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representations of unitary type

Lucio Guerberoff

Abstract

We prove modularity lifting theorems for `-adic Galois representations of any dimension
satisfying a unitary type condition and a Fontaine–Laffaille condition at `. This extends
the results of Clozel, Harris and Taylor, and the subsequent work by Taylor. The proof
uses the Taylor–Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor,
applied to Hecke algebras of unitary groups, and results of Labesse on stable base change
and descent from unitary groups to GLn.

Introduction

The goal of this paper is to prove modularity lifting theorems for Galois representations of any
dimension satisfying certain conditions. We largely follow the articles [CHT08, Tay08], where an
extra local condition appears. In this work we remove that condition, which can be done thanks
to the latest developments of the trace formula. More precisely, let F be a totally imaginary
quadratic extension of a totally real field F+. Let Π be a cuspidal automorphic representation
of GLn(AF ) satisfying the following conditions.

– There exists a continuous character χ : A×
F+/(F+)×→ C× such that χv(−1) is independent

of v|∞ and

Π∨ ∼= Πc ⊗ (χ ◦NF/F+ ◦ det).

– The representation Π is cohomological.

Here, c is the non-trivial Galois automorphism of F/F+, and cohomological means that Π∞ has
the same infinitesimal character as an algebraic, finite-dimensional, irreducible representation of
(ResF/Q GLn)(C). Let ` be a prime number, and ι : Q`

∼−−→ C an isomorphism. Then there is a
continuous semisimple Galois representation

r`,ι(Π) : Gal(F/F )→GLn(Q`)

which satisfies certain expected conditions. In particular, for places v of F not dividing `, the
restriction r`,ι(Π)|Gal(F v/Fv) to a decomposition group at v should be isomorphic, as a Weil–
Deligne representation, to the representation corresponding to Πv under a suitably normalized
local Langlands correspondence. The construction of the Galois representation r`,ι(Π) under these
hypotheses is due to Clozel et al. [CHLa, CHLb], Chenevier and Harris [CH09], and Shin [Shi],
although they only match the Weil parts and not the whole Weil–Deligne representation. In the
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Modularity lifting theorems for Galois representations of unitary type

case that Π satisfies the additional hypothesis that Πv is a square-integrable representation
for some finite place v, Taylor and Yoshida have shown in [TY07] that the corresponding
Weil–Deligne representations are indeed the same, as expected. Without the square-integrable
hypothesis, this is proved by Shin in [Shi] in the case where n is odd, or when n is even and the
Archimedean weight of Π is ‘slightly regular’, a mild condition we will not recall here. We will
not need this stronger result for the purposes of our paper.

We use the instances of stable base change and descent from GLn to unitary groups, proved by
Labesse [Lab] to attach Galois representations to automorphic representations of totally definite
unitary groups. In this setting, we prove an Rred = T theorem, following the development of the
Taylor–Wiles method used in [Tay08]. Finally, using the results of Labesse again, we prove our
modularity lifting theorem for GLn. We describe with more detail the contents of this paper.

Section 1 contains some basic preliminaries. We include some generalities about smooth
representations of GLn of a p-adic field, over Q` or F`, which will be used later in the proof of
the main theorem. We note that many of the results of this section are also proved in [CHT08],
although in a slightly different way. We stress the use of the Bernstein formalism in our proofs;
some of them are based on an earlier draft [HT98-03] of [CHT08].

In § 2, we develop the theory of (`-adic) automorphic forms on totally definite unitary
groups, and apply the results of Labesse and the construction mentioned above to attach Galois
representations to automorphic representations of unitary groups.

In § 3, we study the Hecke algebras of unitary groups and put everything together to prove
the main result of the paper. More precisely, if T denotes the (localized) Hecke algebra and R is
a certain universal deformation ring of a mod ` Galois representation attached to T, we prove
that Rred = T. In § 4, we go back to GLn and use this result to prove the desired modularity
lifting theorems. The most general theorem we prove for imaginary CM fields is the following.
For the terminology used in the different hypotheses, we refer the reader to the main text.

Theorem. Let F+ be a totally real field, and F a totally imaginary quadratic extension of F+.
Let n> 1 be an integer and ` > n be a prime number, unramified in F . Let

r : Gal(F/F )−→GLn(Q`)

be a continuous irreducible representation with the following properties. Let r denote the
semisimplification of the reduction of r.

(i) There is an isomorphism rc ∼= r∨(1− n).

(ii) The representation r is unramified at all but finitely many primes.

(iii) For every place v|` of F , r|Γv is crystalline.

(iv) There is an element a ∈ (Zn,+)Hom(F,Q`) such that the following hold.

– For all τ ∈Hom(F+,Q`), we have either

`− 1− n> aτ,1 > · · ·> aτ,n > 0

or

`− 1− n> aτc,1 > · · ·> aτc,n > 0.

– For all τ ∈Hom(F,Q`) and every i= 1, . . . , n,

aτc,i =−aτ,n+1−i.
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– For all τ ∈Hom(F,Q`) giving rise to a prime w|`,

HTτ (r|Γw) = {j − n− aτ,j}nj=1.

In particular, r is Hodge–Tate regular.

