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Abstract

In this article a completion process for promonoidal categories is used to determine a
sufficient condition for the existence of a promonoidal convolution structure on the category of
functors between two promonoidal categories. This, in turn, leads to a partial closed structure on
the 2-category of promonoidal categories, promonoidal functors, and promonoidal natural
transformations.

Introduction

The purpose of this note is to examine the existence of a promonoidal
structure on the category of functors between two promonoidal categories.
The 2-category Pmon of promonoidal categories, promonoidal functors, and
promonoidal natural transformations (as constructed in Day (1970b)) has
certain colimits and a simple symmetric monoidal structure which preserves
colimits. Thus, under suitable solution-set conditions, one expects Pmon to be
monoidal closed. The author has not yet found such a solution set for the
general case but a direct algebraic approach does yield a partial answer under
restrictions.

The problem of the existence of the Eilenberg-Moore construction in
Pmon was considered in a previous note Day (1977). This problem is related
to the present one in that both constructions are, in some sense, inverse limit
constructions in Pmon.

For this note we have assumed some knowledge of the elementary
definitions and theory (as presented, for example, in Eilenberg and Kelly
(1966), Day and Kelly (1969) and Day (1977)). Moreover the calculations may
be transferred easily into the ‘“‘several-objects” version thus yielding analo-
gous results for bicategories of functor categories and probicategories (cf.
Benabou (1967) and Day (1974a)).
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[2] Promonoidal functor categories 313

Throughout the article we suppose, as usual, that all categorical concepts
and algebra are relative to a suitably complete and cocomplete symmetric
monoidal closed ground category V =(V,®), I, - - -} unless otherwise stated.
In particular, we write Pmon in place of V-Pmon.

1. Completions of promonoidal categories

First we recall that a promonoidal category A = (A, P, J,a,p,A) com-
prises a category A and functors P: AP AR A —>VandJ: A — Vand
natural isomorphisms

a:P(AX —)P(A'A"X)=P(AA'X)°P(XA"-)
p:JXP(AX-)=A(A-)
A:JXP(XA-)=A(A-)

satisfying suitable coherence axioms (namely axioms PC1 and PC2 of Day
(1970a)) where ‘““°’” denotes profunctor composition. The promonoidal struc-
ture has a symmetry o if

o:P(AA'—)=P(A'A -)

is a natural isomorphism satisfying axioms PC3 (¢®=1) and PC4 of Day
(1970a).

1.1 ReMark. We shall not consider the symmetric case explicitly in the
sequel, but simply leave it to the reader.

This definition, together with the definitions of promonoidal functor and
promonoidal natural transformation are described in Day (1970b) and Day
(1977). Thus we obtain the 2-category Pmon whose cocompleteness follows
from the fact that “convolution” with V (see Day (1970a)) transforms the
2-colimit of a diagram in Pmon into the corresponding limit of monoidal
biclosed categories of the form [A, V], at least if V is cartesian closed (see
§4).

Similarly we have that two promonoidal categories A and A’ have a
tensor product A @ A’ in Pmon whose components are simply the tensor
products of the respective components of A and A’; viz,

P((A,A"),(B,B'),(C,C") = P(ABC)R P'(A'B'C’)
J(AAY=TJARI'A"

Verification of the axioms is straightforward.
From Day (1974b) we recall that each (V-small) promonoidal category A
has a monoidal biclosed completion constructed from the (Isbell-Lambek)
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314 B. J. Day 13]

category completion of a monoidal ‘“‘approximation” to A. More precisely,
given A, consider the Yoneda embedding

ATC[A, V]

and let A denote the full subcategory of [A, V] determined by the functor J
and all finite “‘paths” A(A,—)*---* A(A,, —) of representables (and their
isomorphs) under the convolution monoidal structure on [A, V].

Next form the monoidal biclosed (convolution) category [A, V] and let
A° denote the full reflective subcategory of [A, V] obtained by inverting all
the morphisms in Z° where

Z°={s€[A, V]; M(F*s) and M(s*F) are
isomorphisms for all F €[4, V]},
and M :[A, V]—[A, V] is the (Isbell) conjugation functor:

1\7IF=f [FB, A (~- B)].

