for electromagnetic waves in vacuum. The phase speed
c in (7.6) does not depend on the w reference frame, but depends on the radial k and
azimuthal m wavenumbers. This is so because the velocity solution u(r, θ, ϕ, t) in (2.3),
with free parameters u1,𝔴, k, �,m, is still too general to be applied directly to any
particular physical process. In order to apply the hydrodynamical flow solution (2.3) as a
model for the propagation of electromagnetic waves in ‘vacuum’, which is experimentally
known to have a constant – and independent of the inertial reference frame – wave speed
c, we establish an additional condition, namely, that frequency 𝔴 and wavenumbers k,m
are related through a dispersion relation

𝔴2 = 𝔴̃2(k,m) = c2
0

k2

m2 , (7.9)

where c0 is a constant wave speed. Constraint (7.9) is independent of the w reference frame.
This condition immediately gives 𝔴 = ±c0k/m and therefore c = c0 in (7.6) is a constant
independent of the w reference frame. The constant

c0 = m𝔴
k

(7.10)

(positive relation assumed) is identified with the speed of the electromagnetic waves in
‘vacuum’. Once c0 is given a universal value, say c0 = 1, the remaining free parameters
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Time dependent oscillations in multipolar spherical vortices

of the hydrodynamical model u(r, θ, ϕ, t) from (2.3) are the amplitude velocity of the
oscillating term u1, the frequency 𝔴 (or the radial wavenumber k = m𝔴/c0), and the
degree � (or number of nodal lines). Interestingly, in the particular case of azimuthal
wavenumber m = 2, the wave speed in (7.10), c0 = 2𝔴/k, equals the axial velocity of
displacement w in (5.10) for the velocity solution with vanishing background axial flow
(vanishing axial flow at infinity). For such a velocity solution, the wave speed and axial
speed of displacement coincide. Another interesting property of these hydrodynamical
models is that they admit piecewise solutions, as explained in § 10, making it possible to
assign to these flows both continuous field and discrete particle-like properties.

8. Superposition

This section addresses the relevant question of whether the superposition of two members
of the vortex family u(x, t) in (2.3) is a flow solution as well. First, we denote a particular
member ui(x, t) of this vortex family with the index i as

ui(r, θ, ϕ, t) ≡ u(ki, �i,mi, u1,i,𝔴i; r, θ, ϕ, t), (8.1)

and we want to know whether the superposition

u1,2 ≡ u1 + u2 (8.2)

satisfies the vorticity equation (1.1). We define in the usual way ui ≡ U i + ūi, the vorticity
ωi ≡ ∇ × ui = W i + ω̄i, and the Lamb vector li ≡ ωi × ui. Since the particular solutions
satisfy the relations

∂ωi

∂t
+ ∇ × li = 0 , W i × U i = 0 , ∇ × (ω̄i × ūi) = 0, (8.3a–c)

All that remains from the vorticity equation for (8.2) is the curl of the crossing terms

∇ × (ω1 × u2 + ω2 × u1)

= ∇ × [(W1 + ω̄1)× (U2 + ū2)+ (W2 + ω̄2)× (U1 + ū1)]

= ∇ × [(k2 − k1) (U1 × U2)+ (ω̄1 × ū2 + ω̄2 × ū1)

− U1 × (k1ū2 + ω̄2)− U2 × (k2ū1 + ω̄1)] . (8.4)

Clearly, the curl of the terms

ω̄1 × ū2 = −2𝔴1𝔴2ρρ̂ (8.5)

vanishes, and also we can express

k1ū2 + ω̄2 = k1𝔴2ρϕ̂ − 2𝔴2

(
k1 − k2

k2

)
ẑ. (8.6)

Thus for identical radial wavenumbers k1 = k2 = k, the curl of the crossing terms (8.4)
reduces to the simple expression

∇ × (ω1 × u2 + ω2 × u1) = −k∇ × [
ρ (𝔴2U1 + 𝔴1U2)× ϕ̂

]
= −ik (m1𝔴2U1 + m2𝔴1U2) . (8.7)

Term (8.7) vanishes, and therefore u1 and u2 are superposable, in different cases. (i)
The steady oscillating flows vanish (u1,1 = u1,2 = 0), leaving only the steady rigid flows
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(𝔴1 /= 0 and/or 𝔴2 /= 0). (ii) The trivial case in which the steady oscillating flows cancel,
U1 = −U2 (u1,1 = −u1,2, m1 = m2 and 𝔴1 = 𝔴2). (iii) Both flows are steady because
m1 = m2 = 0 and there is rigid flow (𝔴1 /= 0 and/or 𝔴2 /= 0). (iv) Both flows are steady
because 𝔴1 = 𝔴2 = 0 and therefore there is no rigid flow (this case corresponds to the
superposition of solutions U(x, 0)). (v) One of the flows is steady with no rigid motion
(say 𝔴1 = 0 and m1 /= 0), and the other one is steady with rigid motion (m2 = 0 and
𝔴2 /= 0).