(v) The field F
ker(ad r)

does not contain F (ζ`).

(vi) The group r(Gal(F/F (ζ`))) is big.

(vii) The representation r is irreducible and there is a conjugate self-dual, cohomological,
cuspidal automorphic representation Π of GLn(AF ), of weight a and unramified above `, and an
isomorphism ι : Q`

∼−−→ C, such that r ∼= r`,ι(Π).

Then r is automorphic of weight a and level prime to `.

We make some remarks about the conditions in the theorem. Condition (i) says that r is
conjugate self-dual, and this is essential for the numerology behind the Taylor–Wiles method.
Conditions (ii) and (iii) say that the Galois representation is geometric in the sense of Fontaine–
Mazur, although it says a little more. It is expected that one can relax condition (iii) to the
requirement that r is de Rham at places dividing `. The stronger crystalline form, the hypothesis
on the Hodge–Tate weights made in (iv) and the requirement that ` > n is unramified in F are
needed to apply the theory of Fontaine and Laffaille to calculate the local deformation rings.
The condition that ` > n is also used to treat non-minimal deformations. Condition (v) allows
us to choose auxiliary primes to augment the level and ensure that certain level structures are
sufficiently small. The bigness condition in (vi) is to make the Tchebotarev argument in the
Taylor–Wiles method work. Hypothesis (vii) is, as usual, essential to the method. An analogous
theorem can be proved over totally real fields.

0. Some notation and definitions

As a general principle, whenever F is a field and F is a chosen separable closure, we write
ΓF = Gal(F/F ). We also write ΓF when the choice of F is implicit. If F is a number field and v
is a place of F , we usually write Γv ⊂ ΓF for a decomposition group at v. If v is finite, we denote
by qv the order of the residue field of v.

0.1 Irreducible algebraic representations of GLn

Let Zn,+ denote the set of n-tuples of integers a= (a1, . . . , an) such that

a1 > · · ·> an.

Given a ∈ Zn,+, there is a unique irreducible, finite-dimensional, algebraic representation ξa :
GLn→GL(Wa) over Q with highest weight given by

diag(t1, . . . , tn) 7→
n∏
i=1

taii .

Let E be any field of characteristic zero. Tensoring with E, we obtain an irreducible algebraic
representation Wa,E of GLn over E, and every such representation arises in this way. Suppose
that E/Q is a finite extension. Then the irreducible, finite-dimensional, algebraic representations
of (ResE/Q GLn/E)(C) are parametrized by elements a ∈ (Zn,+)Hom(E,C). We denote them by
(ξa, Wa).
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Modularity lifting theorems for Galois representations of unitary type

0.2 Local Langlands correspondence
Let p be a rational prime and let F be a finite extension of Qp. Fix an algebraic closure F
of F . Fix also a positive integer n, a prime number ` 6= p and an algebraic closure Q` of Q`.
Let ArtF : F×→ Γab

F be the local reciprocity map, normalized to take uniformizers to geometric
Frobenius elements. If π is an irreducible smooth representation of GLn(F ) over Q`, we will write
r`(π) for the `-adic Galois representation associated to the Weil–Deligne representation

L (π ⊗ ||(1−n)/2),

where L denotes the local Langlands correspondence, normalized to coincide with the
correspondence induced by ArtF in the case n= 1. Note that r`(π) does not always exist.
The eigenvalues of L (π ⊗ ||(n−1)/2)(φF ) must be `-adic units for some lift φF of the geometric
Frobenius (see [Tat79]). Whenever we make a statement about r`(π), we will suppose that this is
the case. Note that our conventions differ from those of [CHT08, Tay08], where r`(π) is defined
to be the Galois representation associated to L (π∨ ⊗ ||(1−n)/2).

0.3 Hodge–Tate weights
Fix a finite extension L/Q` and an algebraic closure L of L. Fix an algebraic closure Q` of Q`

and an algebraic extension K of Q` contained in Q` such that K contains every Q`-embedding
L ↪→Q`. Suppose that V is a finite-dimensional K-vector space equipped with a continuous
linear action of ΓL. Let BdR be the ring of p-adic periods, as in [Fon94]. Then (BdR ⊗Q` V )ΓL is
an L⊗Q` K-module. We say that V is de Rham if this module is free of rank equal to dimK V .
Since L⊗Q` K ' (K)HomQ` (L,K), if V is a K-representation of ΓL, we have that

(BdR ⊗Q` V )ΓL '
∏

τ∈HomQ` (L,K)

(BdR ⊗Q` V )ΓL ⊗L⊗Q`K,τ⊗1 K

'
∏

τ∈HomQ` (L,K)

(BdR ⊗
L,τ

V )ΓL .

It follows that V is de Rham if and only if

dimK(BdR ⊗L,τ V )ΓL = dimK V

for every τ ∈HomQ`(L, K). We use the convention of Hodge–Tate weights in which the
cyclotomic character has 1 as its unique Hodge–Tate weight. Thus, for V de Rham, we let
HTτ (V ) be the multiset consisting of the elements q ∈ Z such that gr−q(BdR ⊗L,τ V )ΓL 6= 0,
with multiplicity equal to

dimK gr−q(BdR ⊗L,τ V )ΓL .