The net result is an embedding
E:A—[A V]
whose limit-preserving and colimit-preserving properties are discussed in Day
(1974b). We note here that E preserves promonoidal structure:
[4, VI(EA ® EA',EA")
=[4 VI(A(A(A-)*A(A'-), -), A(A(A"-), -))
=A(AA"-),A(A-)*A(A'-))
by the representation theorem,
=(A(A-)*xA(A'=-)(A")
by the representation theorem,
=P(AA'A") forall A, A, A€ A
For convenience we also recall the strong trace conditions from Day
(1977) §2. Given a full embedding M: A — B of a category A into a

monoidal category B (more generally, into a promonoidal category) we ask
for conditions under which B induces a trace promonoidal structure on A.

1.2 PROPOSITION. (Strong trace conditions.) The category A is promonoi-
dal with respect to the functors:
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[4] Promonoidal functor categories 315
P(A,A",A")= B(MA Q MA',MA")
JA = B(I, MA)
if the following canonical morphisms are isomorphisms forall A, A’, A"€ A:
z;: BLMX)B(IMXQMA M- )>B(IRXMAM-)
z71:B(IL,MX)°B(MAQMX M-)->B(MAQRQRLM-)

z;: BIMA @ MA', MX)sB(MX @ MA", M —)
- B((MA Q@ MAYQMA", M —)

2% B(MA'®MA", MX)°B(MA Q@ MX,M )
> B(MA Q(MA'QMA"),M -).

If these conditions are satisfied then M becomes a (strong ) promonoidal functor.
The proof and examples are given in Day (1977) §2 (and also in Day
(1970b)).
2. Promonoidal functor categories

Suppose A =(A,P,J,---)and B = (B, Q, K, - - -) are small promonoidal
categories and, as usual, let [A, B] denote the category of all functors from A
to B; the restriction that B be small can usually be waived.

2.1 Remark. The change-of- V-universe outlined in Day (1973) §3
obviates the need to restrict the discussion to Ens-small categories for a fixed
Ens.

As shown in Day (1974a), if C is a monoidal biclosed category which is
suitably complete and cocomplete then the “‘convolution” of A with C exists
and is described by the formulas:

F*xG =JMA'P(AA’—)~(FA ®GA')

G/F = [P(- AA"), GA'/FA)]

F\Gf [P(A-A"),FA\GA'].

On taking C = B’ the strong trace conditions may be applied to the full
embedding

M =[1,E]:[A B]—[A B°].

Firstly, if the trace structure exists then it is determined by the functors:
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316 B. J. Day [5]

[A, B'l(MF @ MF', MG)

= f B°(EF ® EF")A, EGA)

= L B°< ™ P(XX'A)-(EFX @ EF'X"), EGA)

a

EI , [P(XX'A), B(EFX Q EF'X', EGA)]

= f [P(XX'A), Q(FX, F'X', GA)],
XX'A
this being denoted by {P, Q}(F, F', G), while

(4, B0, MF)= [ B°UA,EFA)
= j [IA(B'), EFA(B")]
Ef ' [JA @ B(K,B'), EFA(B')]

= f [JA, EFA (K)]
A
by the representation theorem; but

EFA(K)= B(B(FA, - ),K)
= K(FA)

by the representation theorem. Thus
(A B MP)= | [JAK(FA)
A
which is denoted by {J, K}(F). By the representation theorem we have

{hom A, hom B}(F, G)=f [A(XA), B(FX, GA)]

- BFaGa)
A
which suggests that a uniform notation may be obtained by setting:

Pn(Al"'A,,:B)'_—P(A1A2X1)°P(X1A3X2)°'"°P(X,,_2A,,B) for n;z
and
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[6] Promonoidal functor categories 317

P(A ;B)= A (AB)
Py(B) = JB.

The strong trace conditions on M=[1,E] now become:
z.:{J, K}(G)°{P, Q}(G, F, H)={hom A, hom B} (F, H)

2% :{J,K}(G)*{P,Q}(F,G,H) = {hom A, hom B}(F, H)
z22:{P,Q}(F,F'; G){P,Q}(G,F";H)={P;, Q;}(F,F',F"; H)
z3:{P,Q}(F',F";G){P,Q}(F,G; H)={P,, Q:}(F, F', F"; H).

