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Abstract

Background. Convergent evidence has suggested atypical relationships between brain struc-
ture and function in major psychiatric disorders, yet how the abnormal patterns coincide
and/or differ across different disorders remains largely unknown. Here, we aim to investigate
the common and/or unique dynamic structure–function coupling patterns across major
depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ).
Methods. We quantified the dynamic structure–function coupling in 452 patients with psy-
chiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct
brain network levels, such as global, meso-, and local levels. We also correlated dynamic
structure–function coupling with the topological features of functional networks to examine
how the structure–function relationship facilitates brain information communication over time.
Results. The dynamic structure–function coupling is preserved for the three disorders at the
global network level. Similar abnormalities in the rich-club organization are found in two dis-
tinct functional configuration states at the meso-level and are associated with the disease
severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed
in the brain regions involving the visual, cognitive control, and default mode networks. In
addition, the relationships between structure–function coupling and the topological features
of functional networks are altered in a manner indicative of state specificity.
Conclusions. These findings suggest both transdiagnostic and illness-specific alterations in
the dynamic structure–function relationship of large-scale brain networks across MDD,
BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental
basis underlying the behavioral and cognitive deficits observed in these disorders.

Introduction

Major psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD),
and schizophrenia (SZ) are the leading global causes of disability (Murray et al., 2012). About
100 million people in China suffer from various kinds of major psychiatric disorders, posing a
substantial burden on families and society (Huang et al., 2019). While MDD, BD, and SZ, each
have their distinct clinical diagnosis and unique symptom profile, there is a notable overlap in
symptoms and cognitive impairments among them (Insel et al., 2010; Marshall, 2020).
Genetically, they share polygenic risks, as evidenced by common risk loci identified in
genome-wide association studies, underscoring their intertwined genetic underpinnings
(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013a, 2013b; Elvsashagen
et al., 2021; Xie et al., 2023). Additionally, recent neuroimaging research has revealed both
shared and unique brain connectome abnormalities across these three disorders (Chana,
Landau, Beasley, Everall, & Cotter, 2003; McGuinness et al., 2022; Repple et al., 2023; Tu
et al., 2019a; Tu et al., 2020a). Specifically, prior diffusion tensor imaging research shows
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that structural connectivity (SC) changes in SZ are similar to
those in BD but different from those in MDD (Koshiyama
et al., 2019; Wang et al., 2020). Comparatively, functional mag-
netic resonance imaging (fMRI) studies find common yet scale-
dependent functional connectivity (FC) disruptions among SZ,
BD, and MDD, with severity in the order of SZ > BD >MDD
(Ma et al., 2020; Wei et al., 2018). These findings imply that vari-
ous illnesses may have both shared and specific patterns of brain
dysconnectivity (Kaiser, Andrews-Hanna, Wager, & Pizzagalli,
2015; Reinen et al., 2018; Yang et al., 2021a; Zalesky et al., 2011;
Zhao et al., 2020b), shedding new light on the possible common
and unique neurobiological mechanisms underlying these disor-
ders (Chand et al., 2020; Drysdale et al., 2017; Wolfers et al.,
2018). More importantly, all the evidence points to the need to
study MDD, BD, and SZ with multimodal imaging analysis in a
single study to understand these disorders’ pathophysiology
better.

In parallel, structural connections offer a framework for func-
tional interactions among various brain regions at multiple scales
(Bullmore & Sporns, 2009; Honey et al., 2009; Paus, Pesaresi, &
French, 2014). SC–FC coupling, an index that reflects the relation-
ship between brain structure and function, generally describes
structural constraints on functional communication (Grayson
et al., 2014; Zhao et al., 2020a, 2020b) and plays a crucial role
in the development of higher-order cognitive functions such as
working memory, mental flexibility, and inhibitory control
(Kulik et al., 2022; Suarez, Markello, Betzel, & Misic, 2020; van
den Heuvel et al., 2013). SC–FC coupling tends to be firmly linked
in the unimodal cortex and dissociated in the transmodal cortex,
reflecting a fundamental architectural principle of brain organiza-
tion (Suarez et al., 2020; Vazquez-Rodriguez et al., 2019). In prior
independent studies of MDD, BD, and SZ, disruptions in SC–FC
coupling were frequently documented, ranging from individual
connections to global brain networks (Collin, Scholtens, Kahn,
Hillegers, & van den Heuvel, 2017; Cui et al., 2019; Jiang et al.,
2019). This raises the possibility that there are common and/or
unique SC–FC coupling patterns across these psychiatric
disorders.