Thus, HTτ (V ) is a multiset of dimK V elements. We say that V is Hodge–Tate regular if for
every τ ∈HomQ`(L, K), the multiplicity of each Hodge–Tate weight with respect to τ is 1. We
make analogous definitions for crystalline representations over K.

0.4 Galois representations of unitary type
Let F be any number field. If ` is a prime number, ι : Q`

∼−−→ C is an isomorphism and
ψ : A×F /F

×→ C× is an algebraic character, we denote by r`,ι(ψ) the Galois character associated
to it by [CHT08, Lemma 4.1.3].

Let F+ be a totally real number field, and F/F+ a totally imaginary quadratic extension.
Denote by c ∈Gal(F/F+) the non-trivial automorphism. Let Π be an irreducible admissible

1025

https://doi.org/10.1112/S0010437X10005154 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005154


L. Guerberoff

representation of GLn(AF ). We say that Π is essentially conjugate self-dual if there exists a
continuous character χ : A×

F+/(F+)×→ C× with χv(−1) independent of v|∞ such that

Π∨ ∼= Πc ⊗ (χ ◦NF/F+ ◦ det).

If we can take χ= 1, that is, if Π∨ ∼= Πc, we say that Π is conjugate self-dual.
Let Π be an automorphic representation of GLn(AF ). We say that Π is cohomological if

there exists an irreducible, algebraic, finite-dimensional representation W of ResF/Q GLn, such
that the infinitesimal character of Π∞ is the same as that of W . Let a ∈ (Zn,+)Hom(F,C), and let
(ξa, Wa) the irreducible, finite-dimensional, algebraic representation of (ResF/Q GLn)(C) with
highest weight a. We say that Π has weight a if it has the same infinitesimal character as
(ξ∨a , W

∨
a ).

The next theorem (in the conjugate self-dual case) is due to Clozel et al. [CHLa, CHLb], with
some improvements by Chenevier and Harris [CH09], except that they only provide compatibility
of the local and global Langlands correspondences for the unramified places. Shin [Shi], using a
very slightly different method, obtained the identification at the remaining places. The slightly
more general version stated here for an essentially conjugate self-dual representation is proved
in [BGHT, Theorem 1.2]. Let F be an algebraic closure of F and let ΓF = Gal(F/F ). For m ∈ Z
and r : ΓF →GLn(Q`) a continuous representation, we denote by r(m) the mth Tate twist
of r, and by rss the semisimplification of r. Fix a prime number `, an algebraic closure Q` of
Q`, and an isomorphism ι : Q`

∼−−→ C.

Theorem 0.1. Let Π be an essentially conjugate self-dual, cohomological, cuspidal automorphic
representation of GLn(AF ). More precisely, suppose that Π∨ ∼= Πc ⊗ (χ ◦NF/F+ ◦ det) for some

continuous character χ : A×
F+/(F+)×→ C× with χv(−1) independent of v|∞. Then there exists

a continuous semisimple representation

r`(Π) = r`,ι(Π) : ΓF →GLn(Q`)

with the following properties.

(i) For every finite place w - `,

(r`(Π)|Γw)ss ' (r`(ι−1Πw))ss.

(ii) There is an isomorphism r`(Π)c ∼= r`(Π)∨(1− n)⊗ r`(χ−1)|ΓF .

(iii) If w - ` is a finite place such that Πw is unramified, then r`(Π) is unramified at w.

(iv) For every w|`, r`(Π) is de Rham at w. Moreover, if Πw is unramified, then r`(Π) is
crystalline at w.

(v) Suppose that Π has weight a. Then for each w|` and each embedding τ : F ↪→Q` giving
rise to w, the Hodge–Tate weights of r`(Π)|Γw with respect to τ are given by

HTτ (r`(Π)|Γw) = {j − n− aιτ,j}j=1,...,n,

and in particular, r`(Π)|Γw is Hodge–Tate regular.

The representation r`,ι(Π) can be taken to be valued in the ring of integers of a finite extension
of Q`. Thus, we can reduce it modulo its maximal ideal and semisimplify to obtain a well-defined
continuous semisimple representation

r`,ι(Π) : ΓF −→GLn(F`).
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Let a be an element of (Zn,+)Hom(F,Q`). Let

r : ΓF −→GLn(Q`)

be a continuous semisimple representation. We say that r is automorphic of weight a if there is an
isomorphism ι : Q`

∼−−→ C and an essentially conjugate self-dual, cohomological, cuspidal auto-
morphic representation Π of GLn(AF ) of weight ι∗a such that r ∼= r`,ι(Π). We say that r is
automorphic of weight a and level prime to ` if moreover there exists such a pair (ι,Π) with Π`

unramified. Here ι∗a ∈ (Zn,+)Hom(F,C) is defined as (ι∗a)τ = aι−1τ .
There is an analogous construction for a totally real field F+. The definition of cohomological

is the same, namely, that the infinitesimal character is the same as that of some irreducible
algebraic finite-dimensional representation of (ResF+/Q GLn)(C).