9. Stability of the steady vortices with m = 0

The time-dependent vortex solution u(x, t) in (2.3) is very useful to investigate the stability
of spherical vortices and in particular the stability of the steady Hicks–Moffatt vortex.
The Hicks–Moffatt vortex is a three-dimensional piecewise vortex whose interior vortical
velocity is given by u in (2.3) for the particular case of degree � = 1 (one nodal line) and
order m = 0 (zonal spherical harmonics solution). Thus the stationarity of this vortex is
due not to the absence of background rotation 𝔴ρ, but to the fact that since m = 0, the
velocity field does not depend on the azimuthal angle ϕ. If the vortex boundary rn is taken
at any zero j5/2,n of j2( · ) – that is, if krn = j5/2,n, and the ratio 𝔴/u1 = √

3/π j0(krn)/6
(employing the parameter u1 in (2.3)) – then these spherical vortex boundary surfaces are
stagnation surfaces, and the exterior irrotational flow vanishes. The stability of these zonal
vortices is investigated next.

Let us consider the oscillating function Ū(r, θ) defined from U(x, t) in (2.1) by

Ū�(r, θ) ≡ U(r, θ, ϕ �→ 0, t; u1 �→ 1,𝔴 �→ 0), (9.1)

where the degree � is shown for clarity. In such a flow, having an amplitude term u1(t),

u1(r, θ, ϕ, t) = u1(t) Ū�(r, θ) exp(im1(ϕ − 𝔴1t))+ 𝔴1ρ ϕ̂ − 2𝔴1

k
ẑ, (9.2)

is in the form (2.3), and therefore (9.2) is a velocity solution when u1(t) = û1 is a constant.
We notice that since the spherical harmonics basis vectors are not normalized, the weight
u1(t) is not the total velocity amplitude of the oscillation. We then force u1 to be steady by
setting m1 = 0, but keep the background flow 𝔴1 /= 0. We then add to the steady velocity
u1 a perturbation velocity with time-dependent amplitude u2(t), azimuthal wavenumber
m2 /= 0, and local frequency m2𝔴2 /= 0:

u2(t) Ū�(r, θ) exp(im2(ϕ − 𝔴2t)). (9.3)

Adding (9.3) to (9.2), we obtain the total velocity

u = (u1(t) exp(−im2(ϕ − 𝔴2t))+ u2(t)) Ū�(r, θ) exp(im2(ϕ − 𝔴2t))+ 𝔴1ρ ϕ̂ − 2𝔴1

k
ẑ,

(9.4)
and we want to know when this velocity u(x, t) is a flow solution of the vorticity equation.
It turns out that u(x, t) in (9.4) is already in the form (2.3), and therefore (9.4) is a velocity
solution when m2 ∈ {−�, . . . ,−1, 1, . . . , �}, the angular frequency 𝔴2 of the oscillation
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equals the angular speed of the background flow 𝔴1,

𝔴2 = 𝔴1 ≡ 𝔴, (9.5)

and the velocity amplitude is constant,

∂

∂t
(u1(t) exp(−im2(ϕ − 𝔴t))+ u2(t)) = 0. (9.6)

Condition (9.6) is satisfied when

u1(t) = û1 exp(−im2𝔴t) and u2(t) = û2, (9.7a,b)

where û1 and û2 are constant amplitudes, in such a way that u(x, t) in (9.4) may be written
as

u =
(

û1 + û2 eim2ϕ
)

exp(−im2𝔴t) Ū�(r, θ)+ 𝔴ρ ϕ̂ − 2𝔴
k

ẑ, (9.8)

which means that the addition of any perturbation with constant amplitude û2, no matter
how small and with any permissible azimuthal wavenumber m2 /= 0, to the steady velocity
u1 that has a background flow characterized by the angular speed 𝔴, will cause inertial
oscillations of amplitude ‖û1Ū�‖ and local frequency m2𝔴.