Moreover, most previous SC–FC coupling research on psy-
chiatric disorders assumed that the relationship between struc-
ture and function was constant during the entire scan
duration. It is well known that the human brain is highly
dynamic (Calhoun, Miller, Pearlson, & Adali, 2014).
Consequently, the dynamic SC–FC coupling, which represents
the time-varying correspondence between structural and func-
tional networks, is a more efficient method for elucidating
how the anatomical wiring of the brain sculpts its functional
connection in healthy and disordered conditions (Gu, Jamison,
Sabuncu, & Kuceyeski, 2021; Zamani Esfahlani, Faskowitz,
Slack, Misic, & Betzel, 2022). A few recent studies have begun
investigating the time-varying properties of SC–FC coupling in
the healthy brain. One intriguing dynamic SC–FC coupling
investigation by Fukushima et al., demonstrated that structural
connections could mediate functional segregation and integra-
tion proportions only when their corresponding functional pro-
file reveals an integrated network topology (Fukushima et al.,
2018). Another study involving 327 healthy young individuals
showed that dynamic SC–FC coupling is regionally heteroge-
neous and associated with the distribution of its connection
lengths (Liu et al., 2022). To our knowledge, no previous study
has focused on how brain structure–function relationships
change over time in psychiatric disorders. It is still unknown if

and how the abnormal patterns of dynamic SC–FC coupling
coincide and/or differ across multiple disorders.

In this work, we aim to investigate the transdiagnostic and/or
illness-specific disruptions of dynamic SC–FC coupling across
MDD, BD, and SZ. We recruited a large cohort comprised of
newly diagnosed patients juxtaposed with unaffected control par-
ticipants. We developed a quantitatively analytical framework to
examine the dynamic SC–FC coupling in large-scale brain net-
works. Specifically, dynamic FC states were initially obtained, fol-
lowed by the SC–FC coupling analysis within each identified state
to analyze the group differences at three distinct network levels
(e.g. global, meso-, and local levels). To investigate how the
structure–function relationship facilitates functional information
communication, we then correlated dynamic SC–FC coupling
with the topological properties of functional brain networks.
Finally, we correlated the dynamic SC–FC coupling with clinical
symptomatic aspects of patients to determine how the supporting
of structural constraints to functional communication shaped the
severity of the disease.

Methods

Participants

A total of 778 participants (137 first-episode treatment-naïve SZ
patients, 186 treatment-naïve MDD patients, 201 BD patients,
and 254 unaffected controls) were studied. All patients were
recruited from outpatient at West China Hospital, Sichuan
University, Chengdu, China, from October 2014 to June 2018.
Unaffected controls (UCs) were recruited from the local popula-
tion through advertising. All participants involved were Han
Chinese. Patients were evaluated using the patient version of the
Structured Clinical Interview for Mental Disorders (SCID),
Fourth Edition, and UCs were assessed using the non-patient ver-
sion. All patients met the DSM-IV diagnostic criteria for MDD,
BD, or SZ. Using the Annett Handedness Scale, all participants
were found to be right-handed. Participants with neurological
problems, personality issues, substance or alcohol addiction, ser-
ious physical diseases, or an IQ below 70 were eliminated. The
HAMD, YMRS, and PANSS were also used to measure the symp-
tom severity in patients with MDD, BD, and SZ, respectively. The
HAMD and PANSS were also employed to assess the severity of
BD patients’ symptoms. After head motion exclusion, the remain-
ing 452 patients (MDD/BD/SZ = 166/168/118) and 205 UCs were
included in the subsequent analyses. Detailed demographic and
clinical characteristics of the included participants are shown in
the online Supplementary material. The basic flow of this study
is depicted in Fig. 1.

MRI acquisition and preprocessing

The MRI scans of all participants were carried out in a 3-T MRI
scanner (Verio; Siemens Medical) using a 32-channel head coil.
Detailed information about acquisition parameters and data pre-
processing are presented in the online Supplementary material.

