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representations of unitary type

Lucio Guerberoff

ABSTRACT

We prove modularity lifting theorems for ¢-adic Galois representations of any dimension
satisfying a unitary type condition and a Fontaine—Laffaille condition at ¢. This extends
the results of Clozel, Harris and Taylor, and the subsequent work by Taylor. The proof
uses the Taylor—Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor,
applied to Hecke algebras of unitary groups, and results of Labesse on stable base change
and descent from unitary groups to GL,,.

Introduction

The goal of this paper is to prove modularity lifting theorems for Galois representations of any
dimension satisfying certain conditions. We largely follow the articles [CHTO08, Tay08], where an
extra local condition appears. In this work we remove that condition, which can be done thanks
to the latest developments of the trace formula. More precisely, let F' be a totally imaginary
quadratic extension of a totally real field F'™. Let II be a cuspidal automorphic representation
of GL,,(AF) satisfying the following conditions.

— There exists a continuous character x : A7, /(F*)* — C* such that x,(—1) is independent
of v|oo and

IIY = 11° ® (x o N+ o det).
— The representation II is cohomological.

Here, c is the non-trivial Galois automorphism of F/F*, and cohomological means that 1, has
the same infinitesimal character as an algebraic, finite-dimensional, irreducible representation of
(Resp/g GLy)(C). Let £ be a prime number, and ¢ : Qy == C an isomorphism. Then there is a
continuous semisimple Galois representation

Tg,L(H) : Gal(F/F) — GLn(@g)

which satisfies certain expected conditions. In particular, for places v of F' not dividing /¢, the
restriction 7, (II)| 4 al(Fy/F,) 1O & decomposition group at v should be isomorphic, as a Weil—
Deligne representation, to the representation corresponding to II, under a suitably normalized
local Langlands correspondence. The construction of the Galois representation ry ,(IT) under these
hypotheses is due to Clozel et al. [CHLa, CHLb], Chenevier and Harris [CH09], and Shin [Shi],
although they only match the Weil parts and not the whole Weil-Deligne representation. In the
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case that II satisfies the additional hypothesis that II, is a square-integrable representation
for some finite place v, Taylor and Yoshida have shown in [TY07] that the corresponding
Weil-Deligne representations are indeed the same, as expected. Without the square-integrable
hypothesis, this is proved by Shin in [Shi] in the case where n is odd, or when n is even and the
Archimedean weight of II is ‘slightly regular’, a mild condition we will not recall here. We will
not need this stronger result for the purposes of our paper.

We use the instances of stable base change and descent from GL,, to unitary groups, proved by
Labesse [Lab] to attach Galois representations to automorphic representations of totally definite
unitary groups. In this setting, we prove an R4 =T theorem, following the development of the
Taylor—Wiles method used in [Tay08]. Finally, using the results of Labesse again, we prove our
modularity lifting theorem for GL,. We describe with more detail the contents of this paper.

Section 1 contains some basic preliminaries. We include some generalities about smooth
representations of GL,, of a p-adic field, over Q, or F,, which will be used later in the proof of
the main theorem. We note that many of the results of this section are also proved in [CHTO08],
although in a slightly different way. We stress the use of the Bernstein formalism in our proofs;
some of them are based on an earlier draft [HT98-03] of [CHTO08].

In §2, we develop the theory of (¢-adic) automorphic forms on totally definite unitary
groups, and apply the results of Labesse and the construction mentioned above to attach Galois
representations to automorphic representations of unitary groups.

In §3, we study the Hecke algebras of unitary groups and put everything together to prove
the main result of the paper. More precisely, if T denotes the (localized) Hecke algebra and R is
a certain universal deformation ring of a mod ¢ Galois representation attached to T, we prove
that R4 =T. In §4, we go back to GL, and use this result to prove the desired modularity
lifting theorems. The most general theorem we prove for imaginary CM fields is the following.
For the terminology used in the different hypotheses, we refer the reader to the main text.

THEOREM. Let F'™ be a totally real field, and F a totally imaginary quadratic extension of F'*.
Let n > 1 be an integer and ¢ > n be a prime number, unramified in F'. Let

r:Gal(F/F) — GL,(Q)

be a continuous irreducible representation with the following properties. Let T denote the
semisimplification of the reduction of r.

(i) There is an isomorphism r¢ = rV (1 — n).

)
(i)
)
)

(i
(iv) There is an element a € (Z”’Jr)Hom(F’@f) such that the following hold.

— For all € Hom(F*, Qy), we have either

The representation r is unramified at all but finitely many primes.

For every place v|¢ of F, r|p, is crystalline.

E—l—n2a7712"‘>(1nn20

or
e_l_n>a7-c,1>"'>a7'c,n>0-
— For all 7 € Hom(F, Q) and every i =1,...,n,

Qrei = —QArm4+1—i-
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— For all 7 € Hom(F, Q) giving rise to a prime w|/,
HT:(rlr,) ={j —n —ar;}j—.
In particular, r is Hodge—Tate regular.
(v) The field F*7)
(vi) The group 7(Gal(F/F(())) is big.
(vii) The representation T is irreducible and there is a conjugate self-dual, cohomological,

cuspidal automorphic representation 11 of GL,,(AF), of weight a and unramified above ¢, and an
isomorphism ¢ : Q, —— C, such that ¥ =7, (II).

does not contain F'((y).

Then r is automorphic of weight a and level prime to £.

We make some remarks about the conditions in the theorem. Condition (i) says that r is
conjugate self-dual, and this is essential for the numerology behind the Taylor—Wiles method.
Conditions (ii) and (iii) say that the Galois representation is geometric in the sense of Fontaine—
Mazur, although it says a little more. It is expected that one can relax condition (iii) to the
requirement that r is de Rham at places dividing ¢. The stronger crystalline form, the hypothesis
on the Hodge-Tate weights made in (iv) and the requirement that ¢ > n is unramified in F' are
needed to apply the theory of Fontaine and Laffaille to calculate the local deformation rings.
The condition that ¢ > n is also used to treat non-minimal deformations. Condition (v) allows
us to choose auxiliary primes to augment the level and ensure that certain level structures are
sufficiently small. The bigness condition in (vi) is to make the Tchebotarev argument in the
Taylor-Wiles method work. Hypothesis (vii) is, as usual, essential to the method. An analogous
theorem can be proved over totally real fields.

0. Some notation and definitions

As a general principle, whenever F is a field and F is a chosen separable closure, we write
I'p = Gal(F/F). We also write I'r when the choice of F' is implicit. If F' is a number field and v
is a place of F', we usually write I', C I' for a decomposition group at v. If v is finite, we denote
by ¢, the order of the residue field of v.

0.1 Irreducible algebraic representations of GL,,

Let Z™* denote the set of n-tuples of integers a = (ay, . . ., ap) such that
a1 = 2 Qn.

Given a € Z™™T, there is a unique irreducible, finite-dimensional, algebraic representation &, :
GL,, — GL(W,) over Q with highest weight given by

n
diag(t1, ..., tn) — H .
i=1

Let E be any field of characteristic zero. Tensoring with E, we obtain an irreducible algebraic
representation Wy, g of GL,, over E, and every such representation arises in this way. Suppose
that E/Q is a finite extension. Then the irreducible, finite-dimensional, algebraic representations
of (Resg/g GLy/g)(C) are parametrized by elements a € (znt)Hom(E.C) “We denote them by

(&as Wa).
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0.2 Local Langlands correspondence

Let p be a rational prime and let F' be a finite extension of Q,. Fix an algebraic closure F
of F. Fix also a positive integer n, a prime number £ # p and an algebraic closure Q, of Q.
Let Artp : F* — F%b be the local reciprocity map, normalized to take uniformizers to geometric
Frobenius elements. If 7 is an irreducible smooth representation of GL,,(F') over Q,, we will write
re(m) for the f-adic Galois representation associated to the Weil-Deligne representation

Z(me||0773),

where % denotes the local Langlands correspondence, normalized to coincide with the
correspondence induced by Artp in the case n=1. Note that r,(m) does not always exist.
The eigenvalues of Z (7 ® ||*~1/2)(¢r) must be f-adic units for some lift ¢ of the geometric
Frobenius (see [Tat79]). Whenever we make a statement about r(m), we will suppose that this is
the case. Note that our conventions differ from those of [CHTO08, Tay08], where r4(7) is defined
to be the Galois representation associated to .2 (7" @ ||(1=7)/2).

0.3 Hodge—Tate weights

Fix a finite extension L/Q, and an algebraic closure L of L. Fix an algebraic closure Q, of Q
and an algebraic extension K of Q contained in Q, such that K contains every Qg-embedding
L — Q,. Suppose that V is a finite-dimensional K-vector space equipped with a continuous
linear action of I'z,. Let Bgr be the ring of p-adic periods, as in [Fon94]. Then (Bar ®g, V) '* is
an L ®g, K-module. We say that V' is de Rham if this module is free of rank equal to dimg V.
Since L ®q, K ~ (K )Homa (LK) “if v i a K-representation of I'z, we have that

(Bir@g, V)™~ [  (Bar ®q, V)" ®Lag, ko1 K
T€Homg, (L,K)

o~ H (Bar ® V)'".
L,
T€Homg, (L,K)

It follows that V' is de Rham if and only if
dimK(BdR QL,r V)FL =dimg V

for every 7€ Homgq,(L, K). We use the convention of Hodge-Tate weights in which the
cyclotomic character has 1 as its unique Hodge-Tate weight. Thus, for V' de Rham, we let
HT, (V) be the multiset consisting of the elements q € Z such that gr=9(Bgg ®1, V)t #£0,
with multiplicity equal to
dim g gr_q(BdR QL,r V)FL.

Thus, HT (V) is a multiset of dimg V' elements. We say that V is Hodge—Tate regular if for
every 7 € Homg, (L, K), the multiplicity of each Hodge-Tate weight with respect to 7 is 1. We
make analogous definitions for crystalline representations over K.

0.4 Galois representations of unitary type

Let I be any number field. If ¢ is a prime number, +:Q, — C is an isomorphism and
Y : A% /F* — C* is an algebraic character, we denote by r¢,(¢) the Galois character associated
to it by [CHT08, Lemma 4.1.3].

Let FT be a totally real number field, and F/F* a totally imaginary quadratic extension.
Denote by ¢ € Gal(F/F7T) the non-trivial automorphism. Let IT be an irreducible admissible
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representation of GL,(Ar). We say that II is essentially conjugate self-dual if there exists a
continuous character x : Ay, /(F*)* — C* with x,(—1) independent of v|oco such that

IIY 2= 11° ® (x © N+ o det).

If we can take y = 1, that is, if IIV 2 II¢, we say that II is conjugate self-dual.

Let II be an automorphic representation of GL,(Ap). We say that II is cohomological if
there exists an irreducible, algebraic, finite-dimensional representation W' of Resg/q GLy, such
that the infinitesimal character of Il is the same as that of W. Let a € (2™+)Hom(FC) " and let
(§a; Wa) the irreducible, finite-dimensional, algebraic representation of (Resy/g GL,)(C) with
highest weight a. We say that II has weight a if it has the same infinitesimal character as
(& W)

The next theorem (in the conjugate self-dual case) is due to Clozel et al. [CHLa, CHLDb], with
some improvements by Chenevier and Harris [CHO09], except that they only provide compatibility
of the local and global Langlands correspondences for the unramified places. Shin [Shi|, using a
very slightly different method, obtained the identification at the remaining places. The slightly
more general version stated here for an essentially conjugate self-dual representation is proved
in [BGHT, Theorem 1.2]. Let F be an algebraic closure of F and let T'x = Gal(F'/F). For m € Z
and r:Tr — GL,(Q,) a continuous representation, we denote by r(m) the mth Tate twist
of r, and by 7% the semisimplification of 7. Fix a prime number /¢, an algebraic closure Q, of
Qy, and an isomorphism ¢ : Q;, — C.

THEOREM 0.1. Let Il be an essentially conjugate self-dual, cohomological, cuspidal automorphic
representation of GL, (Ag). More precisely, suppose that ITIV 2 TI¢ @ (x o Np/p+ odet) for some
continuous character x : An, /(F")* — C* with x,(—1) independent of v|co. Then there exists
a continuous semisimple representation

re(I) =g, (I1) : Tp — GLn(Qy)
with the following properties.
(i) For every finite place w1/,

(re(M)]r,, )™ = (re(e™ )™,
(ii) There is an isomorphism 7¢(I1)¢ 2 r,(T1)V(1 — n) @ r¢(x ) |rp-
(iii) If w1/ is a finite place such that Il,, is unramified, then r;(II) is unramified at w.