If they are satisfied we denote the resulting structure by {A, B}.
It is easily verified that if {A, B} exists then there is an isomorphism

Pmon(A'® A, B) = Pmon(A',{4, B})

which is 2-natural in A’ € Pmon. This is an extended form of the exponential
law mentioned in Day (1974a) p. 38.

2.2 REMARK. On taking A’'=] we see that the monoids in {A, B}
correspond to the promonoidal functors from A to B.

2.3 Remark. It is clear that if both {A’'® A, B} and {A, B} exist then
{A’,{A, B}} exists with

{A'® A, B} ={A"{A,B}}.

2.4 ExaMmpLE. (Monoidal functor categories.)

By the representation theorem the strong trace conditions are satisfied by
the embedding M =[1,E]:[A, B]—[A, B if [A, B°] (MF ® MF', MG)=
[A,B](F®F',G) and [A, B°] (Il MG)=][A, B] (I, G) for some monoidal
structure (®, L ---) on [A, B]. If B is monoidal then

(A, B°}(MF ® MF',MG) = A, B’|(EF Q EF',EG)
= Lxx, [P(XX'A), B(EFX @ EF' X', EGA)]
by definition of {A, B,
= LXX, [P(XX'A), B(FX ®F'X', GA)]

because E : B — B° preserves the monoidal structure on B. In particular, this
end expression is of the form [A, B] (F*F', G) if

oo

(F*F)A = P(XX'A)-(FX QF'X")
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exists in B for all A € A and F, F' €A, B]. Similarly we have

[A, B} (MI, MG) = f BY(EIA,EGA)

sL B (A, GA)

because E : B— B° preserves the unit object,
=[A, B](L G).

2.5 ExaMmpLE. (Biclosed functor categories.)
If M=[1,E]:[A, B]—[A, B°] has the property that

[A, B’](MF ® MF', MG) = A, B’) (MF', MF\MG)
=[A, B](F,F\G),
[A, B} (MF ® MF', MG) = A, B’ (MF, MG/MF")

=[A, B](F, G/F),

and
[A, B/ (ML, MG) =[A, B](I, G)

for some (associative) biclosed structure (\,/, I, ---) on [A, B] then, by the
representation theorem, the strong trace conditions are satisfied by M.
In particular, suppose B is an (associative) biclosed category. Then

[A, B’] (MF', MF\MG) = [A, B°] (EF'A,(EF\EG)(A))

= J'Axx’ [P(XAX"), BUEF'A, EFX\EGX')]
by definition of the biclosed structure on (A, B},

= J’Axx’ [P(XAX'), B(F'A, FX\GX")]

because E : B — B preserves the biclosed structure on B (see [8] §3),
=[A, B](F', F\G)

if and only if [axx[P(XAX'),B(F'A,FX\GX')] is of the form
faB(F'A,(F\G)A) for all F, F’, G €[A, B]. In particular this is true if

(F\G)A = fxx, [P(XAX'), EX\GX']

exists in B for all A € A and F, G € [A, B]. Dually, we obtain a similar
assertion for G/F. Also
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[A, B°] (ML, MG) = f B°(EIA, EGA)

= L B(IA, GA)

=[4, Bl G),

as in the monoaidal case.

Thus, in each of the examples 2.4 and 2.5, the ‘“‘convolution” {A, B}
exists if suitable colimits or limits exist in B and are preserved by the
embedding E : B— B° (see also [7] §§2-3).

The following example exhibits more clearly the relationship of the
general problem of finding promonoidal traces to the local flatness properties
of profunctor composition.

2.6 ExaMpLE. (V cartesian closed.)

If we suppose that the monoidal closed structure on V is the cartesian
structure then each V-category A has the canonical cocartesian promonoidal
structure given by:

P(A",A,A)=A(A"A)X A(A'A)
JA =1L
If B is an arbitrary promonoidal category we can ask when {A, B} exists. This
amounts to asking when V-Pmon, which is canonically a V-Cat category,
admits certain cotensoring over V-Cat.