10. Piecewise solutions

The spatial domain of the rotational flows described in the previous sections is an
unbounded region. It is often convenient, however, to work with spatially bounded velocity
solutions by assuming that the rotational flow is confined within a spherical region –
usually a sphere, but a spherical shell is also possible – while outside this vortical region
the flow is potential. The natural choice for selecting the radius of any spherical boundary
surface to the velocity U in (2.1) is at the zeros of j�( · ), i.e. krp = j�,p ≡ j�+1/2,p, because
at these radial distances the velocity oscillation has only Ψ -component,

U(j�,p/k, θ, ϕ, t) = −u1 j�+1(j�,p)Ψ
m
� (θ, ϕ) exp(−im𝔴t), (10.1)

and vanishing exterior flow conditions are consistent because there is no velocity jump
in the radial direction, so there are no shock waves, which would not be permissible
for isochoric flows. The vortex boundary, regarding the discontinuity in the azimuthal
component of the background flow ρ𝔴ϕ̂, is a vortex sheet (first-order singular surface
where the velocity jump is only tangential). The axial component of the background flow
w = −2𝔴/k is not problematic since it vanishes in the steadily translating solutions ǔ(x, t)
of (5.11).

Nevertheless, it is possible to provide the exterior irrotational velocity Ũp(r, θ, ϕ, t) for
the oscillating component, which is given by

Ũp(r, θ, ϕ, t) = u1
j�+1(j�,p)

2�+ 1

[
�(�+ 1)

((
kr
j�,p

)�−1

−
(

kr
j�,p

)−�−2
)

Y m
� (θ, ϕ)

+
(
(�+ 1)

(
kr
j�,p

)�−1

+ �

(
kr
j�,p

)−�−2
)
Ψ m
� (θ, ϕ)

]
e−im𝔴t. (10.2)

Solution Ũp(r, θ, ϕ, t) is irrotational (∇ × Ũp = 0) and satisfies continuity at the
spherical boundaries, i.e. Ũ(j�,p/k, θ, ϕ, t) = U(j�,p/k, θ, ϕ, t).
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Figure 1. Top view of the piecewise velocity field u(x, t0) (arrows) at z = 0 and t0 = 0 for parameters � = 2,
m = −2, 𝔴 = 0, k = 1 and vorticity boundary at krb = j2,1. Colour in the arrows corresponds to the axial
z-component of the velocity u · ẑ (blue and red colours mean negative and positive z-components, respectively).
The coloured ribbon is a set of streamlines initiated on the plane z = 0 on the region of maximum positive axial
velocity (red arrows) in the south-west pole (the initial location of the streamline ribbon is shown more clearly
in a side view in figure 2).

In this case, and regarding only the oscillating velocity, the vortex boundary is a
second-order singular surface (the velocity field is continuous), and when it propagates, it
is an acceleration wave.

When a momentum diffusivity ν /= 0 is considered in the Navier–Stokes equation (3.2),
the oscillating motion in the interior and exterior domains decays according to (3.3a) but
the effect in the vortex boundary may be problematic since the vortex boundary radius
may change due to the lateral diffusivity (e.g. Kloosterziel 1990).

As an example, the velocity field and streamlines of a piecewise vortex are shown in
figures 1 and 2. This example is the vortex u(x, t) with parameters � = 2, m = −2, 𝔴 = 0,
k = 1 and vorticity boundary at krb = j2,1. The streamlines set shown in these figures
bifurcates twice. The first bifurcation occurs on z > 0 on two descending streamline
branches, the left and right branches (mostly in blue and red colours, respectively), which
descend and cross the plane z = 0 close to the regions of minimum axial speed (blue
arrows in the north-west and south-east poles). The right branch (mostly in red) bifurcates
again on z < 0 on two ascending branches (see figure 2); the first branch (red) comes back
to the initial location at z = 0 (south-west pole), while the second branch (red-blue) crosses
the plane at the location of maximum axial speed in the north-east pole. Obviously, as it
happens with similar piecewise multipolar vortices in two-dimensional flows for azimuthal
wavenumbers larger than 1, this flow structure is not steady and breaks into four spherical
dipoles, moving apart.
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Time dependent oscillations in multipolar spherical vortices

Figure 2. Side (from the south) view of the streamlines ribbon shown in figure 1. The initial location of the
streamlines ribbon is seen on the left-hand side.