Theorem 0.2. Let Π be a cuspidal automorphic representation of GLn(AF+), cohomological of
weight a, and suppose that

Π∨ ∼= Π⊗ (χ ◦ det),
where χ : A×

F+/(F+)×→ C× is a continuous character such that χv(−1) is independent of v|∞.

Let ι : Q`
∼−−→ C. Then there is a continuous semisimple representation

r`(Π) = r`,ι(Π) : ΓF+ →GLn(Q`)

with the following properties.

(i) For every finite place v - `,

(r`(Π)|Γv)ss ' (r`(ι−1Πv))ss.

(ii) There is an isomorphism r`(Π)∼= r`(Π)∨(1− n)⊗ r`(χ−1).
(iii) If v - ` is a finite place such that Πv is unramified, then r`(Π) is unramified at v.

(iv) For every v|`, r`(Π) is de Rham at v. Moreover, if Πv is unramified, then r`(Π) is
crystalline at v.

(v) For each v|` and each embedding τ : F+ ↪→Q` giving rise to v, the Hodge–Tate weights
of r`(Π)|Γv with respect to τ are given by

HTτ (r`(Π)|Γv) = {j − n− aιτ,j}j=1,...,n,

and, in particular, r`(Π)|Γv is Hodge–Tate regular.

Moreover, if ψ : A×
F+/(F+)×→ C× is an algebraic character, then

r`(Π⊗ (ψ ◦ det)) = r`(Π)⊗ r`(ψ).

Proof. This can be deduced from the last theorem in exactly the same way as Proposition 4.3.1
of [CHT08] is deduced from Proposition 4.2.1 of loc. cit. 2

We analogously define what it means for a Galois representation of a totally real field to be
automorphic of some weight a.

1. Admissible representations of GLn of a p-adic field over Q` and F`

Let p be a rational prime and let F be a finite extension of Qp, with ring of integers OF , maximal
ideal λF and residue field kF = OF /λF . Let q = #kF . Let ω be a generator of λF . We will fix an
algebraic closure F of F , and write ΓF = Gal(F/F ). Corresponding to it, we have an algebraic
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closure kF of kF , and we will let FrobF be the geometric Frobenius in Gal(kF /kF ) and IF be
the inertia subgroup of ΓF . Usually we will also write FrobF for a lift to ΓF . Fix also a positive
integer n, a prime number ` 6= p, an algebraic closure Q` of Q` and an algebraic closure F` of F`.
We will let R be either Q` or F`. Denote by || : F×→ qZ ⊂ Z[1/q] the absolute value normalized
such that |ω|= q−1. We denote by the same symbol the composition of || and the natural
map Z[1/q]→R, which exists because q is invertible in R. For the general theory of smooth
representations over R, we refer the reader to [Vig96]. Throughout this section, representation
will always mean smooth representation.

For a locally compact, totally disconnected group G, a compact open subgroup K ⊂G and
an element g ∈G, we denote by [KgK] the operator in the Hecke algebra of G relative to K
corresponding to the (R-valued) characteristic function of the double coset KgK.

Given a tuple t = (t(1), . . . , t(n)) of elements in any ring A, we denote by Pq,t ∈A[X] the
polynomial

Pq,t =Xn +
n∑
j=1

(−1)jqj(j−1)/2t(j)Xn−j .

We use freely the terms Borel, parabolic, Levi, and so on, to refer to the F -valued points
of the corresponding algebraic subgroups of GLn. Write B for the Borel subgroup of GLn(F )
consisting of upper triangular matrices, and B0 =B ∩GLn(OF ). Let T ' (F×)n be the standard
maximal torus of GLn(F ). Let N be the group of upper triangular matrices whose diagonal
elements are all 1. Then B = TN (semi-direct product). Let r : GLn(OF )→GLn(kF ) denote the
reduction map. We introduce the following subgroups of GLn(OF ):

– U0 = {g ∈GLn(OF ) : r(g) =
(∗n−1,n−1 ∗n−1,1

01,n−1 ∗
)
};

– U1 = {g ∈GLn(OF ) : r(g) =
(∗n−1,n−1 ∗n−1,1

01,n−1 1

)
};

– Iw = {g ∈GLn(OF ) : r(g) is upper triangular};
– Iw1 = {g ∈ Iw : r(g)ii = 1 ∀i= 1, . . . , n}.
Thus, U1 is a normal subgroup of U0 and we have a natural identification

U0/U1 ' k×F ,

and similarly Iw1 is a normal subgroup of Iw and we have a natural identification

Iw/Iw1 ' (k×F )n.

We denote by H the R-valued Hecke algebra of GLn(F ) with respect to GLn(OF ). We do not
include R in the notation. For every smooth representation π of GLn(F ), πGLn(OF ) is naturally
a left module over H . For j = 1, . . . , n, we will let T (j)

F ∈H denote the Hecke operator[
GLn(OF )

(
ω1j 0
0 1n−j

)
GLn(OF )

]
.