Group independent component analysis

To identify the ICNs and their corresponding activation spatial
maps, we decomposed the fMRI data into multiple independent
components (ICs) using spatial group independent component
analysis (GICA) with the GIFT toolbox (http://mialab.mrn.org/
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software/gift/). Note that we defined ICNs using GICA rather
than anatomical brain atlases, as GICA may capture individual
differences in real functional boundaries in the brain (Calhoun,
Adali, Pearlson, & Pekar, 2001). A combination of the visual
and spatial template-matching inspection was used to identify
ICNs among ICs. The templates were created using the GICA
analyses described in previous studies (Allen et al., 2014; Liu
et al., 2017). Finally, 50 ICNs were identified and assigned to
one of seven resting-state networks (RSNs). For details concern-
ing the activation information and spatial maps of each ICN,
see online Supplementary material.

Structural and dynamic functional network construction

Structural networks were constructed using deterministic stream-
line tractography, which has been demonstrated to be an appro-
priate technique for reconstructing the connectome (Khalsa,
Mayhew, Chechlacz, Bagary, & Bagshaw, 2014). The edge between
any two nodes (ICNs) was reconstructed using streamline density
(S.D.) (Suárez, Richards, Lajoie, & Misic, 2021). A 50 × 50
weighted SC matrix was obtained as structural network for each
participant. Notably, deterministic tractography produced a rela-
tively sparse SC matrix, making it challenging to quantify SC–
FC coupling due to the small number of non-zero edges in
each connectome profile (Baum et al., 2020). Thus, each SC
matrix’s communicability were assessed by including direct and
indirect connections between two nodes, resulting in a fully con-
nected SC matrix (Crofts & Higham, 2009).

Dynamic functional networks were estimated using a previously
validated sliding window approach (Allen et al., 2014; Kim et al.,
2017; Tu et al., 2020a, 2020b). In brief, a tapered window with a
length of 44 s was used to divide the time courses of ICNs across
the entire scan into 209 windows with a 2s increment-step. A
k-means clustering analysis was then applied to estimate the recur-
rent dynamic FC states, which represent the transient patterns of
FC throughout time. We investigated the temporal properties of
dynamic FC states by determining the occurrence rate and mean
dwell time in each state and the number of transitions and

transition likelihood from one state to another (Fiorenzato et al.,
2019; Tu et al., 2019a, 2019b). To ensure that the results remained
true across various sliding window sizes, we performed the
dynamic FC analyses with different window sizes (36–52 s).

Network topological analysis

The topological organization of structural and functional brain net-
works was investigated using a theory-based graph technique. We
investigated the anatomical rich-club organization for structural
networks, which describes a set of interconnected anatomical
hubs and serves as the core structural backbone for global brain
communication (van den Heuvel, Kahn, Goni, & Sporns, 2012).
Rich-club, feeder, and local edges were further classified based on
whether they connected rich-club hubs, rich-club hubs and
non-rich-club hubs, or non-rich-club hubs. Regional participation
coefficient (PC), which assesses the diversity of intermodular inter-
connections of individual nodes, and degree centrality (DC), which
quantifies the importance of individual nodes in functional integra-
tion, were calculated for functional networks in each dynamic state.
Functional network efficiency (both globally and locally) was calcu-
lated for each dynamic state to characterize the parallel information
transfer within the functional network.

Calculation of dynamic SC–FC coupling at three network levels

The level of SC–FC coupling was measured using the Spearman
rank correlation between the connections of the SC matrix and
the state-specific FC matrix (excluding the self-connection)
(Gu et al., 2021). For each participant, we calculated SC–FC coup-
ling at three distinct network levels (i.e. global, meso-, and
regional) as follows: a global level calculation was performed for
the brain network’s overall connections; a meso-level calculation
was focused on the anatomical rich-club organization and separ-
ately performed for three categories of connections, including
rich-club, feeder, and local edges (van den Heuvel et al., 2012);
and a regional level calculation was performed for the connections
between one brain region to the remaining N− 1 regions.