(iv) For every wl|l, r¢(Il) is de Rham at w. Moreover, if 11, is unramified, then ry(II) is
crystalline at w.

(v) Suppose that II has weight a. Then for each w|¢ and each embedding T : F — Q, giving
rise to w, the Hodge—Tate weights of r¢(II)|p,, with respect to T are given by

HTT(T[(H)‘FU)) = {..7 -—n—- aLT,j}j:L‘..,na

r,, is Hodge—Tate regular.

and in particular, ry(1I)

The representation ry ,(II) can be taken to be valued in the ring of integers of a finite extension
of Q. Thus, we can reduce it modulo its maximal ideal and semisimplify to obtain a well-defined
continuous semisimple representation

FK,L(H) I'r— GLn(Fg)
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Let a be an element of (Z7)Hom(FQ0) | [et
r:Tp — GL,(Qy)

be a continuous semisimple representation. We say that r is automorphic of weight a if there is an
isomorphism ¢ : Q, —— C and an essentially conjugate self-dual, cohomological, cuspidal auto-
morphic representation II of GL,(Afp) of weight t.a such that r=ry,(II). We say that r is
automorphic of weight a and level prime to £ if moreover there exists such a pair (¢, IT) with I,
unramified. Here t,a € (Z1)Hom(E0) is defined as (1.a); = a,-1,.

There is an analogous construction for a totally real field F'*. The definition of cohomological
is the same, namely, that the infinitesimal character is the same as that of some irreducible
algebraic finite-dimensional representation of (Resp+ /g GL»)(C).

THEOREM 0.2. Let IT be a cuspidal automorphic representation of GL,,(Ag+), cohomological of
weight a, and suppose that

IV =TI ® (x o det),
where x : A%, /(F")* — C* is a continuous character such that x,(—1) is independent of v|cc.
Let +: Q, —— C. Then there is a continuous semisimple representation

re(IT) = 7¢, (1) : T — GLa(Qy)
with the following properties.
(i) For every finite place v 1/,
(re(M)[r, )™ = (re(¢™',))*.
(ii) There is an isomorphism r;(IT) 2 7,(IT1)V (1 — n) @ re(x1).
(iii) If vt/ is a finite place such that I1, is unramified, then r;(II) is unramified at v.

(iv) For every v|l, r¢(Il) is de Rham at v. Moreover, if Il, is unramified, then r¢(Il) is
crystalline at v.

(v) For each v|¢ and each embedding 7 : F* < Q, giving rise to v, the Hodge-Tate weights
of ry(I1)|p, with respect to T are given by

HT’F(TZ(H)‘Fv) = {] —n—- am’,j}j:l,...,n:
and, in particular, r¢(II)|r, is Hodge—Tate regular.

Moreover, if ¢ : A%, /(FT)* — C* is an algebraic character, then
re(I1 @ (¢ o det)) = re(I1) @ ro(1)).

Proof. This can be deduced from the last theorem in exactly the same way as Proposition 4.3.1
of [CHTO08] is deduced from Proposition 4.2.1 of loc. cit. O

We analogously define what it means for a Galois representation of a totally real field to be
automorphic of some weight a.
1. Admissible representations of GL,, of a p-adic field over Q, and F,

Let p be a rational prime and let F be a finite extension of Q,,, with ring of integers 0’7, maximal
ideal A and residue field kp = Op/Ap. Let ¢ = #kp. Let @ be a generator of A\p. We will fix an
algebraic closure F' of F, and write 'y = Gal(F/F). Corresponding to it, we have an algebraic
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closure k- of kp, and we will let Frobgr be the geometric Frobenius in Gal(kr/kr) and Ir be
the inertia subgroup of I'p. Usually we will also write Frobp for a lift to I'r. Fix also a positive
integer n, a prime number £ # p, an algebraic closure Q; of Q,; and an algebraic closure Fy of [F,.
We will let R be either Q, or F,. Denote by || : F* — ¢% C Z[1/q] the absolute value normalized
such that |@] =¢~!. We denote by the same symbol the composition of || and the natural
map Z[1/q] — R, which exists because ¢ is invertible in R. For the general theory of smooth
representations over R, we refer the reader to [Vig96]. Throughout this section, representation
will always mean smooth representation.

For a locally compact, totally disconnected group G, a compact open subgroup K C G and
an element g € G, we denote by [KgK] the operator in the Hecke algebra of G relative to K
corresponding to the (R-valued) characteristic function of the double coset KgK.

Given a tuple t = (t(), ... #(") of elements in any ring A, we denote by P,+ € A[X] the
polynomial

Py=X"+ Z(—l)jqj(j_l)/Qt(j)X”_j.
j=1

We use freely the terms Borel, parabolic, Levi, and so on, to refer to the F-valued points
of the corresponding algebraic subgroups of GL,,. Write B for the Borel subgroup of GL,(F)
consisting of upper triangular matrices, and By = B N GL,,(OF). Let T ~ (F*)™ be the standard
maximal torus of GL,(F). Let N be the group of upper triangular matrices whose diagonal
elements are all 1. Then B =T N (semi-direct product). Let r : GL,(0r) — GL,(kr) denote the
reduction map. We introduce the following subgroups of GL,(0F):

— Up={g € GL.(0F) :r(9) = ("o, " "))
— U1 ={g € GLu(F) :7(9) = ("o, 1)k
— Iw={9€ GL,(OF) : (g) is upper triangular};
—Iwi={g9€lw:r(9)u=1Vi=1,...,n}.

Thus, U; is a normal subgroup of Uy and we have a natural identification

Uo /Uy >~ kF,
and similarly Iw; is a normal subgroup of Iw and we have a natural identification
Iw/Twy =~ (kj)".
We denote by % the R-valued Hecke algebra of GL,,(F') with respect to GL, (0r). We do not

include R in the notation. For every smooth representation 7 of GL, (F), 7 (9F) is naturally
a left module over 7. For j=1,...,n, we will let T’ ZEJ ) € # denote the Hecke operator

[GLn(ﬁF) <ng 0 )GLn(ﬁp)] .

Ln—j

Let 7 be a representation of GL, (F) over Q,. We say that  is essentially square-integrable if,
under an isomorphism Q, = C, the corresponding complex representation is essentially square-
integrable in the usual sense. It is a non-trivial fact that the notion of essentially square-integrable
complex representation is invariant under an automorphism of C, which makes our definition
independent of the chosen isomorphism Q,2C. This can be shown using the Bernstein-
Zelevinsky classification of essentially square-integrable representations in terms of quotients
of parabolic inductions from supercuspidals (see below).
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Let n=mn1 +-- -+ n, be a partition of n and P D B the corresponding parabolic subgroup
of GL,,(F). The modular character 6p : P — Q* takes values in ¢ C R*. Choosing once and for

all a square root of ¢ in R, we can consider the square root character 5};./ 2. P — RX. For each
i=1,...7, let m; be a representation of GL,,(F). We denote by m X - - - x m, the normalized
induction from P to GL,(F') of the representation m; ® - - - ® 7,. Whenever we write || we will
mean || odet. For any R-valued character 8 of F'* and any positive integer m, we denote by
Bm] the one-dimensional representation (3 o det of GL,,(F).

Suppose that R=Q,. Let n =7k and o be an irreducible supercuspidal representation of
GL,(F). By a theorem of Bernstein [Zel80, 9.3],

(0@ ||A7R/2) x ... x (o @ ||k=D/2)

has a unique irreducible quotient denoted Stj(c), which is essentially square-integrable.
Moreover, every irreducible, essentially square-integrable representation of GL, (F') is of the
form Stp(o) for a unique pair (k, o). Under the local Langlands correspondence £, Sti(o)
corresponds to Spy, @ Z (0 @ ||(1=#)/2) (see [HTO1, page 252] or [Rod82, §4.4]), where Spy, is as
in [Tat79, 4.1.4]. Suppose now that n=mnj + - - -+ n, and that m; is an irreducible essentially
square-integrable representation of GL,, (F'). Then 7 X - - - X 7, has a distinguished constituent
appearing with multiplicity one, called the Langlands subquotient, which we denote by

m B B,

Every irreducible representation of GL, (F) over Q, is of this form for some partition of n, and
the m; are well determined modulo permutation [Zel80, 6.1]. The m; can be ordered in such a
way that the Langlands subquotient is actually a quotient of the parabolic induction.

If x1, ..., xn are unramified characters then
x1B---Hxn

is the unique unramified constituent of xi X ---X x,, and every irreducible unramified
representation of GL,,(F) over Qy is of this form. Let 7 be such a representation, corresponding
to a Q-algebra morphism A, :. % — Q. For j=1,...,n, let sj denote the jth elementary
symmetric polynomial in n variables. If we define unramified characters

Xi: F*—Q;
in such a way that )\W(Tl(;j)) =g 25,(x1@), - . ., Xn(@)), then
m~yx1 B Hxn.
Moreover, by the Iwasawa decomposition GLy (F)=BGLn(0F), we have that dimg, rGln(0F) =1,

We denote tr=(A(T), ..., Ae(TI)).

LEMMA 1.1. Let 7 be an irreducible unramified representation of GL,(F) over Q. Then the
characteristic polynomial of r¢(m)(Frobp) is P4, .

Proof. Suppose that m =1 H---H x,. Then

n

ro(m) = P @ ||17772) o Arty!.
i=1
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Thus, the characteristic polynomial of r,(7)(Frobp) is
n

[T —xi@)a" D7) = " (=1)s;0a@)g™ V2, xn@)g ) X" = Prg,. O
i=1 Jj=0

Let n=ny+---+n, be a partition of n and let 3i,...08, be distinct unramified F-
valued characters of F*. Suppose that ¢ = 1(mod ¢). Then the representation [i[ni] X - - - X
Br[ns] is irreducible and unramified, and every irreducible unramified Fy-representation of
GL,(F) is obtained in this way. This is proved by Vigneras in [Vig98, VI.3]. Moreover, if
m =[] x -+ x Bp[n,], then 7 is an unramified subrepresentation of the principal series
B1 X X1 X+ X0 x---x B, where §; appears n; times. The Iwasawa decomposition
implies that the dimension of the GL,,(0r)-invariants of this unramified principal series is one,
and thus the same is true for 7.

A character y of F'* is called tamely ramified if it is trivial on 1 + Ap, that is, if its conductor
is less than or equal to 1. In this case, x|,x has a natural extension to Up, which we denote by xU.
F

LEMMA 1.2. Let x1,..., Xn be R-valued characters of F'* such that x1, ..., xXn_1 are unramified
and xy, is tamely ramified. Then

n if x, is unramified,

dimp Homy, (X?“ X1 X X Xn) = {1 otherwise.

Furthermore, if x, is ramified then (x1 X - - - X xn)Y° = 0.

Proof. Let
M (xn) ={f : GLn(OF) = R: f(bku) = x(b)xn(u) f (k) ¥b € By, k € GLn(0F), u € Un},
where we write  for the character of (F*)™ given by x1, . . ., Xn. Then, Homg, (x5, x1 x - -+ x

Xn) = (x1 X+ X XH)UOZXQ, which by the Iwasawa decomposition is isomorphic to M (x"). By
the Bruhat decomposition,

Bo\GLn(ﬁF)/UO ~ T(BO)\GLn(kF)/T(UO) ~ Wn/anl,

where W; is the Weyl group of GL; with respect to its standard maximal split torus. Here we
see W, _1 inside W,, in the natural way. Let X denote a set of coset representatives of W,, /W,,_1,
so that

GL.(0F) = [] Bowlo.
weX
Thus, if f € M(x?), f is determined by its restriction to the cosets BywU. We have that

weX

where M, is the space of functions on BywUy satisfying the transformation rule of M(x2). It
is clear that dimp M,, <1 for every w. Moreover, if y,, is unramified, then M, is non-zero,
a non-zero function being given by f(w) = 1. Thus, in this case, dimg M (x?) = n.