Let π be a representation of GLn(F ) over Q`. We say that π is essentially square-integrable if,
under an isomorphism Q`

∼= C, the corresponding complex representation is essentially square-
integrable in the usual sense. It is a non-trivial fact that the notion of essentially square-integrable
complex representation is invariant under an automorphism of C, which makes our definition
independent of the chosen isomorphism Q`

∼= C. This can be shown using the Bernstein–
Zelevinsky classification of essentially square-integrable representations in terms of quotients
of parabolic inductions from supercuspidals (see below).
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Let n= n1 + · · ·+ nr be a partition of n and P ⊃B the corresponding parabolic subgroup
of GLn(F ). The modular character δP : P →Q× takes values in qZ ⊂R×. Choosing once and for
all a square root of q in R, we can consider the square root character δ1/2

P : P →R×. For each
i= 1, . . . r, let πi be a representation of GLni(F ). We denote by π1 × · · · × πr the normalized
induction from P to GLn(F ) of the representation π1 ⊗ · · · ⊗ πr. Whenever we write || we will
mean || ◦ det. For any R-valued character β of F× and any positive integer m, we denote by
β[m] the one-dimensional representation β ◦ det of GLm(F ).

Suppose that R= Q`. Let n= rk and σ be an irreducible supercuspidal representation of
GLr(F ). By a theorem of Bernstein [Zel80, 9.3],

(σ ⊗ ||(1−k)/2)× · · · × (σ ⊗ ||(k−1)/2)

has a unique irreducible quotient denoted Stk(σ), which is essentially square-integrable.
Moreover, every irreducible, essentially square-integrable representation of GLn(F ) is of the
form Stk(σ) for a unique pair (k, σ). Under the local Langlands correspondence L , Stk(σ)
corresponds to Spk ⊗ L (σ ⊗ ||(1−k)/2) (see [HT01, page 252] or [Rod82, § 4.4]), where Spk is as
in [Tat79, 4.1.4]. Suppose now that n= n1 + · · ·+ nr and that πi is an irreducible essentially
square-integrable representation of GLni(F ). Then π1 × · · · × πr has a distinguished constituent
appearing with multiplicity one, called the Langlands subquotient, which we denote by

π1 � · · ·� πr.

Every irreducible representation of GLn(F ) over Q` is of this form for some partition of n, and
the πi are well determined modulo permutation [Zel80, 6.1]. The πi can be ordered in such a
way that the Langlands subquotient is actually a quotient of the parabolic induction.

If χ1, . . . , χn are unramified characters then

χ1 � · · ·� χn

is the unique unramified constituent of χ1 × · · · × χn, and every irreducible unramified
representation of GLn(F ) over Q` is of this form. Let π be such a representation, corresponding
to a Q`-algebra morphism λπ : H →Q`. For j = 1, . . . , n, let sj denote the jth elementary
symmetric polynomial in n variables. If we define unramified characters

χi : F×→Q×`

in such a way that λπ(T (j)
F ) = qj(n−j)/2sj(χ1(ω), . . . , χn(ω)), then

π ' χ1 � · · ·� χn.

Moreover, by the Iwasawa decomposition GLn(F )=BGLn(OF ), we have that dimQ`
πGLn(OF ) =1.

We denote tπ=(λπ(T (1)
F ), . . . , λπ(T (n)

F )).

Lemma 1.1. Let π be an irreducible unramified representation of GLn(F ) over Q`. Then the
characteristic polynomial of r`(π)(FrobF ) is Pq,tπ .

Proof. Suppose that π = χ1 � · · ·� χn. Then

r`(π) =
n⊕
i=1

(χi ⊗ ||(1−n)/2) ◦Art−1
F .
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Thus, the characteristic polynomial of r`(π)(FrobF ) is
n∏
i=1

(X − χi(ω)q(n−1)/2) =
n∑
j=0

(−1)jsj(χ1(ω)q(n−1)/2, . . . , χn(ω)q(n−1)/2)Xn−j = Pq,tπ . 2

Let n= n1 + · · ·+ nr be a partition of n and let β1, . . . βr be distinct unramified F`-
valued characters of F×. Suppose that q ≡ 1(mod `). Then the representation β1[n1]× · · · ×
βr[nr] is irreducible and unramified, and every irreducible unramified F`-representation of
GLn(F ) is obtained in this way. This is proved by Vigneras in [Vig98, VI.3]. Moreover, if
π = β1[n1]× · · · × βr[nr], then π is an unramified subrepresentation of the principal series
β1 × · · · × β1 × · · · × βr × · · · × βr, where βi appears ni times. The Iwasawa decomposition
implies that the dimension of the GLn(OF )-invariants of this unramified principal series is one,
and thus the same is true for π.

A character χ of F× is called tamely ramified if it is trivial on 1 + λF , that is, if its conductor
is less than or equal to 1. In this case, χ|O×F has a natural extension to U0, which we denote by χ0.

Lemma 1.2. Let χ1, . . . , χn beR-valued characters of F× such that χ1, . . . , χn−1 are unramified
and χn is tamely ramified. Then

dimR HomU0(χ0
n, χ1 × · · · × χn) =

{
n if χn is unramified,
1 otherwise.

Furthermore, if χn is ramified then (χ1 × · · · × χn)U0 = 0.