11. Concluding remarks

In this paper, we have provided a new family of exact solutions of multipolar vortical
flows u(x, t) satisfying the time-dependent vorticity equation. These solutions may
be interpreted as time and space oscillations, with spherical geometry, embedded in
a cylindrical constant flow with swirl, and are characterized as inertial oscillations
in background flow. These time-dependent azimuthal oscillating velocity solutions are
a generalization of the steady three-dimensional multipolar vortex solutions given
in Viúdez (2022), which are recovered in the case of vanishing time dependence
(m𝔴 = 0). The necessary and sufficient condition for the existence of the inertial waves
is a double condition: the flows experience inertial waves as long as they have a
non-vanishing azimuthal wavenumber (m /= 0) in the presence of a background rotation
(angular speed 𝔴 /= 0). In the case of vanishing azimuthal wavenumber m = 0, the
background rotation causes no effect in the local flow, which becomes a steady solution
U(x) even in the presence of background rotational flow. In this case, however, small
perturbations to the local flow would cause inertial oscillations. The vortex solutions also
satisfy a superposable property, which is relevant to investigate the stability of simple,
not composed, vortices. Furthermore, the more general time-dependent flow solution
u(x, t) exp(−νk2t) is a solution of the Navier–Stokes equation with constant diffusivity
ν. Since the curl of the Lamb vector of the total flow ∇ × (ω × u) is proportional to
the oscillating term U(x, t), these nonlinear solutions also satisfy several well-known
linear wave equations. An important problem to address now concerns the stability of
these time-dependent solutions. Though piecewise vortices of individual modes seem
to be unstable, it might be possible to find stable solutions in terms of a superposition
of time-dependent modes, as has been done already with neutral vortices (vortices with
vanishing amount of vertical vorticity) in two-dimensional Euler flows. This research is
left for future work.
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Appendix A. The curl of the Lamb vector

Noticing that

kū + ω̄ = 𝔴kρϕ̂, (A1)

the curl of the Lamb vector is

∇ × l = 𝔴k∇ × (
ρϕ̂ × U) . (A2)

Applying the identity

∇ × (A × B) = A∇ · B − B∇ · A + A · ∇B − B · ∇A (A3)

to (A2) yields

∇ × l = −𝔴k
(
ρϕ̂ · ∇U − U · ∇ (

ρϕ̂
))
. (A4)

Using the cylindrical components and cylindrical coordinates, we express the oscillating
function U(x, t) as

U c(ρ, ϕ, z, t) = Uρ(ρ, ϕ, z, t) ρ̂ + Uϕ(ρ, ϕ, z, t) ϕ̂ + Uz(ρ, ϕ, z, t) ẑ. (A5)

Using the identity

ρϕ̂ · ∇A − A · ∇(ρϕ̂) = ∂Aρ
∂ϕ

ρ̂ + ∂Aϕ
∂ϕ

ϕ̂ + ∂Az

∂ϕ
ẑ, (A6)

where A = Aρ ρ̂ + Aϕϕ̂ + Azẑ, the term in (A4) simplifies to

ρϕ̂ · ∇U − U · ∇ (
ρϕ̂
) = im(Uρ ρ̂ + Uϕϕ̂ + Uzẑ) = imU . (A7)

Relation (A6) is satisfied also using spherical components in spherical coordinates, and is
the expression of the covariant derivative ∇V U of a vector field U with respect to another
vector field V :

∇V U = V jU jΓ k
ij ek + V j ∂Ui

∂x j ei, (A8)

where Γ k
ij = −(∂ek/∂xi) · ej are the Christoffel symbols, in the particular case where U =

U and V = ρϕ̂.
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Time dependent oscillations in multipolar spherical vortices

Therefore, the curl of the Lamb vector (A4) is a rotation by an azimuthal angle increment
	ϕ = π/(2m) of −U times m𝔴k, that is,

∇ × l = −im𝔴kU . (A9)

Furthermore, since (
∂

∂t
+ 𝔴

∂

∂ϕ

)
exp(im(ϕ − 𝔴t)) = 0, (A10)

every component Ui(ρ, ϕ, z, t) of U c(ρ, ϕ, z, t) in (A5) satisfies

∂Ui

∂t
+ 𝔴

∂Ui

∂ϕ
= 0, (A11)

and in particular the kinetic energy density E(x, t) of the oscillating motion,

E ≡ 1
2

U · U , (A12)

satisfies
∂E
∂t

+ 𝔴ρ
ρ

∂E
∂ϕ

= 0, (A13)

which implies that in a normal plane z = z0, the velocity of displacement of the kinetic
energy density of the oscillating motion is the azimuthal velocity of the rigid motion 𝔴ρϕ̂.
The enstrophy density S(x, t) of the oscillating motion is

S ≡ W · W = k2U · U = 2k2E, (A14)

and therefore satisfies the same conservation equation as the kinetic energy density E
(A13).