Figure 1. Analysis flowchart of studying dynamic structure–function coupling.Four major steps were included: (a) perform group independent component analysis
(GICA) and select intrinsic connectivity networks (ICNs); (b) structural network connectivity (SNC) and communicability networks; (c) estimate dynamic functional
network connectivity (FNC); and (d) examine dynamic SC–FC relationships in different network levels. ICN, intrinsic connectivity network; SNC, structural network
connectivity; FNC, functional network connectivity; PC, participation coefficient; DC, degree centrality.
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Statistical analysis

The between-group differences in connection strength, temporal
properties of dynamic FC states, SC–FC coupling, and graph
metrics were investigated using a one-way analysis of variance
(ANOVA) and a permutation test with 10 000 resamples. The
relationships between SC–FC coupling and the temporal proper-
ties of dynamic FC states, as well as between SC–FC coupling and
graph metrics, were investigated using a Spearman correlation
analysis. Additionally, while controlling for age, gender, and
mean FD, Spearman correlations between graph metrics and clin-
ical symptom characteristics (e.g. HAMD, YMRS, and PANSS
scores) were calculated. Statistical significance was established at
p < 0.05 with false discovery rate (FDR) correction conducted
for each experiment separately.

Results

Overall SC–FC coupling between structural and dynamic
functional networks

Significant group effects on overall SC strength were found among
the four groups ( p = 0.002, FDR-corrected, η2 = 0.019; Fig. 2a and
b). The post hoc analyses revealed that compared to controls and
patients with MDD, SZ patients exhibited a significant decrease in
overall SC strength, indicating a prominent hypoconnectivity in
the structural network of SZ. Fig. 2c depicts the cluster centroids
corresponding to two distinct dynamic FC states across all parti-
cipants. State 1 was characterized by a predominance of connec-
tions within the RSN, whereas State 2 displayed strong positive
couplings among the AUD, VIS, and SM. We then analyzed the
temporal properties of dynamic states and found significant
group effects on transition likelihood. As shown in Fig. 2d,
patients with SZ exhibited a higher switching probability from
State 2 to State 1 than controls (p = 0.007, permutation test)
and patients with BD (p = 0.011, permutation test), indicating
less stable inter-network interactions in patients with SZ.
Moreover, we calculated the SC–FC coupling between all connec-
tions of structural and functional networks for every state and
discovered that the overall SC–FC coupling was similar
across patients and controls (Fig. 2e). To determine how
structure–function relationship facilitates dynamic state
transition, we further assessed the associations between overall
SC–FC coupling and transitional likelihood. We found that the
probability of switching from State 2 to State 1 was significantly
correlated with the overall SC–FC coupling in each group
(Fig. 2f). We observed that these results were independent of dif-
ferent settings of the sliding window (see online Supplementary
material), indicating that the SC–FC coupling in these major psy-
chiatric disorders was preserved overall.

Dynamic SC–FC coupling of rich-club organization

We determined the anatomical rich-club organization of struc-
tural networks for each group individually and observed main
effects of group in SC strength for rich-club (p < 0.001,
FDR-corrected, η2 = 0.225), feeder (p < 0.001, FDR-corrected,
η2 = 0.397), and local edge categories (p < 0.001, FDR-corrected,
η2 = 0.094; Fig. 3). Subsequent post hoc analyses unveiled a
diminished SC density in both rich-club and local edges
for each patient group, in contrast with the control group (all
p < 0.001, permutation test). Conversely, each patient group
exhibited an increased SC density in feeder edges when compared