Proof. Let

M(χ0
n) = {f : GLn(OF )→R : f(bku) = χ(b)χ0

n(u)f(k) ∀b ∈B0, k ∈GLn(OF ), u ∈ U0},

where we write χ for the character of (F×)n given by χ1, . . . , χn. Then, HomU0(χ0
n, χ1 × · · · ×

χn) = (χ1 × · · · × χn)U0=χ0
n , which by the Iwasawa decomposition is isomorphic to M(χ0

n). By
the Bruhat decomposition,

B0\GLn(OF )/U0 ' r(B0)\GLn(kF )/r(U0)'Wn/Wn−1,

where Wj is the Weyl group of GLj with respect to its standard maximal split torus. Here we
see Wn−1 inside Wn in the natural way. Let X denote a set of coset representatives of Wn/Wn−1,
so that

GLn(OF ) =
∐
w∈X

B0wU0.

Thus, if f ∈M(χ0
n), f is determined by its restriction to the cosets B0wU0. We have that

M(χ0
n)'

∏
w∈X

Mw,

where Mw is the space of functions on B0wU0 satisfying the transformation rule of M(χ0
n). It

is clear that dimRMw 6 1 for every w. Moreover, if χn is unramified, then Mw is non-zero,
a non-zero function being given by f(w) = 1. Thus, in this case, dimRM(χ0

n) = n.
In the ramified case, let a= diag(a1, . . . , an) ∈B0, with ai ∈ O×F and an such that χn(an) 6= 1.

Then

χn(an)f(w) = f(aw) = f(waw) = χ0
n(aw)f(w) = f(w)

unless w ∈Wn−1. Thus, only the identity coset survives, and dimRM(χ0
n) = 1.
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For the last assertion, let f ∈ (χ1 × · · · × χn) be U0-invariant. To see that it is zero, it is
enough to see that f(w) = 0 for every w ∈X. Choosing a ∈GLn(OF ) to be a scalar matrix
corresponding to an element a ∈ O×F for which χn(a) 6= 1, we see that a is in B0 (and hence in
U0), thus f(aw) = χn(a)f(w) = f(wa) = f(w), so f(w) = 0 for any w ∈X. 2

Let PM denote the parabolic subgroup of GLn(F ) containing B corresponding to the
partition n= (n− 1) + 1, and let UM denote its unipotent radical. Take the Levi decomposition
PM =MUM , where M 'GLn−1(F )×GL1(F ). Consider the opposite parabolic subgroup PM
with Levi decomposition PM =MUM . Let

U0,M = U0 ∩M 'GLn−1(OF )×GL1(OF ).

Let χn be a tamely ramified character of F×, and let χ0
n be its extension to U0. Let

HM (χn) = EndM (indMU0,M
χn),

where ind denotes compact induction and χn is viewed as a character of U0,M via projection
to the last element of the diagonal. Thus, HM (χn) can be identified with the R-vector space
of compactly supported functions f :M →R such that f(kmk′) = χn(k)f(m)χn(k′) for m ∈M
and k, k′ ∈ U0,M . Similarly, let

H0(χn) = EndGLn(F )(indGLn(F )
U0

χ0
n).

This is identified with the R-vector space of compactly supported functions f : GLn(F )→R such
that f(kgk′) = χ0

n(k)f(g)χ0
n(k′) for every g ∈GLn(F ), k, k′ ∈ U0. There is a natural injective

homomorphism of R-modules

T : HM (χn)→H0(χn),

which can be described as follows (see [Vig98, II.3]). Let m ∈M . Then T (1U0,MmU0,M
) = 1U0mU0 ,

where 1U0,MmU0,M
is the function supported in U0,MmU0,M whose value at umu′ is χn(u)χn(u′),

and similarly for 1U0mU0 . Define

U+
0 = U0 ∩ UM

and

U−0 = U0 ∩ UM .
Then U0 = U−0 U0,MU

+
0 = U+

0 U0,MU
−
0 , and χ0

n is trivial on U−0 and U+
0 . Let

M− = {m ∈M/m−1U+
0 m⊂ U

+
0 and mU−0 m

−1 ⊂ U−0 }.

We denote by H −
M (χn) the subspace of HM (χn) consisting of functions supported on the union

of cosets of the form U0,MmU0,M with m ∈M−.

Proposition 1.3. The subspace H −
M (χn)⊂HM (χn) is a subalgebra, and the restriction T − :

H −
M (χn)→H0(χn) is an algebra homomorphism.

Proof. This is proved in [Vig98, II.5]. 2

Let π be a representation of GLn(F ) over R. Then HomGLn(F )(indGLn(F )
U0

χ0
n, π) is naturally

a right module over H0(χn). By the adjointness between compact induction and restriction,

HomGLn(F )(indGLn(F )
U0

χ0
n, π) = HomU0(χ0

n, π),

and therefore the right-hand side is also a right H0(χn)-module. There is an R-algebra
isomorphism H0(χn)'H0(χ−1

n )opp given by f 7→ f∗, where f∗(g) = f(g−1). We then see
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HomU0(χ0
n, π) as a left H0(χ−1

n )-module in this way. Similarly, HomU0,M
(χn, π) is a left

HM (χ−1
n )-module when π is a representation of M over R. For a representation π of GLn(F ),

let πUM be the representation of M obtained by (non-normalized) parabolic restriction. Then
the natural projection π→ πUM is M -linear.