In the ramified case, let a = diag(a1, . . . , an) € By, with a; € € and a,, such that x,(a,) # 1.
Then

Xn(an) f(w) = flaw) = f(wa") = xp(a®) f(w) = f(w)

unless w € W,,_1. Thus, only the identity coset survives, and dimg M (x2) = 1.
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For the last assertion, let f € (x1 X -+ X xn) be Up-invariant. To see that it is zero, it is
enough to see that f(w)=0 for every w € X. Choosing a € GL,(OF) to be a scalar matrix
corresponding to an element a € 0 for which x,(a) # 1, we see that a is in By (and hence in
Up), thus f(aw) = xp(a)f(w) = f(wa) = f(w), so f(w) =0 for any w € X. O

Let Pp; denote the parabolic subgroup of GL,(F') containing B corresponding to the
partition n = (n — 1) + 1, and let Ups denote its unipotent radical. Take the Levi decomposition
Py = MUy, where M ~ GL,,_1(F) x GL1(F). Consider the opposite parabolic subgroup Py
with Levi decomposition Py; = MUy;. Let

U07M =UgNM ~ GLn_l(ﬁF) X GLl(ﬁp)
Let x,, be a tamely ramified character of F*, and let x0 be its extension to Up. Let

I (Xn) = EndM(indJ(\]/é!M Xn)s

where ind denotes compact induction and x, is viewed as a character of Uy s via projection
to the last element of the diagonal. Thus, J#/(x») can be identified with the R-vector space
of compactly supported functions f: M — R such that f(kmk') = x,(k)f(m)xn (k') for m e M
and k, k' € Up pr. Similarly, let

Ho(xn) = Endgy, () (ind i) 1 0),

0 n
This is identified with the R-vector space of compactly supported functions f : GL,(F) — R such
that f(kgk') = x5 (k) f(g)X2 (k') for every g € GL,(F), k, k' € Uy. There is a natural injective
homomorphism of R-modules
T 2 I (Xn) — 7(Xn),

which can be described as follows (see [Vig98, I1.3]). Let m € M. Then 7 (1u, yymUq 1) = LUgmto>
where 1y, mu, 5, 18 the function supported in Uy pymUp ar whose value at umu’ is xn (u)xn(u'),
and similarly for 1g,mr,. Define

US_ =UsNUpy
and
Uy =UoNUp.
Then Uy = U()_U(),MUJ = UJU(),MUO_, and X% is trivial on U, and UJ. Let
M~ ={me M/m 'Ufm c Uy and mU;ym™~' C Uy }.
We denote by %), (xn) the subspace of J(xn) consisting of functions supported on the union

of cosets of the form Uy pymUp pr with m e M.

PROPOSITION 1.3. The subspace J¢,;(xn) C ##1(Xn) is a subalgebra, and the restriction 7~ :
6 (Xn) — H0(xn) Is an algebra homomorphism.

Proof. This is proved in [Vig98, I1.5]. O

Let 7 be a representation of GL,(F') over R. Then Homgr,, (5 (indg(?”(F) X%, ) is naturally

a right module over % (xy). By the adjointness between compact induction and restriction,

(F)

. GL,
Homgy,, () (indg, ™ x5, m) = Homy, (X, 7),

and therefore the right-hand side is also a right J#%(x,)-module. There is an R-algebra
isomorphism % (xn) ~ 74 (x,; )PP given by f f*, where f*(g)=f(g~'). We then see
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Homy, (xh, ) as a left J4(x;')-module in this way. Similarly, Homg, ,, (xn,T) is a left
1 (x;})-module when 7 is a representation of M over R. For a representation 7 of GL,,(F),
let mp— be the representation of M obtained by (non-normalized) parabolic restriction. Then
the natural projection ™ — T, 18 M -linear.

Remark 1.4. Let B,_; denote the subgroup of lower triangular matrices of GL,_1(F’), so that

B,_1 x GL1(F) is a parabolic subgroup of M, with the standard maximal torus T'C M of
GL,(F) as a Levi factor. Let x1, ..., xn be characters of F*. Then

n

SIS} . w; SS 1/2
((Xl XKoo X XR)TM) = GB(Z%XGLMF)(X 1)) ® 5PLM; (1'0'1)
i=1
M

where ss denotes semisimplification and ¢ is the normalized parabolic induction.

Bn—l XGLl(F)
Here, w; is the permutation of n letters such that w;(n) =n+1—1d and w;(1) >w;(2) >--- >
w;(n — 1). This follows from [Cas74, Theorem 6.3.5] when R=Q,. As Vignéras points out

in [Vig98, I1.2.18], the same proof is valid for the R = F, case.

PROPOSITION 1.5. Let x1,..., xn be R-valued characters of F*, such that x1,...,Xn_1 are
unramified and x, is tamely ramified.

(i) The natural projection x1 X -+ X Xxn — (X1 X -+ X Xn)g—

" induces an isomorphism of
R-modules

p:Homy, (x2, (x1 X -+ X xn)) — Homyj, ,, (Xn, (X1 X -+ - % X”)W) (1.0.2)

(
(ii) For every ¢ € Homy, (X%, (x1-+- X -+ Xn)) and every m € M,

p(onmUo ¢) = 5P1VI (m)on,MmUo,M p(d’)

Proof. The last assertion is proved in [Vig98, I1.9]. The fact that p is surjective follows by [Vig96,
I1.3.5]. We prove injectivity now. By Lemma 1.2, the dimension of the left-hand side is n if x,
is unramified and 1 otherwise. Suppose first that R = Q,. If x,, is unramified, each summand of
the right-hand side of (1.0.1) has a one-dimensional Uy ps-fixed subspace, while if x,, is ramified,
only the summand corresponding to the identity permutation has a one-dimensional Uy pr-fixed
subspace, all the rest being zero. This implies that

n if x, is unramified,

e - — Yonm —
dlm@e((X1 X X X”)UM) {1 otherwise.

Therefore p is an isomorphism for reasons of dimension. This completes the proof of the injectivity
of p over Q.

We give the proof over F, only in the unramified case, the ramified case being similar.
First of all, note that the result for Q, implies the corresponding result over Z,, the ring
of integers of Q,. Indeed, suppose each y; takes values in ZZ , and let (y1 x---x Xn)z,_,
(respectively, (x1 X - X xn)g,) denote the parabolic induction over Zy (respectively, Q).

Then (x1 X --- X XH)ZZ is a lattice in (x1 x -+ X Xn)@ , that is, a free Zs-submodule which
generates (x1 X -+ X Xn)g, and is GLn(F)-stable [Vigd6, 11.4.14(c)]. It then follows that

((x1 x---x Xn)ZZ)UO is a lattice in (x7 X -« - X Xn)@Z)UO [Vig96, 1.9.1], and so is free of rank n
over Zy. Similarly, ((x1 X -« X X”)UiMZe)UO’MjS a lattice in ((x1 x - - - X Xn)m,@)Uo’M [Vi§96,
11.4.14(d)], and thus it is free of rank n over Z,;. Moreover, the map p with coefficients in Z; is
still surjective [Vig96, IT 3.3], hence it is an isomorphism by reasons of rank.
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Finally, consider the F, case. Choose liftings Y; of x; to Zs-valued characters. Then there is
a natural injection

(X1 X+ X Xn)gy ®z, Fo = (1 X -+ X Xn)gyy

inducing an injection
(X1 % -+ X X)) YoM @z, Fr = ((xa X -+ X X)) oM. (1.0.3)

Now, we have seen that the left-hand side of (1.0.3) has dimension n over F,. We claim that the
right-hand side of (1.0.3) has dimension less than or equal to n. Indeed, by looking at the right-
hand side of (1.0.1), this follows from the fact that the Uy p/-invariants of the semisimplification
have dimension n. Thus, (1.0.3) is an isomorphism and dimg, (x1 X - -+ X Xn)W)UO’M = n. Since
the left-hand side of (1.0.2) has dimension n and p is surjective, it must be an isomorphism. O

Let %) (respectively, 774 ) be the R-valued Hecke algebra of GL,(F') with respect to Uy
(respectively, Uy). Thus, 7% = #(1). If 7 is a representation of GL,(F) over R, then 70 is
naturally a left JZj-module. For any o € F* with |a| < 1, let my € M be the element

A
V0 o)

Fori=0or 1, let V,; € 74 be the Hecke operators [UymoU;]. If 7 is a representation of GL,, (F'),
then 7Y € 71 and the action of the operators defined above are compatible with this inclusion.

Let sty = (1), and let Vi ar = [Uo imaUo m] € Hy. Since mg € M~ Vg v € A, and
T~ (Vom) = Vzo € Hp. As above, if 7 is a representation of M over R, we consider the natural
left action 4, on wlo.M

COROLLARY 1.6. Let x1,...,Xn be Qp-valued unramified characters of F*. Then the set of
eigenvalues of Vg acting on the n-dimensional space (x1 X --- X xn)Y0 is equal (counting
multiplicities) to {q™~ /2y, (@)},.

Proof. Note that Vg a acts on the Up p-invariants of each summand of the right-hand side
Uo,m
Unm
the ¢(1=™)/2x;(@). The corollary follows then by Proposition 1.5. O

of (1.0.1) by the scalar x;(@)q'=™/2. Thus, the eigenvalues of Voour in (x1 X -+ X Xn) are

PROPOSITION 1.7. Let m be an irreducible unramified representation of GL,,(F') over R. Then
7Y = 7Vt and the following properties hold.

(i) IfR=Q, and 7= x1 B - - - B xn, with x; unramified characters of F*, then dimp 790 < n
and the eigenvalues of Vg acting on 7U° are contained in {q(”_l)/Qxi(E)}?zl (counting
multiplicities).

(i) If R=F,, gq=1(mod¥) and 7= fBi[n1] x -+ x Br[n,] with B; distinct unramified
characters of F*, then dimp 7Y =1 and Voo acting on 7Y has the r distinct eigenvalues

{8 (@)}

Proof. The fact that 7Vt =7 follows immediately because the central character of = is
unramified. Since taking Up-invariants is exact in characteristic zero, part (i) is clear from the
last corollary. Let us prove part (ii). Let P be the parabolic subgroup of GL,(F') containing
B corresponding to the partition n =mnq + - - - + n,. As usual, since GL,,(F) = P GL,(OF), the
Fy-dimension of 70 is equal to the cardinality of (GL,(0r) N P)\GL,(€F)/Us. By the Bruhat
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decomposition, this equals the cardinality of
Gpy X+ X6, \6,/6,-1 x 61,

where G; is the symmetric group on ¢ letters. This cardinality is easily seen to be r.

It remains to prove the assertion about the eigenvalues of Vo on 7%, Let us first replace
Up by Iw (this was first suggested by Vignéras). By the Iwasawa decomposition and the Bruhat
decomposition,

GL,(F) =[] PsTw,
ses
where S C GL,(F) is a set of representatives for (&, x - - - x &, )\&,. Then 7™ has as a basis
the set {¢s}ses, where ¢ is supported on PsIw and ¢s(s) = 1.

Let 7, (n, 1) denote the Iwahori-Hecke algebra for GLy, (F') over Fy, that is, the Hecke algebra
for GL, (F") with respect to the compact open subgroup Iw. Thus, 7V is naturally a left module
over ‘%%z (n,1). Fori=1,...,n—1, let s; denote the n by n permutation matrix corresponding
to the transposition (i i + 1), and let S; = [Iw s; Iw] € J, (n,1). For j=0,. .., n, let ¢; denote
the diagonal matrix whose first j coordinates are equal to w, and whose last n — j coordinates
are equal to 1. Let Tj = [Iw ¢; Iw] € 7 (n, 1), and for j=1,...,n, let X; =T;(T;}). Then
Hz,(n, 1) is generated as an Fp-algebra by {S;}7—' U{Xy, X;'} [Vig96, 1.3.14]. We denote by
%%2 (n, 1) the subalgebra generated by {Si};”‘;ll, which is canonically isomorphic to the group
algebra Fy[&,] of the symmetric group [Vigd6, 1.3.12]. It can also be identified with the
Hecke algebra of GL,(0F) with respect to Iw [Vig96, 1.3.14]. The subalgebra A = F,[{ X} ]

is commutative, and characters of T' can be seen as characters on A. Let x1,...,xn: F* — EX
be the characters defined by

Xlz"':anzﬁﬁ

Xni+-4n;_14+1 = """ = Xni+-+n; = Bj;

Then the action of A on ¢, is given by the character s(x). Note that the set {s(x)}ses is just
the set of n-tuples of characters in which 3; occurs n; times, with arbitrary order. It is clear that
for each j =1,...,r, there is at least one s € S for which s(n) € {n1 +---+n;_1+1,...,n1 +

-+ +mnj}, so that X,¢s = (;(W0)ps. Let
(P:Z(P&

seS

GL,(OF)

Then ¢ generates m .Forj=1,...,r let

vi= D), e
SES»XS(n):/BJ

We have seen above that 1; # 0. Moreover, X,1; = (3;(@)1;. Let P; € F;[X] be a polynomial
such that P;(3;(@)) =1 and P;(8;(w)) =0 for every i # j. Then ¢; = P;(X»)y, and it follows
that the r distinct eigenvalues {8;(w)}}_; of X, on 7 already occur on the subspace F,[X,]e.