with the control group (all p < 0.001, permutation test). Next, we
investigated dynamic SC–FC coupling for each connection cat-
egory and observed significant group effects on the rich-club
(State 1: p = 0.003, FDR-corrected, η2 = 0.023; State 2: p < 0.001,
FDR-corrected, η2 = 0.043) and local edges (State 1: p < 0.001,
FDR-corrected, η2 = 0.033; State 2: p = 0.042, FDR-corrected,
η2 = 0.017) across both states (Fig. 3c and d). Post hoc analyses
revealed that compared to the control group, in State 1, the
level of SC–FC coupling was decreased in the rich-club edges
for MDD and SZ groups but increased in the feeder edges for
all patient groups (all p < 0.05, permutation test); in State 2, the
level of SC–FC coupling was decreased in the rich-club edges
for all patient groups but increased in the feeder edges for
MDD and BD groups (all p < 0.05, permutation test). We also
found that the SC–FC coupling of rich-club edges was negatively
correlated with the PANSS total scores in State 1 in patients
with SZ (r =−0.25, p = 0.014, FDR-corrected) and BD (r =−0.20,
p = 0.019, FDR-corrected) and negatively correlated with
the HAMD scores in State 2 in patients with MDD (r = −0.24,
p = 0.018, FDR-corrected), indicating that the lower level of SC–
FC coupling is associated with the greater disease severity
(Fig. 3e–g). To explore how brain structure-function relationship
facilitates functional information transfer, we assessed the
dynamic network efficiency and correlated it with the SC–FC
coupling of each connection category in each state. We found
that the constraint of SC–FC coupling to network efficiency was
modified for patient groups in a manner that depends on specific
dynamic conditions (Fig. 4).

Dynamic regional SC–FC coupling

The previous sections focused on global and meso-level couplings
between structure and function. Here, we investigated disorder-
related differences in structure–function coupling at a local
(regional) level. Fig. 5a and b depict each state’s group average
regional SC–FC coupling and show that the SC–FC coupling
level varied considerably across cortical and subcortical regions
for each state. Specifically, the SC–FC coupling of the VIS was
greater than that of the other RSNs in State 1 (p < 0.001,
FDR-corrected, η2 = 0.121), whereas the CC had greater SC–FC
coupling than the other RSNs in State 2 (p < 0.001,
FDR-corrected, η2 = 0.186). We then noticed state-specific
group differences in regional SC–FC coupling (Fig. 5c and d).
In State 1, patients with BD had higher coupling in the bilateral
middle frontal gyrus (MFG) than controls but lower coupling in
right supramarginal gyrus (SMG) than controls and patients
with MDD; patients with SZ had higher coupling in bilateral
MFG and paracentral lobule (PCL) than controls, but only in
bilateral MFG compared to patients with MDD. In State 2,
patients with SZ exhibited lower coupling in the bilateral inferior
temporal gyrus (ITG) than controls, higher coupling in the left
middle temporal gyrus (MTG) than patients with MDD, and
lower coupling in bilateral ITG and precuneus (PCU) than
patients with BD; patients with BD exhibited lower coupling in
right SMG than patients with MDD. Finally, we explored the rela-
tionships between spatial variability of regional SC–FC coupling
and the hierarchy of functional specialization (PC) and integra-
tion (DC). As shown in Fig. 5e and f, patients with SZ display
lower association levels (SC–FC coupling ∼ PC) in State 1 than
the other groups (MDD p = 0.010, BD p = 0.008, UC p = 0.007,
permutation test), while BD and SZ groups had a higher
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association level (SC–FC coupling∼DC) in State 2 than the con-
trol group (BD p = 0.007, SZ p = 0.005, permutation test).

Discussion

In this study, we performed a systematical dynamic SC–FC coup-
ling analysis to investigate the shared and specific brain changes
across MDD, BD, and SZ. We found that the coupling and its
association with the topological properties of functional brain

networks are preserved at the global network level for the three
disorders but differed at the meso- (i.e. rich-club organization)
and local (i.e. individual brain regions) levels, exhibiting both
transdiagnostic and illness-specific alterations. These findings
provide novel evidence for the common and distinct manifesta-
tions and etiologies of MDD, BD, and SZ, and highlight the
potential of dynamic structure–function relationship of
large-scale brain networks in the search for neurobiological bio-
markers for psychiatric disorders.