To give a (partial) answer to this question we refer back to the strong
trace conditions on the embedding [1, E]:[A, B]—[A, B].

2.7 ProrosiTioN. (V cartesian closed.)

If A is taken with the cocartesian promonoidal structure then the embed-
ding [1,E]:[A, B]—[A, B°] satisfies the strong trace conditions if and only if
the following transformations are isomorphisms for all F, F', F', H € [A, B}:

IWL (KW x Q(W7FA,HA))—>L fw(KW X Q(W,FA, HA))
IWL (KW x Q(FA, W’HA))—’L IW(KW>< Q(FA, W,HA))

ij (Q(FA,FA', W)X O(W,F”A,HA))—>L fw(O(FA,F’A, W)

x Q(W,F"A,HA))
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f ) L (Q(F'A,F"A, W)X Q(FA,W,HA))—> L f W(Q(F’A,F”A, W)

x Q(FA, W,HA)).
Proor. For all F, F', G € [A, B] we have:

{J,K}(F) = L [JA, KFA]
= f (I, KFA]

= lim KFA.
A

(PONEF,G)= [ [P(A"A"A),Q(FA"F A"GA)]
=J _ [A(A"A)X A(A’A),Q(FA",F'A’,GA)]

EI Q(FA,F'A,GA)
A
by the representation theorem applied to A’, A" € A. Similarly
w
{Ps, Q,}(F,F',F";H)’:Vf f (Q(FA,F'A, W)X Q(W,F"A,HA)).
A

Thus, in order to establish the result, it suffices to show that the canonical
transformations:

fc(fA [z KGA]XL O(GB, FB, HB))

afwfc (KW x Q(W, FC, HC))

and

fwfc (KW x Q(W, FC, HC))

G
_>f (f [, KGA]XJ' Q(GB, FB, HB))
A B
are mutually inverse and that the canonical transformations:

fG (L Q(FA, F'A, GA)xL Q(GB, F'B, HB))

_,fch (Q(FC,F'C, W) x Q(W, F"C, HC))
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[10] Promonoidal functor categories 321

and
f f (Q(FG F'C, W)X Q(W,F"C,HC))
C

—’fc(L Q(FA, F'A, GA)XL Q(GB, F'B, HB))

are mutually inverse. This is a straightforward exercise, the transpose
arguments yielding the transpose isomorphism conditions. [J

Thus, if A is finite, {A, B} exists if [€ is “sufficiently exact”. For example
if V=Ens and A is finite then {A, B} exists if the opposite of the
twisted-arrow category* of B is filtered.

*REMARK. Here the twisted-arrow category B, of B is the category
whose objects are the morphisms f: B— B’ of B and whose morphisms
(h,k): f— f' are the pairs h : B"— B and k : B'— B" of morphisms in B
such that f'= kfh (as defined in Mac Lane (1971) IX §6). In practice it seems
easier to see when B, is filtered (e.g. if B is finitely complete) than it is to see
when By is filtered.

3. A comparison theorem

If B is a sufficiently complete and cocomplete monoidal biclosed
category then B° is category equivalent to the standard Isbell-Lambek
completion B* of B (see Day (1973) §2). This leads to the equivalence (see
Day (1974a) §7):

{A,B°} ={A,BY (3.1)
This comparison is slightly extended in this section.

As in Day (1973) §3, consider the following diagram in which
N—[N*,1] and W is a sufficiently large *V-universe” to make [B, V]
“small”’.

AT B 14 B ——[I[A B[4 B). W)

M’

*
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We suppose here that the dense (= adequate) Yoneda functor:
N:A”® B”—[A,B"];N(AB')=A(A -)-B’

exists and, in addition, we suppose that [A, B°] is monoidal by virtue of the
monoidal structure of B (see 2.4 Example). The functor M, (respt. M) is
the left Kan extension of M, (respt. M) along Y where:

M (H): =[A,B”|(F*H, —)
M (H)e=[A, B™](H*F, -).
Thus

M.(G)r = | 114 B7)(~.F)* G)(F).[AB™)(F' -)]

and

WUG)e = [ (G *[4,B™)(= F)(F). (4 BI(F' )]

By [6] §2 (Lemma 2.1) the category of fractions of [[ A, B**]°?, W] with respect
to the class of morphisms inverted by both M, and M is equivalent to the
monoidal closure {A, B*}° of the Isbell-Lambeck completion of [A, B].