Consider now the map pp: 7'V — (WN)TO, where N is the unipotent radical of the parabolic
subgroup of GL,,(F) containing T, opposite to B, and To=T"N GL,(OF). By [Vig96, 11.3.5], pris
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an isomorphism. On the other hand, there is a commutative diagram,

Vo ? lw

pu| pTl

PM,T
(M) VoM s () ™0

where 7 is the inclusion and pys and ppyr are the natural projection to the coinvariants. The
analogues of part (ii) of Proposition 1.5 for pys, pr and pyr are still valid [Vig98, I1.9]. Thus,
for f e 7%,

pr(i(Vaof)) = pmr(pm (Voo f)) = par ([UomymaUomlpa (f))
= [TomgTolpa.r (Pa(f)) = [TomaTolpr (i(f)) = pr(Xni(f)).
It follows that Vi o = X, on 7¥0. In particular, Fo[X,,]¢ = [V 0] C 7Y°. By what we have seen

above, we conclude that the eigenvalues of Vo on the r dimensional space 70 are {3;(w) Ficts
as claimed. O

COROLLARY 1.8. Suppose that ¢=1(mod¥) and let m be an irreducible unramified
representation of GL,(F) over F;. Let ¢ € 76(9F) be a non-zero spherical vector. Then ¢
generates 7° as a module over the algebra F[Vi ).

Proof. This is actually a corollary of the proof of the above proposition. Indeed, Vg has r
distinct eigenvalues on Fy[V ol C 7%0, and dimg, alo — . O

LEMMA 1.9. Let 7 be an irreducible representation of GL,,(F) over Q, with a non-zero U;-fixed
vector but no non-zero GLy,(Or)-fixed vectors. Then dim@e 7Yt =1 and there is a character

Vi F* > Q)
with open kernel such that for every a € F* with non-negative valuation, V;(«) is the eigenvalue
of V1 on 7Yt Moreover, there is an exact sequence
0— s —7rg(m) — Vp o Artt — 0,

where s is unramified. If 770 #0 then ¢~ 'V, (@) is a root _of the characteristic polynomial of
s(Frobg). If, on the other hand, if 7V =0, then r¢(7)(Gal(F/F)) is abelian.

Proof. This is [CHT08, Lemma 3.1.5]. The proof basically consists in noting that if 7Vt 0,
then either mw~yx; B .- Wy, with x1,..., Xn—1 unramified and x, tamely ramified, or 7 ~
x1 8- B xpn_2 B Sta(xp—1) with x1,..., xn—1 unramified. Then one just analyzes the cases

separately, and calculates explicitly the action of the operators U g i (see [CHTOS] for their
definition) and V1. O

LEMMA 1.10. Suppose that ¢ = 1(mod ), and let m be an irreducible unramified representation
of GL,(F) over Fy. Let )\,,(Tl(p])) be the eigenvalue of TIEJ) on wGMn(OF) and t,=
()\W(T](;l)), cee AW(T}”))). Suppose that Pyt = (X —a)™F(X) in F/[X], with m >0 and

F(a) #0. Then F(Vp), as an operator acting on 7Y, is non-zero on the subspace 7Gn(¢r),

Proof. Suppose on the contrary that F (Vg )(nStn(9F)) =0. Let ¢ € 7%(9F) be a non-zero
element. Suppose that 7 = (1[n1] X - - - x B.[n,], with 8; distinct unramified FZ -valued characters
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of FX. Then, since ¢ =1 in Fy,
T
Pye, = [[(X = Bi@))™.
i=1
Suppose that a = 3;(w1), so that F(X) =[], ,;(X — 8;(w))". By Proposition 1.7(ii), 7% has
dimension r and V¢ is diagonalizable on this space, with distinct eigenvalues 3;(@w). Let ¢; € nto
denote an eigenfunction of Vg of eigenvalue 3;(@). By Corollary 1.8, there exists a polynomial
P; € Fy[X] such that ¢; = Pj(Vg0)(p). Since polynomials in Vg o commute with each other, we
must have F(V0)(¢;) =0, but this also equals F'(3;(@))p; # 0, which is a contradiction. O

2. Automorphic forms on unitary groups

2.1 Totally definite groups

Let '™ be a totally real field and F a totally imaginary quadratic extension of F*. Denote
by ¢ € Gal(F/F*) the non-trivial Galois automorphism. Let n>1 be an integer and V an
n-dimensional vector space over F', equipped with a non-degenerate c-hermitian form 5 :
V x V — F. To the pair (V, h) there is attached a reductive algebraic group U(V, h) over FT,
whose points in an F'*-algebra R are

U(V7 h)(R) = {g € Aut(F®F+R)flin(V R F+ R) : h(g{E, gy) - h(IE, y) vxv ye Vv Qp+ R}

By a unitary group attached to F//FT in n variables, we shall mean an algebraic group of the
form U(V, h) for some pair (V,h) as above. Let G be such a group. Then Gr =G ®p+ F is
isomorphic to GLy, and in fact it is an outer form of GLy. Let G(F}) = [Ty G(F}), and if v
is any place of F'™, let G, = G ®@p+ F,7. We say that G is totally definite if G(F%) is compact
(and thus isomorphic to a product of copies of the compact unitary group U(n)).

Suppose that v is a place of F'* which splits in F, and let w be a place of F' above v,
corresponding to an FT-embedding oy, : F < F,. Then F, =0, (F)F,  is an F-algebra by
means of o, and thus GG, is isomorphic to GLV® Fib the tensor product being over F'. Note that
if we choose another place w® of F' above v, then o, and oy give F, two different F-algebra
structures. If we choose a basis of V', we obtain two isomorphisms iy, iye : Gy — GL,, B If
X € GL,(F) is the matrix of h in the chosen basis, then for any F,M-algebra R and any g € G, (R),
iwe(g) = X 1(Yiy(g)~H) X, where we see X € GL,(R) via 0, : F — Ff — R.

The choice of a lattice L in V' such that h(L x L) C OF gives an affine group scheme over
O+, still denoted by G, which is isomorphic to G after extending scalars to F'™. We will fix
from now on a basis for L over O, giving also an F-basis for V; with respect to these, for each
split place v of F'* and each place w of F' above v, 4,, gives an isomorphism between G(F,") and
GLn(Fu) taking G(Op+) to GLn(OF,).

2.2 Automorphic forms

Let G be a totally definite unitary group in n variables attached to F/FT. We let & denote the
space of automorphic forms on G(Ag+). Since the group is totally definite, 7 decomposes, as a
representation of G(Ap+), as

o = @ m(m)m,
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where 7 runs through the isomorphism classes of irreducible admissible representations of
G(Ap+), and m(w) is the multiplicity of 7 in ./, which is always finite. This is a well-
known fact for any reductive group compact at infinity, but we recall the proof as a warm-up
for the following sections and to set some notation. The isomorphism classes of continuous,
complex, irreducible (and hence finite-dimensional) representations of G(F) are parametrized
by elements b = (b;) € (Z™+)Hom(F"R) We denote them by Wi, Since G(FZ) is compact and
every element of & is G(FY)-finite, &/ decomposes as a direct sum of irreducible G(Ap+)-
submodules. Moreover, we can write

o = P Wi, @ Homg, s (Why, )
b

as G(Ap+)-modules. Denote by A%, the ring of finite adeles. For any b, let Sy, be the space of
smooth (that is, locally constant) functlons f:G(AR,) — W,/ such that f(vg) =7eef(g) for all
g€ G(A%,) and v € G(FT). Then the map

fro(we (g7 (92 F(9%) ()

induces a G(A%, )-isomorphism between Hom, F+)(Wb, /) and Sp, where the action on this
last space is by right translation. For every compact open subgroup U C G(A%¥,), the space
G(F)\G(A%,)/U is finite, and hence the space of U-invariants of Sy, is finite-dimensional. In
particular, every irreducible summand of Wy ® HomG( F )(Wb, /) is admissible and appears
with finite multiplicity. Thus, every irreducible summand of « is admissible, and appears with
finite multiplicity because its isotypic component is contained in Wy ® HomG( FSS)(Wb’ ) for
some b.

2.3 ¢-adic models of automorphic forms

Let ¢ be an odd prime number. We will assume, from now on to the end of this section, that
every place of F'™ above £ splits in F. Let K be a finite extension of Q. Fix an algebraic closure
K of K, and suppose that K is big enough to contain all embeddings of F into K. Let & be its
ring of integers and ) its maximal ideal. Let S; denote the set of places of F'* above ¢, and I,
the set of embeddings F'™ < K. Thus, there is a natural surjection h: I, — Sy. Let Sg denote a
set of places of F' such that Sg 11 SC consists of all the places above Sp; thus, there is a bijection
Sp ~ Sg For v € Sy, we denote by v the corresponding place in Sg Also, let I, ¢ denote the set of
embeddings F'— K giving rise to a place in Sg Thus, there is a bijection between I, and Ig,
which we denote by 7+ 7. Also, denote by 7 +— w; the natural surjection I, — Sg Finally, Let

F =11 F
Let a € (Z+)Hom(RK) - Consider the following representation of G(F,") ~ [Ticg, GLn(F5).

For each 7 € I, we have an embedding GLy,(F.) — GL,(K). Taking the product over 7 and
composing with the projection on the wx- coordlnates, we have an irreducible representation

a: G(F)) — GL(Wa),

where Wa = @7 7, Was k- This representation has an integral model &, : (ﬁ +) — GL(Ma). In
order to base change to automorphic representations of GL,,, we need to 1mpose the additional
assumption that

Qre,i = —OQrnt1—i

for every 7 € Hom(F, K) and every i =1, ..., n.
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Besides the weight, we will have to introduce another collection of data, away from ¢, for
defining our automorphic forms. This will take care of the level-raising arguments needed later
on. Let S, be a finite set of places of F'™, split in F' and disjoint from S,. For v € S,, let
Uow C G(F,}) be a compact open subgroup, and let

Xuv * UO,U — 0

be a morphism with open kernel. We will use the notation U, = [[,c5 Uow and x =[],cq, Xo-
Fix the data {a, Uy, x}. Let May = Ma ®¢ (Q,cs. O(Xv)). Let U C G(AF,) be a compact

open subgroup such that its projection to the vth coordinate is contained in U, for each v € S,.
Let A be an 0-algebra. Suppose either that the projection of U to G(F,") is contained in G(& F;),

or that A is a K-algebra. Then define S, (U, A) to be the space of functions
frGIFINGAF,) = May ®p A
such that
flgu) =uig flg) VgeGAF.) uel,

where wuy g, denotes the product of the projections to the coordinates of S, and S,. Here, ug,
acts already on M, by x, and the action of uy is via &a.

Let V be any compact subgroup of G(A%,) such that its projection to G(F;") is contained
in Up,, for each v € S;, and let A be an &-algebra. If either A is a K-algebra or the projection of
V to G(F,") is contained in G(ﬁpj)7 denote by Sa(V, A) the union of the S, , (U, A), where U

runs over compact open subgroups containing V for which their projection to G(F,) is contained
in Up,, for each v € S,, and for which their projection to G(F,") is contained in G(ﬁF;) if Ais

not a K-algebra. Note that if V' C V' then Sa,(V', A) C Say(V, A).