Remark 1.4. Let Bn−1 denote the subgroup of lower triangular matrices of GLn−1(F ), so that
Bn−1 ×GL1(F ) is a parabolic subgroup of M , with the standard maximal torus T ⊂M of
GLn(F ) as a Levi factor. Let χ1, . . . , χn be characters of F×. Then

((χ1 × · · · × χn)UM )ss '
n⊕
i=1

(iM
Bn−1×GL1(F )

(χwi))ss ⊗ δ1/2

PM
, (1.0.1)

where ss denotes semisimplification and iM
Bn−1×GL1(F )

is the normalized parabolic induction.
Here, wi is the permutation of n letters such that wi(n) = n+ 1− i and wi(1)>wi(2)> · · ·>
wi(n− 1). This follows from [Cas74, Theorem 6.3.5] when R= Q`. As Vignéras points out
in [Vig98, II.2.18], the same proof is valid for the R= F` case.

Proposition 1.5. Let χ1, . . . , χn be R-valued characters of F×, such that χ1, . . . , χn−1 are
unramified and χn is tamely ramified.

(i) The natural projection χ1 × · · · × χn→ (χ1 × · · · × χn)UM induces an isomorphism of
R-modules

p : HomU0(χ0
n, (χ1 × · · · × χn))→HomU0,M

(χn, (χ1 × · · · × χn)UM ). (1.0.2)

(ii) For every φ ∈HomU0(χ0
n, (χ1 · · · × · · · χn)) and every m ∈M−,

p(1U0mU0 .φ) = δPM (m)1U0,MmU0,M
.p(φ).

Proof. The last assertion is proved in [Vig98, II.9]. The fact that p is surjective follows by [Vig96,
II.3.5]. We prove injectivity now. By Lemma 1.2, the dimension of the left-hand side is n if χn
is unramified and 1 otherwise. Suppose first that R= Q`. If χn is unramified, each summand of
the right-hand side of (1.0.1) has a one-dimensional U0,M -fixed subspace, while if χn is ramified,
only the summand corresponding to the identity permutation has a one-dimensional U0,M -fixed
subspace, all the rest being zero. This implies that

dimQ`
((χ1 × · · · × χn)UM )U0,M =

{
n if χn is unramified,
1 otherwise.

Therefore p is an isomorphism for reasons of dimension. This completes the proof of the injectivity
of p over Q`.

We give the proof over F` only in the unramified case, the ramified case being similar.
First of all, note that the result for Q` implies the corresponding result over Z`, the ring
of integers of Q`. Indeed, suppose each χi takes values in Z×` , and let (χ1 × · · · × χn)Z`
(respectively, (χ1 × · · · × χn)Q`

) denote the parabolic induction over Z` (respectively, Q`).
Then (χ1 × · · · × χn)Z` is a lattice in (χ1 × · · · × χn)Q`

, that is, a free Z`-submodule which
generates (χ1 × · · · × χn)Q`

and is GLn(F )-stable [Vig96, II.4.14(c)]. It then follows that
((χ1 × · · · × χn)Z`)

U0 is a lattice in (χ1 × · · · × χn)Q`
)U0 [Vig96, I.9.1], and so is free of rank n

over Z`. Similarly, ((χ1 × · · · × χn)UM ,Z`)
U0,M is a lattice in ((χ1 × · · · × χn)UM ,Q`)

U0,M [Vig96,
II.4.14(d)], and thus it is free of rank n over Z`. Moreover, the map p with coefficients in Z` is
still surjective [Vig96, II 3.3], hence it is an isomorphism by reasons of rank.
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Finally, consider the F` case. Choose liftings χ̃i of χi to Z`-valued characters. Then there is
a natural injection

(χ̃1 × · · · × χ̃n)UM ⊗Z` F` ↪→ (χ1 × · · · × χn)UM
inducing an injection

((χ̃1 × · · · × χ̃n)UM )U0,M ⊗Z` F` ↪→ ((χ1 × · · · × χn)UM )U0,M . (1.0.3)

Now, we have seen that the left-hand side of (1.0.3) has dimension n over F`. We claim that the
right-hand side of (1.0.3) has dimension less than or equal to n. Indeed, by looking at the right-
hand side of (1.0.1), this follows from the fact that the U0,M -invariants of the semisimplification
have dimension n. Thus, (1.0.3) is an isomorphism and dimF`(χ1 × · · · × χn)UM )U0,M = n. Since
the left-hand side of (1.0.2) has dimension n and p is surjective, it must be an isomorphism. 2

Let H0 (respectively, H1) be the R-valued Hecke algebra of GLn(F ) with respect to U0

(respectively, U1). Thus, H0 = H0(1). If π is a representation of GLn(F ) over R, then πU0 is
naturally a left H0-module. For any α ∈ F× with |α|6 1, let mα ∈M be the element

mα =
(

1n−1 0
0 α

)
.

For i= 0 or 1, let Vα,i ∈Hi be the Hecke operators [UimαUi]. If π is a representation of GLn(F ),
then πU0 ⊂ πU1 and the action of the operators defined above are compatible with this inclusion.