Figure 2. Overall SC–FC coupling of structural and dynamic functional networks. (a) Averaged structural network connectivity matrix and its communicability
matrix across all participants. Fifty ICNs were identified by a group independent component analysis (GICA) and grouped into seven functional networks based
on their anatomical and functional properties, including sub-cortical (SUC), auditory (AUD), visual (VIS), somatomotor (SM), cognitive control (CC), default
mode (DM), and cerebellar (CB) networks. (b) Violin plots showing mean (S.D.) level values of overall SC strength per participant group. (c) Two discrete connectivity
patterns (states) across all groups. The percentage of occurrences is listed above each cluster centroid. The color bar represents the z-value of FC. (d) Group differ-
ences in transition likelihood (TL). Bar plots showing mean level values of switching probability per participant group. (e) Violin plots showing mean level values of
overall SC–FC coupling per participant group for each state. (f) Scatter plot showing the association between overall SC–FC coupling and TL with group differences.
MDD, major depressive disorder; BD, bipolar disorder; SZ, schizophrenia; UC, unaffected control. *p < 0.05, ****p < 0.0001, with FDR-corrected.
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Neuroimaging studies have shown that patients with psychi-
atric disorders exhibit both structural and functional brain net-
work disruptions (Cui et al., 2019; Du et al., 2018; Reinen et al.,
2018; Yang et al., 2021a, 2021b; Yao et al., 2019). Importantly,
we discovered that SZ patients differed significantly more from
healthy controls regarding global SC strength and the temporal
properties of FC states than MDD and BD patients. Indeed, pre-
vious research has demonstrated that SZ may have the most severe
white matter impairment and dynamic FC disruption when com-
pared to MDD and BD (Huang et al., 2020; Rashid, Damaraju,
Pearlson, & Calhoun, 2014; Sheffield et al., 2017). Collectively,
our findings suggest that SZ is more vulnerable to disruptions
in global network connectivity, which may be a factor in the

disorder’s more severe clinical symptoms. Despite the obvious
abnormalities in each connection profile of SZ, we found no sig-
nificant deficits in the overall SC–FC coupling for each state, cor-
roborating prior static connectivity studies suggesting that
whole-brain structure–function coupling in the early stages of
SZ may be intact (Cui et al., 2019). However, it is also possible
that global structure–function coupling indicators are insufficient
for investigating potential transdiagnostic and illness-specific
alterations in psychiatric disorders.

Our observations of altered SC–FC coupling of rich-club
organization in patients are partially consistent with previous
connectome research in clinical high-risk, first-episode, and
chronic individuals for MDD, BD, and SZ (Collin et al., 2017;

Figure 3. State-specific SC–FC coupling of the rich-club organization. (a) Group-specific anatomical rich-club organization (UC group). At a threshold of degree
k > 13, rich-club hubs such as the bilateral paracentral lobule, precentral gyrus, postcentral gyrus, posterior cingulate cortex, and bilateral putamen were identified.
(b) Violin plots showing mean level values of SC strength of rich-club, feeder, and local edges per participant group. (c) Violin plots showing mean level values of
SC–FC coupling of rich-club, feeder, and local edges per participant group for State 1. (d) Violin plots showing mean level values of SC–FC coupling of rich-club,
feeder, and local edges per participant group for State 2. (e) Scatter plot showing the association between SC–FC coupling of rich-club edges in State 1 and the
positive and negative syndrome scale (PANSS) total score in patients with SZ. (f) Scatter plot showing the association between SC–FC coupling of rich-club edges in
State 1 and the PANSS total score in patients with BD. (g) Scatter plot showing the association between SC–FC coupling of rich-club edges in State 2 and the
Hamilton rating scale for depression (HAMD) score in patients with MDD. *p < 0.05, **p < 0.01, ***p < 0.001, FDR-corrected.
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Cui et al., 2019; Jiang et al., 2019; Liu et al., 2021; van den Heuvel
et al., 2013). The rich-club organization has been shown to pro-
vide a crucial structural backbone for brain communication
(van den Heuvel et al., 2012). Its disruption may indicate a select-
ive influence of the key pathways between brain regions in these
disorders. In addition, we revealed that the SC–FC coupling of
certain connection categories, such as rich-club and feeder
edges, was concurrently increased or decreased in patient groups
for each state, indicating a transdiagnostic disturbance. Increased

coupling in State 1, a segregated state, may indicate enhanced
processing within distinct RSNs, which can result in RSN-
constrained cognitive impairments (Whitfield-Gabrieli & Ford,
2012). At the same time, decoupling in State 2, an integrated
state, may be indicative of less stable structural support for the
global integration of functional brain networks, which has been
associated with poorer cognitive performance in the attentive,
memory, and visuospatial domains (Berman et al., 2016;
McNabb et al., 2018; Misic et al., 2016; Vazquez-Rodriguez