If U is open and we choose a decomposition
G(agy) =[] G(F U,
jeJ

then the map f+— (f(g;j));jes defines an injection of A-modules

Sa»((U? A) — H Ma,x Ko A. (2.3.1)

JjeJ

Since G(F*)\G(A%,)/U is finite and My, is a free -module of finite rank, we have that
Sa,x(U, A) is a finitely generated A-module.

We say that a compact open subgroup U C G(A%;) is sufficiently small if for some finite
place v of F'*, the projection of U to G(F") contains only one element of finite order. Note that
the map (2.3.1) is not always surjective, but it is if, for example, U is sufficiently small. Thus,
in this case, Sa (U, A) is a free A-module of rank

(dimx Wa) 4(G(FNG(AE)/0).
Moreover, if either U is sufficiently small or A is &-flat, we have that

Sa7X(U7 A) = Sa,X(U7 ﬁ) ®ﬁ A.

Let U and V be compact subgroups of G(A%) such that their projections to G(F,") are
contained in Uy, for each v € S,. Suppose either A is a K-algebra or that the projections of U

and V to G(F,") are contained in G(ﬁF;). Also, let g € G(Aiﬁw) x U,; if A is not a K-algebra,
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we suppose that g, € G(ﬁFZ+). If V. C gUg™?, then there is a natural map
9 Sax (U, A) — Sa(V, A)
defined by
(9.)(h) = ge,s, f(hg).
In particular, if V' is a normal subgroup of U, then U acts on Sa,(V, A), and we have that
San (U, A) = Say (V, A)Y.

Let U; and Uz be compact subgroups of G(A%,) such that their projections to G(F,) are

contained in Uy, for all v € S,.. Let g € G(A}Z’;OO) x U,. If A is not a K-algebra, we suppose that
the projections of Uy and Us to G(F,") are contained in G(ﬁF;), and that gy € G(ﬁF;). Suppose

also that #U;gUs/Us < oo (this will be automatic if U; and Us are open). Then we can define
an A-linear map

[U1gUs] : Say (U, A) — Sa (Ui, A)
by
([U19Us]f)(h) = Z(gi)ﬂ,srf(hgi)7

1

if UlgUg = Hl g,;UQ.

LEMMA 2.1. Let U C G(A?;ST) X [lyes, Uow be a sufficiently small compact open subgroup
and let V C U be a normal open subgroup. Let A be an O-algebra. Suppose that either A
is a K-algebra or the projection of U to G(F,") is contained in G(ﬁFZr). Then Sa,(V, A) is
a finite free A[U/V]-module. Moreover, let Iy;;y C A[U/V] be the augmentation ideal and let
Sax(V; A)yyv = Sax(V, A) /Iy v Sax(V, A) be the module of coinvariants. Define

Try vt Sax (Vi Aujy — San (U, A) = San(V, A)Y
as Try v (f) = ZUEU/V uf. Then Try )y is an isomorphism.

Proof. This is the analog of [CHT08, Lemma 3.3.1], and can be proved in the same way. O

Choose an isomorphism ¢ : K —— C. The choice of fg gives a bijection

L;i— . (Zn,—&—)?om(F,K) -~ (Zn,—&-)Hom(FJF,R)’ (2.3‘2)
where (27H)1o™FK) qenotes the set of elements a € (Z%+)Hom(F.K) guch that

Qrei = —Qrpn+1—i

for every 7 € Hom(F, K) and every i =1,...,n. The map is given by (1fa), = a1 . We have
an isomorphism 0 : W, ®g, C — ij - Then the map

Sa,@({l}v (C) B S(Lja)\/

given by
fr=(g—0(g0f(9)))

is an isomorphism of C[G(A%, )]-modules, where, (1a)); = —(fa)r nt1-4. Its inverse is given by

¢ (g 9707 (6(9)))-
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It follows that Saz({1},C) is a semi-simple admissible module. Hence, Saz({1}, K) is also
semi-simple admissible, and this easily implies that Sa,X(Ur,F) is a semi-simple admissible
G (AOFO;S’")—module. If 7 C Sap({1}, K) is an irreducible G(AOFO;S") x U,-constituent such that the
subspace on which U, acts by x~! is non-zero, then this subspace is an irreducible constituent
of Sa(Uy, K), and every irreducible constituent of it is obtained in this way.

2.4 Base change and descent

Keep the notation as above. We will assume from now on the following hypotheses.

— The extension F'/F7 is unramified at all finite places.

— The group G, is quasi-split for every finite place v.

It is not a very serious restriction for the applications we have in mind, because we will always
be able to base change to this situation. First, note that, given F//FT, if n is odd there always
exists a totally definite unitary group G in n variables with G, quasi-split for every finite v. If
n is even, such a G exists if and only if [F'": Q|n/2 is also even. This follows from the general
classification of unitary groups over number fields in terms of the local Hasse invariants.

Let Gy, = Resp/p+(GLy). Let v be a finite place of F T, so that G, is an unramified group.
In particular, it contains hyperspecial maximal compact subgroups. Let o, be any irreducible
admissible representation of G(F,"). If v is split in F, or if v is inert and o, is spherical, there
exists an irreducible admissible representation BC, (o) of G (F)), called the local base change of
0y, with the following properties. Suppose that v is inert and o, is a spherical representation
of G(F,}); then BC,(0,) is an unramified representation of G (F,"), whose Satake parameters
are explicitly determined in terms of those of o,; the formula is given in [Min], where we take
the standard base change defined there. If v splits in F' as ww®, the local base change in this
case is BCy(0,) = 0, 0i @ (0, 0ire )V as a representation of G (Fif) = GLy,(Fy) X GLy(Fue).
In this way, if we see BC,(0,) as a representation of G(F.}') x G(F,}') via the isomorphism i,, X
iwe : G(E) x G(FS) — GLy(Fy) X GL,(Fye), then BC,(0y,) = 0, ® o). The base change for
ramified finite places is being treated in the work of Moeglin, but for our applications it is enough
to assume that F'/F™T is unramified at finite places.

In the global case, if o is an automorphic representation of G(Ap+), we say that an
automorphic representation II of G (Ap+)=GL,(Ar) is a (strong) base change of o if II,
is the local base change of o, for every finite v, except those inert v where o, is not spherical,
and if the infinitesimal character of Il is the base change of that of o,. In particular, since
G(F%) is compact, II is cohomological.

The following theorem is one of the main results of [Lab], and a key ingredient in this paper.
We use the notation B for the isobaric sum of discrete automorphic representations, as in [Clo90].
THEOREM 2.2 (Labesse). Let o be an automorphic representation of G(Ap+). Then there exists
a partition

n=ny+---+n,

and discrete, conjugate self-dual automorphic representations II; of GLy,(Ar), fori=1,...,r,
such that

I, 8.--8I1L

is a base change of 0.
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Conversely, let I1 be a conjugate self-dual, cuspidal, cohomological automorphic representa-
tion of GL,(Ap). Then II is the base change of an automorphic representation o of G(Ap+).
Moreover, if such a o satisfies that o, is spherical for every inert place v of F'™, then o appears
with multiplicity one in the cuspidal spectrum of G.

Proof. The first part is [Lab, Corollaire 5.3] and the second is [Lab, Théoreme 5.4]. O

Remarks. (1) In [Lab] there are two hypotheses to Corollaire 5.3, namely, the property called
(*) by Labesse and that o is a discrete series, which are automatically satisfied in our case
because the group is totally definite.

(2) Since II; B---HII, is a base change of o, it is a cohomological representation of
GL,(Ar). However, this doesn’t imply that each II; is cohomological, although it will be if
n — n; 1s even.

(3) The partition n =ny + - - - + n, and the representations II; are uniquely determined by
multiplicity one for GL,,, because the II; are discrete.

2.5 Galois representations of unitary type via unitary groups
Keep the notation and assumptions as in the last sections.

THEOREM 2.3. Let 7 be as above. Let m = ®U€ST Ty be an irreducible constituent of the space

Sax (Ur, K). Then there exists a unique continuous semisimple representation
ro(m) : Gal(F/F) — GL,,(K)
satisfying the following properties.
(i) Ifv & Sy U S, is a place of F* which splits as v = ww® in F, then
r(m)IE, = (om0 i 1)),
(i) There is an isomorphism r¢(m)¢ = ry(m)Y (1 — n).
(iii) If v is an inert place such that m, is spherical then r;(m) is unramified at v.

(iv) If w|¢ then r(m) is de Rham at w, and if moreover m,, . is unramified, then ry(m) is
crystalline at w.

(v) For every T € Hom(F, K) giving rise to an place w|¢ of F, the Hodge—Tate weights of
|, with respect to T are given by

HTT(r’Fw) = {.7 —-—n—= aT,j}j:l,.‘.,n'

In particular, r is Hodge—Tate regular.

Proof. For the uniqueness, note that the set of places w of F which are split over a place v
of '™ which is not in S, U S, has Dirichlet density 1, and hence, if two continuous semisimple
representations Gal(F/F) — GL,(Q,) satisfy property (i), they are isomorphic.

Take an isomorphism :: K —— C. By the above argument, the representation we will
construct will not depend on it. By means of ¢ and the choice of fg, we obtain a (necessarily
cuspidal) automorphic representation o = ), 0, of G(Ap+), such that o, = vm, for v € S, finite
and oo is the representation of G(Fi) given by the weight (ifa)Y e (zmt)Hom(FTR) By
Theorem 2.2, there is a partition n =n; 4+ - - - +n, and discrete automorphic representations
I1; of GLy, (AF) such that

N=1, 8.  BII,
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is a strong base change of 0. Moreover, II is cohomological of weight t.a, where (v.a), =a,-1,
for 7 € Hom(F, C). For each i=1,...,r, let S; DS, be any finite set of finite primes of FT,
unramified in F. For each i=1,...,r, let ¢; : Ax/F* — C* be a character such that the
following hold.

— There is an equality v, - (I

— For every place w above a place in S;, 1; is unramified at w.

— For every 7 € Hom(F, C) giving rise to an infinite place w, we have

Yiw(2) = (12/|72])%,

where |2|? = 2z and 6; , =0 if n — n; is even, and J; , = &1 otherwise.

Thus, if n—n; is even, we may just choose ; =1. The proof of the existence of such a
character follows from a similar argument used in the proof of [HT01, Lemma VII.2.8]. With
these choices, it follows that II;7); is cohomological. Also, by the classification of Moeglin
and Waldspurger [MW89], there is a factorization n; =a;b;, and a cuspidal automorphic
representation p; of GLg, (Ar) such that

Wi = p; B pil[B--- B py|" .
Moreover, p;||®%~1/2 is cuspidal and conjugate self-dual. Let ; : A% /F* — C* be a character
such that the following hold.
— There is an equality Xi_l = X5
— For every place w above a place in S;, x; is unramified at w.

— For every 7 € Hom(F, C) giving rise to an infinite place w, we have

Xiw(2) = (T2/[T2])"7,
where y; - =0 if a; is odd or b; is odd, and p; - = £1 otherwise.
Then pi||(bi_1)/ 2x; is cuspidal, cohomological and conjugate self-dual. Note that
x; M@= Db=1)/2 and 41| =)/2 are algebraic characters. Let
re(m) = @(W(PiXiH(bi_l)/Q) ® M W(Xi—lH(az‘—l)(bi—l)/Q)
i=1
@ (1@cd @) @y |2,

where rp =1, and € is the f-adic cyclotomic character. This is a continuous semisimple
representation which satisfies all the required properties. We use the freedom to vary the sets S;
to achieve property (iii). O

Remark 2.4. In the proof of the above theorem, if »=1 and II is already cuspidal, then
re(m) = re,(I1). As a consequence, suppose that ¢:Q, —— C is an isomorphism and II is a
conjugate self-dual, cohomological, cuspidal automorphic representation of GL,(Ar) of weight
txa. Then, by Theorem 2.2, we can find an irreducible constituent m C Sa ({1}, K) such that

Tg,L(H) = Tg(ﬂ').

Remark 2.5. If r¢(m) is irreducible, then the base change of 7 is already cuspidal. Indeed, from
the construction made in the proof and Remark 2.4, (2), we see that r,(7) is a direct sum of
r representations r; of dimension n;. If ry(7) is irreducible, we must have r = 1. Similarly, the
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discrete base change II must be cuspidal, because otherwise there would be a factorization n = ab
with a,b> 1 and r4(7) would be a direct sum of b representations of dimension a. This proves
our claim.