We now ask when {A, B*}® is category equivalent to the category of
fractions of [A ® B, V] with respect to the class of morphisms inverted by
both of the functors M, N and M,N. By Day (1973) Corollary 3.2, this is
equivalent to requiring that the canonical transformations

M.(H) = [ 114 B¥I(N(AB), H). M.N(AB');
and

MUH)—[ (1A B7I(N(AB"), H), MiN(AB):

be isomorphisms for all F, H € [A, B]. By the representation theorem we
have:

LB' UA B™(A(AA")-B',HA"),[A B*](F * N(AB’), _)]

[

[, BB HA) LA, B71 (F * N(AB). - )]

Il

[ 14 B7)(FxN@ HA), ).
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[12] Promonoidal functor categories 323
This is of the form M ,(H)r = [A, B*®](F * H, —) if and only if

A
(3.2) f F*N(A,HA)=F*H

for all F, H € [A, B*). Similarly f4[A, B®}(N(A, HA)* F, —) s of the form
M. (H):=[A, B™] (H = F, —) if and only if

3.2y IAN(A,HA)*FEH*F

forall F, H € A, B""]. In particular, these requirements are satisfied if F * —
and — *F preserve tensoring or, more strongly, if [A, B®] is monoidal
biclosed.

It remains to describe the category [A ® B, W], £ ={o ; M ,N(o) and
M N(o) are isomorphisms}, and compare it with {A, B°. We have

N(o)= fw o(AB’)- YN(AB")

AB’
=f o(AB’)-[4,B”](~,N(AB")
therefore, by the representation theorem, we have:

AB’
(1K) = [ 148710 P [ o(AB) (4. B71(-. NABNE),
.
(4, B7)(F, )
Ef [0(AB),[[A, B™](F',F*N(AB"),[A, B"](F', -)]
F'AB’
Ef [0(AB"),[A, B"](F*N(AB’), -)]
AB’
for all F € [A, B®] and, similarly,
(M No)e= J’ [0(AB"),[A, B*](N(AB')*F, -)]
AB’
for all F€[A, B*).

By definition of B° the category {A, B’} is characterised as the category
of fractions of [A @ B, W]=[A,[B, W]] with respect to the class of mor-
phisms inverted by the functor:

S s 53 ~0
(57) (A LB. Wl = (AU B LIB™ WIF)

*

described by:
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SWo(A-Na= [ le(a-)+BEB-)B"B(-B")

=[ || scaxr@Bm s x8.8(- 8]
by definition of ““*”’,
= [ lo(ax).B(-.Bx)
by the representation theorem, and, similarly,
Sta = Dn= [ [0(AX),B(= X'+ B).

Thus, on comparing [A & B, W]s with {A, B}, we see immediately that
[A ® B, W] is reflectively embedded in {A, B% by a monoidal biclosed
reflection. Thus, if (3.2) and (3.2)' are satisfied then {A, B}’ is monoidally
reflectively embedded in {A, B%.

If we now assume, in addition to requiring that the monoidal structure on
B commute with the requisite colimits, that B° is sufficiently cotensored
then the above mentioned reflective embedding is a category equivalence. In
order to verify this suppose that

[, totaB), 14 BI(F«N(aB), F)

is an isomorphism for all F, F' € [A, B*]. Then we may choose F = N(A'B")
and F'=[A(— A"), B"] to ensure that

fAB‘ [U(AB,), [P(A ,AA"), BOP(BH* B’, B,,,)]]

is an isomorphism for all A’, A”€ A and all B”, B" € B°. Because, by the
axioms for promonoidal structure,

A
f JA'QP(A'AAY = A(AA")
we have, by the representation theorem, that
J’ [O'(ANB,), Bop(Bu* BI, Bm)]
.

is an isomorphism for all A"€ A and B”, B" € B™, as required; the dual
(= transpose) argument gives the result with B’ * B" replacing B" * B' here.
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4. Appendix; colimits in Pmon

From the fact that the convolution process transforms the objects of
Pmon into monoidal biclosed structures of the form {A, V} we may deduce
something of the existence of colimits in Pmon.