Figure 4. Dynamic network efficiency and its association with SC–FC coupling of rich-club organization. (a) Violin plots showing mean (S.D.) values of global effi-
ciency per participant group for each state. (b) Violin plots showing mean (S.D.) values of local efficiency per participant group for each state. (c) Scatter plot show-
ing the association between global efficiency and SC–FC coupling of rich-club, feeder, and local edges per participant group for each state. (d) Scatter plot showing
the association between local efficiency and SC–FC coupling of rich-club, feeder, and local edges per participant group for each state. Note that for visualization
purposes, the SC–FC coupling of each category was normalized by using the Z-transform. *P < 0.05, **p < 0.01, FDR-corrected.
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et al., 2019). These are further supported by the clinical correla-
tions identified in our study, in which a lower state-specific
level of SC–FC coupling was associated with more severe clinical
symptoms for SZ, BD, and MDD. It is noteworthy that we inves-
tigated the impairment of SC–FC coupling of rich-club organiza-
tion in cohorts of patients with a short-term disease course,
thereby reducing the potential influence of chronic disease on
our findings and echoing the hypotheses regarding the neurode-
velopmental origins of major psychiatric disorders (Delavari et al.,
2021). Contemporary theories have suggested that the SC–FC

coupling is continuously remodeled with age during childhood
and adolescence, and its atypical development may contribute
to the emergence of psychiatric disorders (Baum et al., 2017; Di
Martino et al., 2014; Stephan, Baldeweg, & Friston, 2006).
Myelination in highly interconnected fronto-parietal hubs has
been shown to continue postnatally until the third decade of
life, which overlaps with the common onset of the disease
(Silbereis, Pochareddy, Zhu, Li, & Sestan, 2016). Consequently,
our findings suggest that atypical myelination in microstructure
content may transform into abnormal reorganizations in SC–FC

Figure 5. State-specific regional SC–FC coupling and its association with local topological properties. (a) Regional SC–FC coupling across all groups for State
1. (b) Regional SC–FC coupling across all groups for State 2. (c) Group differences in regional SC–FC coupling for State 1. (d) Group differences in regional SC–
FC coupling for State 2. (e) Violin plots showing mean level values of association between regional SC–FC coupling and participation coefficient (PC) per participant
group for State 1 and State 2. (f) Violin plots showing mean level values of association between regional SC–FC coupling and degree centrality (DC) per participant
group for State 1 and State 2. The black triangle represents the RSN with the highest level of SC–FC coupling in each state. *p < 0.05, **p < 0.01, FDR-corrected.
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coupling of rich-club organization during development, which in
turn leads to a variety of psychosis symptoms corresponding to
what has been termed ‘Spatiotemporal Psychopathology’
(Northoff & Duncan, 2016; Northoff et al., 2018). Further results
demonstrated that the correlations between SC–FC coupling of
rich-club organization and functional network efficiencies were
altered in patient groups, indicating that the structure–function
relationship no longer supports the efficiency of information
transfer. Overall, our findings provide strong evidence that state-
specific disruptions in SC–FC coupling of the core structural
backbone are likely transdiagnostic characteristics of neurodeve-
lopmental conditions associated with these disorders.