3. An R™4 = T theorem for Hecke algebras of unitary groups

3.1 Hecke algebras

Keep the notation and assumptions as in the last section. For each place w of F', split above a
place v of F*, let Iw(w) C G(Op+) be the inverse image under 4, of the group of matrices in
GL,(0OF, ) which reduce modulo w to an upper triangular matrix. Let Iwi(w) be the kernel of
the natural surjection Iw(w) — (k,5)", where k,, is the residue field of F,,. Similarly, let Up(w)
(respectively Ui (w)) be the inverse image under 4,, of the group of matrices in GL,,(0F, ) whose
reduction modulo w has last row (0, . .., 0, %) (respectively (0, ..., 0,1)). Then U; (w) is a normal
subgroup of Up(w), and the quotient Uy(w)/U;(w) is naturally isomorphic to k..

Let Q be a finite (possibly empty) set of places of FT split in F, disjoint from S, and S,
and let 7'2 5, U.S; U@ be a finite set of places of F T split in F. Let T denote a set of primes
of F above T such that T 11 Tc is the set of all primes of F' above T'. For v € T, we denote by v
the corresponding element of T, and for S C T, we denote by S the set of places of F' consisting
of the v for v € T'. Let

U=]]v.cGax)

be a sufficiently small compact open subgroup such that the following hold.
— If v ¢ T splits in F' then Uy = G(Op+).
— If v € S, then U, =1Iw(v).
— If v € Q then U, = Uy (v).
— If ve Sy then U, C G(Op+).

We write U, =[], Uv. For v € Sy, let x,, be an O-valued character of Iw(v), trivial on Iwy (v).
Since Iw(v) /w1 (D) >~ (kX)", X is of the form

n
g T xvilgio),
=1

where X, : kX — 0.
Let w be a place of F, split over a place v of F* which is not in 7. We translate the Hecke
(4)

operators Ty for j=1,...,n on GL,(OF,) to G via the isomorphism 4. More precisely, let

g% denote the element of G(A%,) whose v-coordinate is

i1 ww]_j 0
w 0 1n—j )’

and with all other coordinates equal to 1. Then we define Téﬁ ) to be the operator [U gg U | of
Sax (U, A). We will denote by TZ  (U) the &-subalgebra of Endg(Sa,x (U, €)) generated by the

operators qu,j ) for j=1,...,n and (qu,n))*l, where w runs over places of F which are split

over a place of F'* not in T. The algebra TZ’X(U) is reduced, and finite free as an -module
(see [CHTO08]). Since € is a domain, this also implies that TiX(U ) is a semi-local ring. If v € @,
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we can also translate the Hecke operators Vi, 1 of § 1, for o € FT}X with non-negative valuation, in
exactly the same manner to operators in Sa (U, A), and similarly for V,, o if U, = Up(v).
Write

Sar (U, K) @Tr (3.1.1)

where 7 runs over the irreducible constituents of Sa,X(Ur7 K) for which 7Y # 0. The Hecke algebra
TaT,x(U) acts on each 7V by a scalar, say, by

At TE (U) — K.

Then, ker(A;) is a minimal prime ideal of TaT,x(U ), and every minimal prime is of this form. If
mC TaT,x(U ) is a maximal ideal, then

Sa,X(U7 F)m 75 07

and localizing at m kills all the representations 7 such that ker(A;) ¢ m. Note also that TaT,x(U )/m
is a finite extension of k. For w a place of F', split over a place v ¢ T', we will denote by T,, the
n-tuple (Té,l), e T&”)) of elements of TiX(U ). We denote by T,, its reduction modulo m. We
use the notation of [CHTO08, §2.4.1] regarding torsion crystalline representations and Fontaine—
Laffaille modules.

PROPOSITION 3.1. Suppose that m is a maximal ideal of TZ,X(U) with residue field k. Then
there is a unique continuous semisimple representation

Tm : Gal(F/F) — GLy (k)
with the following properties. The first two already characterize Ty, uniquely.

(i) The representation T, is unramified at all but finitely many places.

(ii) If a place v ¢ T splits as ww® in F then Ty is unramified at w and 7y (Frob,,) has
characteristic polynomial P, = (X).

(iii) There is an isomorphism 75 =7/ (1 —n).
(iv) If a place v of F'* is inert in F and if U, is a hyperspecial maximal compact subgroup of
G(F,}), then Ty, is unramified above v.

(v) If we Sy is unramified over ¢, U,
that

i = G(Op+) and for every T € I, above w we have

l—1-nza;12---2ar, =0,

)

then
Tulrw = Guw(Muw)
for some object Mmﬂu of MF . Moreover, for every T € fg over w, we have
dimy,(gr™" M) R, 7,001 0 =1
ifi=j—n—a;; forsome j=1,...,n, and 0 otherwise.
Proof. Choose a minimal prime ideal p C m and an irreducible constituent 7 of
Sa (U, K)

such that 7V # 0 and TgX(U) acts on 7V via TgX(U)/p. Choose an invariant lattice for r(m)
and define then 7, to be the semi-simplification of the reduction of r,(7). This satisfies all of the
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statements of the proposition, except for the fact that a priori it takes values on the algebraic
closure of k. Since all the characteristic polynomials of the elements on the image of 7, have
coefficients in k, we may assume (because k is finite) that, after conjugation, 7, actually takes
values in k. O

We say that a maximal ideal m C ']I‘:‘;X(U ) is Eisenstein if Ty, is absolutely reducible. We
define (see [CHTO8, ch. 2]) 4, as the group scheme over Z given by the semi-direct product of
GL,, x GL; by the group {1,;} acting on GL,, x GL; by

Wg ™ = (u'g™" ).
There is a homomorphism v : 4,, — GL; which sends (g, ) to  and j to —1.

PROPOSITION 3.2. Let m be a non-Eisenstein maximal ideal of']I':‘QX(U), with residue field equal
to k. Then 7y, has an extension to a continuous morphism
Tm: Gal(F/FT) — 4, (k).
Pick such an extension. Then there is a unique continuous lifting
rm: Gal(F/F*) — %,(Ty  (U)m)
of 7, with the following properties. The first two of these already characterize the lifting ry
uniquely.
(i) The representation 1y, is unramified at almost all places.
(ii) If a place v € T of FT splits as ww® in F, then ry, is unramified at w and ry(Frob,,) has
characteristic polynomial Py, ., (X).
(iii) We have v ory = 61_"6;"/‘},“ where §p/p+ is the non-trivial character of Gal(F/F*) and
pm € Z)27Z.
(iv) Ifwv is an inert place of F* such that U, is a hyperspecial maximal compact subgroup of
G(F,") then ry, is unramified at v.

(v) Suppose that w € Sy is unramified over {, that Uy,
above w we have that

= G(Op+), and that for every T € I

‘F+

{—1-nza;12--Zar,=0.
Then for each open ideal I C TaT’X(U)m,
(Tm ®T.§X(U)m TZ,X(U)m/I”Fw = Gu(Mm,1,w)
for some object My 1. of MF (.

(vi) Ifve S, and o € I, then ry(0) has characteristic polynomial
n
[TTX —x i (artz! o).
j=1

(vii) Suppose that v € Q. Let ¢5 be a lift of Froby to Gal(F/F5). Suppose that a € k is a
simple root of the characteristic polynomial of Ty (¢3). Then there exists a unique root & €
TZ’X(U )m of the characteristic polynomial of ry(¢y) which lifts o.

Let @y be the uniformizer of Fy corresponding to ¢y via Artp. . Suppose that Y C Sa (U, K)n
is a TZ’X(U) [Vews,1]-invariant subspace such that Vg 1 — & is topologically nilpotent on Y, and

vy

let TT(Y)) denote the image of TE,X(U ) in Endg (Y'). Then for each 8 € F with non-negative
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valuation, Vg1 (in Endg (Y)) lies in T (Y), and 3 — V(B) extends to a continuous character V :
EX — TT(Y)*. Further, (X — V1) divides the characteristic polynomial of 1 (¢5) over T (Y').
Finally, if ¢, =1 mod £ then
Tmlr, 2s® (Vo Art;ﬁ;),

where s is unramified.

Proof. This is the analogue of [CHT08, Proposition 3.4.4], and can be proved exactly in the same
way. O

COROLLARY 3.3. Let Q' denote a finite set of places of F'™, split in F' and disjoint from T'. Let m
be a non-Eisenstein maximal ideal of T} , (U) with residue field k, and let U, (Q’) = [Logo Us x

[l,eqr Ui (v). Denote by ¢ : ']I‘TUQ U — TT (U) the natural map, and let m’ = ¢~ (m), so that
m’ is also non-Eisenstein with residue field k. Then the localized map ¢ : ']I‘;L;Q/(Ul(Q’ N —

T;X(U)m is surjective.

Proof. It suffices to see that T / 1 is in the image of ¢ for j =1, ,m and w a place of F' over
@', which follows easily because ryn, = ¢ o ry, and so

T — ¢< J01-9)/2 Ty </\ rm/) (qbw)),

where ¢, is any lift of Frobenius at w. O

3.2 The main theorem
In this section we will use the Taylor—Wiles method in the version improved by Diamond,
Fujiwara, Kisin and Taylor. We will recapitulate the running assumptions made until now, and
add a few more. Thus, let F* be a totally real field and F/F™ a totally imaginary quadratic
extension. Fix a positive integer n and an odd prime ¢ > n. Let K/Q, be a finite extension, let
K be an algebraic closure of K, and suppose that K is big enough to contain the image of every
embedding F — K. Let ¢ be the ring of integers of K, and k its residue field. Let Sy denote the
set of places of F'* above /. Let Sg denote a set of places of F' above ¢ such that Sg 11 Se are
all the places above £. We let I, ¢ denote the set of embeddings F' — K which give rise to a place
in Sp. We will suppose that the following conditions are satisfied.

— The extension F'/F7 is unramified at all finite places.

— The prime ¢ is unramified in F'".

— Every place of Sy is split in F.

Let G be a totally definite unitary group in n variables, attached to the extension F/FT such
that G, is quasi-split for every finite place v (cf. §2.4 for conditions on n and [FT*:Q)] to
ensure that such a group exists). Choose a lattice in F* giving a model for G over O+, and fix
a basis of the lattice, so that for each split v = ww¢, there are two isomorphisms

iw: Gy — GLyp,

and
iwe : Gy — GLy /R,
taking G(Op+) to GLn(OF,) and GLy(OF,. ) respectively.
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Let S, denote a finite, non-empty set of primes of F'*, disjoint from Sy, such that if v € S,
then the following hold.

— The prime v splits in F.
— If v lies above a rational prime p then v is unramified over p and [F((,) : F] >n

Let S, denote a finite set of places of F'T, disjoint from S, U Sy, such that if v € S, then the
following hold.

— The prime v splits in F.
— We have ¢, =1 mod /.

We will write T'= .5, U S, U S;, and To Sg for a set of places of F' above those of T" such
that T 11 T is the set of all places of F above T. For S C T, we will write S to denote the set
of v for v € S. We will fix a compact open subgroup

v=1[0
of G(A%, ), such that the following hold.
— If v is not split in F then U, is a hyperspecial maximal compact subgroup of G(F,}).
— Ifv¢g S, US, splits in F then U, = G(ﬁFJ).
— If v e S, then U, =1Iw().
— If v e S, then U, =i ' ker(GL,(OF,) — GLy (ky)).

Then, U is sufficiently small (U, has only one element of finite order if v € S,;) and its projection
to G(F,") is contained in G(ﬁF;). Write

U= [] U..
vESy

For any finite set @ of places of F'* , split in F" and disjoint from 7', we will write T(Q) =T U Q.
Also, we will fix a set of places T(Q) S T of F over T(Q) as above, for each Q. We will also write

=[[ v x [] to@

vgQ veQ
and
=[x [] 1(®
vEQ veQ

Thus, Up(Q) and U1(Q) are also sufficiently small compact open subgroups of G(A%, ).
Fix an element a € (Z»)Hom(EK) guch that for every 7 € Iy we have:

= Qrci = —O0n41—i; and
—l—=1-nZa 12 -Zar,=>0.