4.1 PropPosITION. Pmon has all small-indexed coproducts and these are
preserved by the forgetful functor Pmon— Cat.

Proor. If {A,; A € A} is a set of promonoidal categories we form = A,
in Cat and give it the structure induced by the isomorphism:

[ 4, v|=TTta, v,

We then have:

A,
ix (N
XA ------- —-B—{B, V}

To see that Pmon (£ A,, B)=I1Pmon(A,, B) for all B € Pmon note that the
following diagram commutes for all B € Pmon:

Pmon (3 4, {8, V}) = [TPmon (4, (B, V)
IR I

Pmon (B,{Z 4, V}) > TTPmon (8,4, v)). O

It is straightforward to check that the ® on Pmon preserves coproducts.
In a similar manner we can ask whether Pmon is tensored as a 2-category.
One checks easily that if V is cartesian closed and A is a category with the
cocartesian promonoidal structure (described in 2.6 Example) then A - B
exists for all B € Pmon. Moreover this tensoring is preserved by the & on
Pmon.

We now turn to the question of coequalisers in Pmon. Suppose

r

A==B—C
b 4

is a coequaliser diagram in Pmon.

4.2 ProposiTiON. If the functors
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{®,1},{¥,1}:{B, V}—{A, V}

are strict monoidal functors then the coequaliser in Pmon of ® and ¥ exists
and is preserved by the forgetful functor from Pmon to Cat.

Proor. Let y: B — C be the coequaliser of ¢ and ¢ in Cat. Because
{®, 1} and {¥, 1} are strict monoidal functors their equaliser exists as the
monoidal category structure on [C, ¥V} induced by that on {B, V}; to see that
this structure is biclosed it suffices to note that [I', I] preserves monoidal
structure and colimits and is, in fact, monadic over {B, V} because y is
surjective on objects. The remainder of the verification is as for
coproducts. [

4.3 ProrosITION. The monoidal structure on Pmon preserves:
(1) coequalisers if it preserves epimorphisms.
(ii) those coequalisers preserved by |?|: Pmon— Ens.

Proor. Let
P r
A=B—C(C
V'

be a coequaliser diagram in Pmon. Let K €Pmon and H: BQ K — D be a
promonoidal functor sueh that H(®®1)= H(Y & 1). Let E: D — {D, V}be
the evaluation embedding of D.

ARK

PR1 W@X

H Y E A
B®K—D—{D VI3N.
/’

e
regt
® ;i

v

CRK

Because EH(®®1)=EH (Y ®1, EH induces a promonoidal functor
H': C® K —{D, V}. For (i) we use the fact that E is the equaliser of its
cokernel pair N in Cat. For (ii) we use the fact that y is a surjection on objects
to factor H' through E (uniquely). [

With regard to the preceding propositions we also have:

4.4 ProrosiTioN. If the diagram
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1I®NR1=101K1)
u®1 1Qu

1R1 1®1

S, A

is a pushout diagram in V and u : 1Q1—1 is an epimorphism in V then the
functor |?|: V-Pmon— Ens has a right adjoint.

Proor. We define G : Ens — V-Pmon by taking GX to be the V-
category whose object set is X and such that GX(A,B)=1, P(A,B,C)=1,
and JA = [ for all A, B, C € X. The hypotheses on u : 11— 1 imply that if
A isa V-categoryand S: A°®— V and T: A — V are the constant functors
to 1 then [*SA ® TA =1. The axiom verifications for GX are then
straightforward. [

Clearly the hypotheses on u:11—>1 are satisfied if 1®1=1; in
particular if [ is terminal in V.

4.5 CoroLLARY. If the hypotheses of the preceding proposition are
satisfied in 'V then each coequaliser diagram A =3 B — C in V-Pmon is
transformed into an equaliser diagram of the form {C, V}—{B, V}3{A, V}
by convolution.
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