Several brain regions involved in the VIS, SM, CC, and DM
networks exhibited significant between-group changes in regional
SC–FC coupling. The morphological hierarchy of intracortical
myelin and the laminar patterns of interareal projections have
been shown to reflect functional and transcriptional specialization
(Margulies et al., 2016; Wu et al., 2020). The cortical SC–FC
coupling appears to be variable across the brain, with strong coup-
ling in lower-order sensory areas (exhibiting higher cortical mye-
lination and a larger SC node degree) and weak coupling in
higher-order association areas (exhibiting lower myelination and
a smaller SC node degree) (Gu et al., 2021; Suárez et al., 2021;
Vazquez-Rodriguez et al., 2019). This study expands prior
research into the temporal dynamic realm and demonstrates
that the regional SC–FC coupling is partly driven by the brain’s
functional segregation and integration. Specifically, we discovered
that greater regional coupling of the middle frontal gyrus (MFG)
in State 1 was a neuroimaging characteristic shared by patient
groups. The MFG is a crucial CC region concerned in integrating
the external environment with internal representations that have
been stored (Buckner, Andrews-Hanna, & Schacter, 2008).
Investigations on MDD, BD, and SZ have demonstrated that the
MFG is always disconnected from other high-order functional
networks (e.g. DM), resulting in various executive control defi-
ciencies in these disorders (Menon, 2011; Zhang et al., 2021).
Meanwhile, SZ patients in State 2 exhibited higher SC–FC coup-
ling in the middle temporal gyrus (MTG), a key VIS region
(Rizzolatti & Matelli, 2003), than MDD patients. They showed
lower coupling in the precuneus (PCU), the main hub node of
the DM network (Cavanna & Trimble, 2006), than BD patients.
It is believed that psychotic symptoms, such as visual hallucina-
tions, are linked to aberrant MTG connectivity (Kim et al.,
2019), and dysfunction in the PCU may lead to disruptions in
self-reference processing (Whitfield-Gabrieli & Ford, 2012).
More severe psychotic symptoms have been associated with larger
disruptions in the two regions of SZ (Huang et al., 2020). Our
results suggest that the structure-function coupling of the MTG
and PCU may serve as possible biomarkers to differentiate
MDD patients from SZ patients and BD patients from SZ
patients, respectively. In addition, we observed a weaker correl-
ation between regional coupling and PC in State 1 for the SZ
group compared to other groups, as well as a stronger correlation
between regional coupling and DC in State 2 for the SZ and BD
groups compared to the control group, indicating an atypical con-
tribution of SC–FC coupling to functional specialization and inte-
gration in these disorders. The tighter coupling of local hubs in
segregated RSNs has been proven to reduce competitive interfer-
ence between different RSNs, allowing the suppression of irrele-
vant cognitive activity while processing target brain input
(Hampson, Driesen, Roth, Gore, & Constable, 2010). In contrast,
reduced coupling in transmodal brain regions may facilitate

functional flexibility and dynamic recruitment in response to
varying task demands (Yeo et al., 2015). Therefore, the abnormal
correlations we observed in these disorders may imply a decreased
capacity to suppress irrelevant information during specialized
cognitive processing and/or to balance multi-channel information
related to various cognitive processes.

Several methodological considerations should be considered
when interpreting our findings. First, head motion is a potential
confound in the connectome estimation and should be carefully
minimized to the greatest extent possible (Liu et al., 2022;
Wang, Wu, Liu, & Lü, 2021). In addition to motion correction
and global signal regression, we censored high-motion frames,
which have been shown to mitigate these effects further, and
incorporated motion as a covariable in the coupling analysis.
Second, accurately reconstructing cortico-cortical white matter
pathways from DWI remains difficult. Because streamlined tracto-
graphy has been widely utilized to quantify the connectome in
psychotic disorders, our findings of SC–FC coupling are compar-
able to those of previous research (Collin et al., 2017; Cui et al.,
2019). Nevertheless, existing tractography algorithms frequently
encounter difficulties detecting crossing fiber bundles, resulting
in an underrepresentation of structural network connections
and diminished connectome sensitivity (Jones, Knösche, &
Turner, 2013). More advanced tractography algorithms will be
required to reconstruct white matter fiber pathways in the future.
Third, we opted to employ the Spearman rank correlation
between the structural and functional connection profiles as a
measure of structure–function coupling, enabling us to compare
our results to previous research on psychiatric disorders. Other
methods, however, such as multilinear models (Vazquez-
Rodriguez et al., 2019; Zamani Esfahlani et al., 2022), statistical
models (Misic et al., 2016), embedding models (Rosenthal et al.,
2018), spectral decompositions (Becker et al., 2018), and deep
learning (Suárez et al., 2021), may lead to high levels of
structure–function coupling. Future research should examine
additional strategies in greater detail.

In conclusion, we comprehensively demonstrated, for the first
time, both transdiagnostic and illness-specific alterations in the
dynamic SC–FC coupling of large-scale brain networks across
MDD, BD, and SZ. Changes in SC–FC coupling and its associ-
ation with functional topology properties were particularly domi-
nated by two configuration states. These findings shed new light
on the significance of brain structure–function relationships in
the pathophysiology of psychiatric disorders.
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