Let m C Til(U ) be a non-Eisenstein maximal ideal with residue field equal to k. Write
T= Til(U )m. Consider the representation

Tm: Gal(F/FT) —4,(k)

and its lifting
rm: Gal(F/F1) — 4,(T)
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given by Proposition 3.2. For v € T', denote by 7y, ,, the restriction of 7y, to a decomposition group
I'; at v. We will assume that 7y, has the following properties.

— The image 7 (Gal(F/FT(¢))) is big (see [CHTO08, Definition 2.5.1], where the same notion
is also defined for subgroups of GL,(k)).
— If v € S, then 7y, is the trivial representation of I';.
— If v e S, then 7, is unramified at v and
HO(Ty, (ad 7 )(1)) = 0.
We will use the Galois deformation theory developed in [CHTO08, § 2], to where we refer the
reader for the definitions and results. Consider the global deformation problem
S =(F/F*,T, f, 0, T, El_n&?«“ﬂ/‘F-ﬂ {Zv}ver),
where the local deformation problems &, are as follows. For v € T', we denote by
rUY s — GLy, (RC)
the universal lifting ring of 7, ,,, and by .%, C R°¢ the ideal corresponding to Z,.

— For v e S,, 9, consists of all lifts of 7, and thus %, = 0.

— For v € Sy, 9, consist of all lifts whose Artinian quotients all arise from torsion Fontaine—
Laffaille modules, as in [CHTO0S, §2.4.1].

— For v € S,, 9, corresponds to the ideal fv(l’l"“’l) of R°¢ as in [Tay08, §3]. Thus, 2,

v

consists of all the liftings r : 'y — GL,,(A) such that for every o in the inertia subgroup I3,
the characteristic polynomial of r(o) is

Let

TV Gal(F/F) — 4, (RSY)
denote the universal deformation of 7y, of type .. By Proposition 3.2, ry, gives a lifting of 7,
which is of type .%; this gives rise to a surjection

RYY T,
Let H = Sa,1(U, O)m. This is a T-module, and under the above map, a R?i"—module. Our main
result is the following.
THEOREM 3.4. Keep the notation and assumptions of the start of this section. Then
(R};ﬁv)red ~T.
Moreover, jim =n mod 2.

Proof. The proof is essentially the same as Taylor’s [Tay08], except that here there are no primes
S(B)1 and S(B)2, in his notation. One has just to note that his argument is still valid in our
simpler case. The idea is to use Kisin’s version [Kis09] of the Taylor—Wiles method in the following
way, in order to avoid dealing with non-minimal deformations separately. There are essentially
two moduli problems to consider at places in S,. One of them consists in considering all the
characters y, to be trivial. This is the case in which we are ultimately interested, but the local
deformation rings are not so well behaved (for example, they are not irreducible). We call this
the degenerate case. On the other hand, we can also consider the characters x, in such a way
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that x.,; # Xv,; for all v € S, and all i # j. This is the non-degenerate case, and we can always
consider such a set of characters by our assumption that ¢ > n. Note that both problems are
equal modulo £. The Taylor—Wiles—Kisin method does not work with the first moduli problem,
but it works fine in the non-degenerate case. Taylor’s idea is to apply all the steps of the method
simultaneously for the degenerate and non-degenerate cases, and obtain the final conclusion of
the theorem by means of comparing both processes modulo A, and using the fact that in the
degenerate case, even if the local deformation ring is not irreducible, every prime ideal which is
minimal over A contains a unique minimal prime, and this suffices to proof what we want. We
will reproduce most of the argument in the following pages. What we will prove in the end is
that H is a nearly faithful R%"V-module, which by definition means that the ideal Ann R;ﬂv(H )
is nilpotent. Since T is reduced, this proves the main statement of the theorem.

We will be working with several deformation problems at a time. Consider a set ) of finite
set of places of F'*, disjoint from T, such that if v € Q, then the following hold.
— The prime v splits as ww® in F'.
— We have ¢, =1 mod /.
— The representation 7y, decomposes as 7'y, = @v P s, with dim @v =1 and such that s,
does not contain v, as a sub-quotient.

Let T(Q) and T(Q) be as in the start of the section. Also, let {x, : Iw(?)/Iw1(T) — 0* }yes,
be a set of characters of order dividing ¢. To facilitate the notation, we will write x, =
(Xv,15 - -5 Xon) and x = {xo }ves,. Consider the deformation problem given by

yx,Q = (F/F+, T(Q)a T(Q), O, T, 517”51@71:“ {@;}ueT(Q))y
where the local deformation problems 2, are given as follows.
— Forve S, USy, I, =2,.
— For veS,, 2] consists of all the liftings r: 'z — GL,(A) such that the characteristic
polynomial of (o) for o € I is

n

[T —x.i(Artg) o)

i=1
(see [Tay08, §3]).
— For ve€ Q, 2, consists of all Taylor—Wiles liftings of 7, as in [CHTO8, §2.4.6]. More

precisely, 2, consists of all the liftings 7 : I'y — GL,,(A) which are conjugate to one of the
form v, @ s, with 1, a lift of ¢, and s, an unramified lift of s,,.

Denote by .#X" the corresponding ideal of RI°° for every v € T(Q). Let
rg Gal(F/FY) — G, (RY)
denote the universal deformation of 7 of type ., ¢, and let

rf ,:Gal(F/FY) = 4, (R )

denote the universal T-framed deformation of 7 of type .7, ¢ (see [CHT08, 2.2.7] for the definition
of T-framed deformations; note that it depends on 7). Thus, by definition of the deformation

problems, we have that R}f}lli‘; = R}f}ﬁ". As we claimed above, both problems are equal modulo /.
We have isomorphisms 7

v A= RS /A (3.2.1)
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and
R /A= R /A, (3.2.2)
compatible with the following natural commutatlve diagrams.
PR

VlQ

Also, let
Ri?fr _ ® loc/jxv
Then
RS /A= RPG /A (3.2.3)

To any T-framed deformation of type . o and any v €T we can associate a lifting of 7, of
type %,, and hence there are natural maps

loc O
Rir — Ry
which, modulo A, are compatible with the 1dentiﬁcations (3.2.3) and (3.2.2).
Let 7 = O[[ Xy, jllver:i,j=1,...n- Then a choice of a lifting rumv of 7y, over RuniVQ representing

the universal deformation of type Z\,Q gives rise to an 1somorphlsm of Run“’ algebras
Or ~ Runiv
R} = RYN o T, (3.2.4)
so that

(r90: {ln + (Xuig)ver)

represents the universal T-framed deformation of type .7, o (see [CHTO08, Proposition 2.2.9]).
Moreover, we can choose the liftings rumv so that

7*;5“‘;2 ®e k= 7'}5‘?1“6’2 ®o k
under the natural identifications (3.2.1). Then the isomorphisms (3.2.4) for x and 1 are
compatible with the identifications (3.2.2) and (3.2.1).
For v € Q, let 1, denote the lifting of 5 to (R};;‘V ) given by the lifting rumv Also, write

Aq for the maximal ¢-power order quotient of [[, o k5, and let ag denote the 1deal of T[Ag]
generated by the augmentation ideal of ﬁ[AQLand by the X, ;; forveT and i,j=1,...,n.
Since the primes of @) are different from ¢ and 15 is unramified, 1, is tamely ramified, and then

H(wv oArtp): Ag — (R};IXIVQ)X
vEQR
makes Rumv an O[Agl-algebra. This algebra structure is compatible with the identifications

univ univ

(3.2.1), because we chose the liftings 3™ and r'Z" compatibly. Via the isomorphisms (3.2.4),

R@Z o are T [Ag]-algebras, which are compatlble modulo A for the different choices of x. Finally,
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we have an isomorphism

O niv
R Jag~RY (3.2.5)

o
compatible with the identifications (3.2.2) and (3.2.1), the last one with Q = @.
Note that since
Sa1(U, k) = Say (U, k)
we can find a maximal ideal m, o C ’]I‘;jCX(U ) with residue field k such that for a prime w of F split
()

over a prime v € T of F'™, the Hecke operators T,y’ have the same image in ']I'Z’X(U) /my &=k as

in ']I‘T 1(U)/m = k. It follows that 7y, , =7, and in particular m, ¢ is non-Eisenstein. We define

m, o CTa (Q)(Ul(Q)) as the preimage of m, & under the natural map
T T T
Taid (U1(Q)) » Tl (U(@Q)) ~ Tai? (U) = T1(U).

Then Tg(}(Q)(Ul( Q))/my.o =k, and if a prime w of F splits over a prime v & T(Q) of F't, then

the Hecke operators T have the same image in ’]I‘a(x )( U1(Q))/my,g =k as in Tg:l(U)/m = k.
Hence, Tmyo =Tm and m, ¢ is non-Eisenstein. Let

Py : Gal(F/F*) = G(Tald (U1 (Q))m, o)
be the continuous representation attached to m, g as in Proposition 3.2. Write T, = ’]I‘aT7X(U Jmy.o

and Hy = Sa (U, O)n,, . We have the following natural surjections

Tal (U1(Q))my o~ Tan® (Uo(@))my — Tas® (Ve = Ty (3.2.6)

Mx,Q
The last equality follows easily from Corollary 3.3.

For each v € @, choose ¢; €'z a lift of Frobgz, and let wgng be the uniformizer
corresponding to ¢5 via Artp, . Let

Py € Tas® (U1(Q))my, o [X]

denote the characteristic polynomial of ry ,(¢7). Since Y, (¢5) is a simple root of the
characteristic polynomial of 7m(¢3), by Hensel’s lemma, there exists a unique root Az €

T(Q)(Ul(Q))mXQ of Pj lifting 9, (¢3). Thus, there is a factorization
Py(X) = (X — A3)Qy(X)
T(Q) T(Q) X : s
over Ta ' (U1(Q))m, o, Where Q5(Az) € Ta ' (U1(Q))g, - By part (i) of Proposition 1.7 and
Lemma 1.9, P5(Vm. 1) =0 on Sa(U1(Q), ﬁ)mx o Fori=0,1, let
,x Q= <H Qv Wy, > a,x (UZ(Q)7 ﬁ)mX,Q C Sa,x(Ui(Q)7 ﬁ)mX,Qa
vEQR
and let T;, o denote the image of ’]I‘a(x )(Ul(Q)) o in Endg(H;y q). We see that Hy g is a

direct summand of Sa, (U1(Q), O) as a TS X ( 1(Q))-module. Also, we have an isomorphism

(H Qv wz,0 ) HX—HO,XQ

vEQR
This can be proved using Proposition 1.7 and Lemmas 1.9 and 1.10, as in [CHTO0S, 3.2.2].
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For all v € Q, V1 = Ay on Hy, g. By part (vii) of Proposition 3.2, for each v € @) there is

a character with open kernel
Vy: BX — ’]I‘i 0
such that the following hold.

— If a € OF, is non-zero, then V, 1 =V, (a) on Hy -
— There is an isomorphism (rm, , ® T1 y,Q)lr; = sy @ (Vi 0 Art;}}l), where s, is unramified.
It is clear that Vj, o Arty! is a lifting of ¥, and s, is a lifting of 5,. It follows by (v) and (vi)

of the same proposition that rm, , ® Ty @ gives rise to a deformation of T of type . @, and
thus to a surjection

univ

‘yX;Q - ’]rlevQ’
such that the composition

[I 7%~ 2a = (RE) = T q
vEQR
univ

coincides with HUEQ V. We then have that H; ¢ is an Ryx Q—module, and we set

Upr _ ) Ur
Hixe=Hxe®ryr By o =Hixo®0 7.

Since ker([[,cq k5 — Agq) acts trivially on Hi y g and Hy g is a TaT,g(Q)(Ul(Q))—direct sum-
mand of Sy, (U1(Q), €), Lemma 2.1 implies that Hi ¢ is a finite free 0[Ag]-module, and that

(HLX:Q)AQ = Hox,@ = Hy.
Since U is sufficiently small, we get isomorphisms
Sax(U, O) @ k= Sa (U, k) =Sa1(U, k)= 5.1(U, O) ®¢ k

and

Sa7x(U1(Q), ﬁ) Qo k= Sa,x(Ul(Q)v k?) = Sa,l(Ul(Q)7 k) = Sa,l(Ul(Q)7 ﬁ) ®e k.
Thus we get identifications

H, /A= Hi/\,

HyyQ/A= Hi1g/A
and

Hy Yo/ A= Hf o/,
compatible with all the pertinent identifications modulo A made before.