Appendix B. Schrödinger and Klein–Gordon equations

The time-dependent non-relativistic Schrödinger equation for a massive free particle (i.e.
without potential energy term) for the wave function Ψ (x, t) is commonly written as

i�
∂Ψ

∂t
= − �

2

2m
∇2Ψ, (B1)

where m is the rest mass of the particle in the quantum mechanics description, and � is the
reduced Planck constant. Thus, from (6.2a), assuming the equivalence

m𝔴
k2 = �

2m
, (B2)

the oscillating function U , and all its curls, satisfy (B1).
There is a relation between the physical application of the wave function Ψ (x, t) and the

oscillating fields U(x, t) appearing in piecewise vortices (§ 10) having a finite amount of
volume. In these cases, and in particular when interactions between finite-size vortices take
place (for example, dipole–dipole or dipole–vortex interactions), instead of the position or
velocity, etc. (say f (x, t)) of the fluid particles, one is often interested in the spatial mean

949 A13-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.754


A. Viúdez

position, spatial mean velocity, etc. (say f̄ (t)) of the travelling or rotating vortices, which
are usually defined as

f̄ (t) ≡
∫ |W(x, t)|2 f (x, t) dV∫ |W(x, t)|2 dV

. (B3)

In (B3), the vorticity field W(x, t) is used as a weight function because the exterior flow is
potential in the piecewise vortices, but any of its successive curls would serve as well since
∇ × W = −kW . Now, in the quantum mechanics description of particles, expressions
similar to (B3) are used to define the expectation position, momentum, etc. of a quantum
particle, but with the wave function Ψ (x, t) replacing the vorticity field W(x, t). However,
lacking the fluid mechanics theory leading to the vorticity equation (1.1), the physical
meaning of the wave function Ψ (x, t) remains ambiguous. Indeed, such a meaning is not
needed in the application of the mathematical theory as long as wave equations forΨ (x, t),
such as the Schrödinger or Klein–Gordon wave equations, are postulated for the different
classes of quantum particles.

The oscillating field U(x, t), and all its curls, also satisfy the relativistic Klein–Gordon
equation (

1
c2
∂2

∂t2
− ∇2 + m2c2

�2

)
Ψ (x, t) = 0, (B4)

where c is the speed of light in vacuum. In particular, the oscillating field U(x, t) satisfies
(B4) as long as the following equivalence relation holds:

m2𝔴2

c2 − k2 = m2c2

�2 . (B5)

This is the energy–momentum relation

E2 = (pc)2 + (mc2)2 (B6)

with the following definitions for energy E and momentum of magnitude p:

E ≡ �m𝔴 and p ≡ �k, (B7a,b)

in terms of the vortex free parameters m, 𝔴 and k. Using the definition of the local
frequency ωl ≡ m𝔴 in (2.20), the energy (B7a) becomes the Planck–Einstein relation
E = �ωl, and defining the radial wavelength λ ≡ 2π/k, (B7b) becomes the de Broglie
relation p ≡ 2π�/λ, now defined in terms of the vortex free parameters ωl and λ.

The different sets of vortices defined by (7.6) and (B2) may be associated with the
properties of scale invariance of the Euler flow equation that, for the particular solutions
given here, imply that if u1(x, t) is a flow solution with free parameters u1,1, k1,𝔴1, then
u2(x, t) ≡ shu1(sx, s1−ht), with s, h ∈ R and parameters

k2 ≡ sk1, 𝔴2 ≡ s1−h𝔴1 and u1,2 ≡ shu1,1, (B8a–c)

is a solution as well. In the particular case h = −1, the set comprises vortices satisfying
the relations

𝔴1

k2
1

= 𝔴2

k2
2

and
𝔴1

u2
1,1

= 𝔴2

u2
1,2
, (B9a,b)

which, with the additional constraint of m-invariance (m2 = m1), implies (B2).
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Time dependent oscillations in multipolar spherical vortices

Case h = 0 corresponds to those vortices having the same oscillating amplitude term
u1. In this case, we have u1,1 = u1,2, k2 = sk1, 𝔴2 = s𝔴1, and therefore

𝔴1

k1
= 𝔴2

k2
, (B10)

which, with the additional constraint of m-invariance (m2 = m1), implies (7.6).
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