Let
oo = (1= (—1)™)2

and

q=[F":Qn(n—-1)/2+[F":Qnewo.
By [CHTO08, Proposition 2.5.9], there is an integer ¢ > qo, such that, for every natural number
N, we can find a set of primes Quy (and a set of corresponding v, and 3, for 7,) such that the
following hold.

— The set Qn has g elements.
— For v € Qn, ¢, = 1(mod V).
— The algebra RE{QN can be topologically generated over RIIOCT by ¢’ = q — qo elements.
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Define
O 1
RY%, = RO (Y, ... Yyl
Then there is a surjection
O O
Rl,go - Ry’iQN

extending the natural map Rll?%_)RE’iQN' Reducing modulo A and lifting the obtained

surjection, via the identifications

Or
RX’OO

0
//\ = Rl,go/Av
we obtain a surjection

DT Ur
RX,OO - Ry%QN

. loc Or
extending the natural map RX,T - R&”X,Q N

For v € S,, RI°°/.#X" is a power series ring over & in n? variables (see [CHTO08, Lemma 2.4.9]),
and for v € Sy it is a power series ring over & in n? + [Fy : Q¢n(n — 1)/2 variables (see [CHTO0S,
Corollary 2.4.3]).

Suppose that x,; # Xy, ; for every v € S, and every i, j =1, ..., n with i # j. Then, by [Tay08,
Proposition 3.1], for every v € S,, R°¢/.#)X" is irreducible of dimension n? + 1 and its generic
point has characteristic zero. It follows that (Rl°¢/.#X")*d is geometrically integral (in the sense
that (R1°¢/.7X")*d @4 ¢ is an integral domain for every finite extension K’/K, where ¢” is the
ring of integers of K') and flat over &. Moreover, by [BGHT, Lemma 3.3, part 3],

(= (@), (1707 ) @ (@), B/ ) )i Yol

and the same part of that lemma implies that (Rggo)red is geometrically integral. We conclude
that in the non-degenerate case, RE@O is irreducible, and, by [BGHT, Lemma 3.3, part 2], its
Krull dimension is

14+ q+n’#T — [F: Qnee.

Suppose now that we are in the degenerate case, that is, x, =1 for every v € S,. Then
(see [Tay08, Proposition 3.1]) for every such v, RI°¢/.#X" is pure of dimension n? + 1, its generic
points have characteristic zero, and every prime of RI°¢/.#X* which is minimal over A(RI°¢/.7X")
contains a unique minimal prime. After eventually replacing K by a finite extension K’ (which
we are allowed to do since the main theorem for one K implies the same theorem for every K'),
RI°¢/ 7} satisfies that for every prime ideal p which is minimal (respectively every prime ideal q
which is minimal over A(R!°¢/.#X")), the quotient (RI°°/.#,X")/p (respectively (RI°¢/.7X*)/q) is
geometrically integral. It follows then by [BGHT, Lemma 3.3, parts 2, 5 and 7] that every prime
ideal of lego which is minimal over )\le’go contains a unique minimal prime, the generic points

of RID’E’;O have characteristic zero and REZO is pure.
Let Ao =Z}, Soo = T[[Ax]] and a = ker(S — &), where the map sends A, to 1 and the

variables X, ; ; to 0. Thus, S is isomorphic to a power series ring over &' in g + n?#T variables.
For every N, choose a surjection

Aso = AQy-
We have an induced map on completed group algebras

Ol[Ax]l = O[Aqy].
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and thus a map
Soo = T[Agy] — R@T on (3.2.7)

which makes R2F Foy A algebra over So.. The map Soc = T [Ag,] sends the ideal a to ag,.

Let ¢y = ker(Soo — Q[AQN]). Note that every open ideal of S, contains ¢y for some N. The
following properties hold.

— The algebra H-T Lx.OnN is finite free over Soo/cn.

- : : Or ~ Puniv
There is an isomorphism R 7 0 / a~ RJY.

— There is an isomorphism Hy” Ixon/a~H

In what follows, we will use that we can patch the RE/z o to obtain in the limit a copy of
N

RS@O, and simultaneously patch the H; g, to form a module over RS@O, finite free over S
The patching construction is carried on in exactly the same way as in [Tay08]. The outcome of

this process is a family of RDT ®¢ Sso-modules H, DT ~ With the following properties.

(1) They are finite free over Ss, and the Ss.-action factors through RYZ . in such a way

X007

that the obtained maps S — Rx r — RT AP the maps defined in (3.2.7) for every N; in
) B QN
particular, there is a surjection

Rch;o/a un1v /Cl g;lxi?/z )

There are isomorphisms H A~ HZT /X of R T/~ R2T /\-modules.
1,1,00 1,00

l X o)
(3) There are isomorphisms HZ Lxoo/0 Hyof R go /a- modules where we see H, as a module

over RDT r_/a by means of the map in (1). Moreover, these isomorphisms agree modulo A via the
1dent1ﬁcat10ns of (2).

Let us place ourselves in the non-degenerate case. That is, let us choose the characters y such
that xu,; # Xv,j for every v € S, and every i # j. This is possible because £ > n and ¢, = 1(mod /)
for v € S,. Since the action of Se on H-T _ factors through RUT

1,x,00 X007
depth oy ( H{" ) >depthg(H{Z ). (3.2.8)

Also, since H1 oo 18 finite free over S, which is a Cohen—Macaulay ring, by the Auslander—
Buchsbaum formula we have that

depthg,_(HTT ) =dim Se =1+ q + n#T. (3.2.9)

Since the depth of a module is at most its Krull dimension, by equations (3.2.8) and (3.2.9) we
obtain that

dim(RYZ, /Ann o (H{T ) = 1+ q+n’#T. (3.2.10)
Recall that RE{,O is irreducible of dimension
14+ q+n*#T — [FT: Qnes. (3.2.11)

Then, (3.2. 10) (3.2.11) and [Tay08, Lemma 2.3] imply that e =0 (that is tm = n(mod 2))
and that HT'T __ is a nearly faithful R)E‘,T -module. This implies in turn that H7 Lxoo/ A= H E 1 oo/ A

is a nearly faithful RE?C;O JA REZO /A-module (this follows from Nakayama’s lemma, as in [Tay08,

1,x,00

Lemma 2.2]). Since the generic points of lefgo have characteristic zero, REZ;O is pure and every
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prime of REgO which is minimal over )\Rlljgo contains a unique minimal prime of R'ljgo, the same
lemma implies that H E 1T,oo is a nearly faithful Rligo—module. Finally, using the same lemma again,
this implies that HE 1 /0= H is a nearly faithful RID;O /a-module, and since lego Ja—» R};‘i",
H is a nearly faithful gﬁliv—module. O

4. Modularity lifting theorems

In this section we apply the results of the previous sections to prove modularity lifting theorems
for GL,,. We deal first with the case of a totally imaginary field F'.

THEOREM 4.1. Let F'™ be a totally real field, and F a totally imaginary quadratic extension of
FT. Let n>1 be an integer and £ > n be a prime number, unramified in F. Let

r:Gal(F/F) — GL,(Qp)
be a continuous irreducible representation with the following properties. Let T denote the
semisimplification of the reduction of r.
(i) There is an isomorphism ¢ =1V (1 — n).
) The representation r is unramified at all but finitely many primes.
(iii) For every place v|¢ of F, r|p, is crystalline.
) There is an element a € (Z")Hom(FQ) guch that the following hold.
— For all 7 € Hom(F™*,Qy), we have either
l—1-nza12--Za,=0
or
b—1-nZ=are1 2" 2 aren 2 0.
— For all T € Hom(F, Q) and every i=1,...,n,
Qrei = —Ornt1—i-
— For all T € Hom(F, Q,) giving rise to a prime w|¢,
HT:(rlr,) =1{j —n —ar;}j—-
In particular, r is Hodge—Tate regular.
(v) The field F) does not contain F ().
(vi) The group 7(Gal(F/F({))) is big.
(vii) The representation T is irreducible and there is a conjugate self-dual, cohomological,

cuspidal automorphic representation I1 of GL,, (Ar), of weight a and unramified above ¢, and an
isomorphism ¢ : Q, —— C, such that ¥ = 7,,(I).

Then r is automorphic of weight a and level prime to /.

Proof. Arguing as in [Tay08, Theorem 5.2], we may assume that F contains an imaginary
quadratic field E with an embedding 7 : E < Q, such that

b—1-n=za;12 Zarp,=20

for every 7 : F' — Q extending 75. This will allow us to choose the set Sy (in the notation of §2.3)

in such a way that the weights a,; are all within the correct range for 7 € I,. Let ¢ : Q —- Cand
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let IT be a conjugate self-dual, cuspidal, cohomological automorphic representation of GL,(Afr)

of weight t,a, with II, unramified, such that 7=7,,(II). Let S, denote the places of F' not

dividing ¢ at which r or II is ramified. Since err(

prime vy of F' with the following properties.

ad7” .
) does not contain F({;), we can choose a

— It does not belong to .S, and does not divide .

— It is unramified over a rational prime p, for which [F({,) : F'] > n.
— It does not split completely in F'((p).

— We have ad 7(Frob,, ) = 1.

Choose a totally real field Lt /F* with the following properties.

— The degree [L™ : Q] is even.
— The extension L /F7 is Galois and soluble.

— The composite L = LT F is unramified over LT at every finite place.

— The field L is linearly disjoint from err(?)<<.£) over F.
— The prime £ is unramified in L.
— All primes of L above S, U {v1} are split over L*.
— The places v; and cv; split completely in L/F.
— Let II;, denote the base change of II to L. If v is a place of L above S,., then:
* Nv = 1(mod £);
x T(Gal(Ly/Ly)) =1;
* v =1; and
Tw(v)
x 11 vav # 0.
Since [L* : Q)] is even, there exists a unitary group G in n variables attached to L/L" which
is totally definite and such that G, is quasi-split for every finite place v of L*. Let Sy(L™)
denote the set of primes of LT above ¢, S,(L1) the set of primes of LT lying above the

restriction to F'* of an element of S,, and S,(L™) the set of primes of LT above v1|p+. Let
T(LT)=8i(LT)US,(LT)US,(LT). It follows from Remarks 2.4 and 2.5 and Theorem 3.4 that

7| Gai(F,/ 1) is automorphic of weight a7, and level prime to ¢, where aj, € (zn-+)Hom(L.Qy) g defined

as ar; = a,|,. By [BGHT, Lemma 1.4] (note that the hypotheses there must say PV rey
rather than ‘r¥ = r ® x’), this implies that r itself is automorphic of weight a and level prime
to £. O

We can also prove a modularity lifting theorem for totally real fields F'*. The proof goes
exactly like [Tay08, Theorem 5.4], using [BGHT, Lemma 1.5] instead of [CHT08, Lemma 4.3.3].

THEOREM 4.2. Let F™ be a totally real field. Let n > 1 be an integer and ¢ >n be a prime
number, unramified in F'. Let

T Gal(F+/F+) — GL,(Qy)

be a continuous irreducible representation with the following properties. Let 7 denote the
semisimplification of the reduction of r.

(i) There is an isomorphism r¥ = r(n — 1) ® y for some character x : Gal(F+/F+) - Q)
with x(¢,) independent of v|oco (here ¢, denotes a complex conjugation at v).
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(ii) The representation r is unramified at all but finitely many primes.

(iii) For every place v|¢ of F, r|r, is crystalline.

(iv) There is an element a € (Z”’JF)HOH‘(F+ Qo) such that the following hold.

— For all € Hom(F*, Qy), we have either
t—=1-nzar12" 20,20

or
g_l_n>arc,1>"'>a'rc,n>0-
— For all € Hom(F*, Q) and everyi=1,...,n,

Qrei = —QArmt+1—i-

— For all 7 € Hom(F™*, Q) giving rise to a prime v|/,

HT:(rlr,) ={j —n —ar i}

In particular, r is Hodge—Tate regular.

(v) The field (F )47 does not contain F+((y).
(vi) The group 7(Gal(F' /F*(())) is big.

(vil) The representation T is irreducible and automorphic of weight a.

Then r is automorphic of weight a and level prime to £.
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