Let HM = HM (1), and let Vω,M = [U0,MmωU0,M ] ∈HM . Since mω ∈M−, Vω,M ∈H −
M , and

T −(Vω,M ) = Vω,0 ∈H0. As above, if π is a representation of M over R, we consider the natural
left action HM on πU0,M .

Corollary 1.6. Let χ1, . . . , χn be Q`-valued unramified characters of F×. Then the set of
eigenvalues of Vω,0 acting on the n-dimensional space (χ1 × · · · × χn)U0 is equal (counting
multiplicities) to {q(n−1)/2χi(ω)}ni=1.

Proof. Note that Vω,M acts on the U0,M -invariants of each summand of the right-hand side
of (1.0.1) by the scalar χi(ω)q(1−n)/2. Thus, the eigenvalues of Vω,M in (χ1 × · · · × χn)U0,M

UM
are

the q(1−n)/2χi(ω). The corollary follows then by Proposition 1.5. 2

Proposition 1.7. Let π be an irreducible unramified representation of GLn(F ) over R. Then
πU0 = πU1 and the following properties hold.

(i) If R= Q` and π = χ1 � · · ·� χn, with χi unramified characters of F×, then dimR π
U0 6 n

and the eigenvalues of Vω,0 acting on πU0 are contained in {q(n−1)/2χi(ω)}ni=1 (counting
multiplicities).

(ii) If R= F`, q ≡ 1(mod `) and π = β1[n1]× · · · × βr[nr] with βi distinct unramified
characters of F×, then dimR π

U0 = r and Vω,0 acting on πU0 has the r distinct eigenvalues
{βj(ω)}rj=1.

Proof. The fact that πU1 = πU0 follows immediately because the central character of π is
unramified. Since taking U0-invariants is exact in characteristic zero, part (i) is clear from the
last corollary. Let us prove part (ii). Let P be the parabolic subgroup of GLn(F ) containing
B corresponding to the partition n= n1 + · · ·+ nr. As usual, since GLn(F ) = P GLn(OF ), the
F`-dimension of πU0 is equal to the cardinality of (GLn(OF ) ∩ P )\GLn(OF )/U0. By the Bruhat
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decomposition, this equals the cardinality of

Sn1 × · · · ×Snr\Sn/Sn−1 ×S1,

where Si is the symmetric group on i letters. This cardinality is easily seen to be r.
It remains to prove the assertion about the eigenvalues of Vω,0 on πU0 . Let us first replace

U0 by Iw (this was first suggested by Vignéras). By the Iwasawa decomposition and the Bruhat
decomposition,

GLn(F ) =
∐
s∈S

Ps Iw,

where S ⊂GLn(F ) is a set of representatives for (Sn1 × · · · ×Snr)\Sn. Then πIw has as a basis
the set {ϕs}s∈S , where ϕs is supported on Ps Iw and ϕs(s) = 1.

Let HF`(n, 1) denote the Iwahori–Hecke algebra for GLn(F ) over F`, that is, the Hecke algebra
for GLn(F ) with respect to the compact open subgroup Iw. Thus, πIw is naturally a left module
over HF`(n, 1). For i= 1, . . . , n− 1, let si denote the n by n permutation matrix corresponding
to the transposition (i i+ 1), and let Si = [Iw si Iw] ∈HF`(n, 1). For j = 0, . . . , n, let tj denote
the diagonal matrix whose first j coordinates are equal to ω, and whose last n− j coordinates
are equal to 1. Let Tj = [Iw tj Iw] ∈HF`(n, 1), and for j = 1, . . . , n, let Xj = Tj(T−1

j−1). Then
HF`(n, 1) is generated as an F`-algebra by {Si}n−1

i=1 ∪ {X1, X
−1
1 } [Vig96, I.3.14]. We denote by

H 0
F`

(n, 1) the subalgebra generated by {Si}n−1
i=1 , which is canonically isomorphic to the group

algebra F`[Sn] of the symmetric group [Vig96, I.3.12]. It can also be identified with the
Hecke algebra of GLn(OF ) with respect to Iw [Vig96, I.3.14]. The subalgebra A= F`[{X±i }ni=1]
is commutative, and characters of T can be seen as characters on A. Let χ1, . . . , χn : F×→ F×`
be the characters defined by

χ1 = · · ·= χn1 = β1;
· · · ;

χn1+···+nj−1+1 = · · ·= χn1+···+nj = βj ;
· · · .

Then the action of A on ϕs is given by the character s(χ). Note that the set {s(χ)}s∈S is just
the set of n-tuples of characters in which βi occurs ni times, with arbitrary order. It is clear that
for each j = 1, . . . , r, there is at least one s ∈ S for which s(n) ∈ {n1 + · · ·+ nj−1 + 1, . . . , n1 +
· · ·+ nj}, so that Xnϕs = βj(ω)ϕs. Let

ϕ=
∑
s∈S

ϕs.

Then ϕ generates πGLn(OF ). For j = 1, . . . , r, let

ψj =
∑

s∈S,χs(n)=βj

ϕs.

We have seen above that ψj 6= 0. Moreover, Xnψj = βj(ω)ψj . Let Pj ∈ F`[X] be a polynomial
such that Pj(βj(ω)) = 1 and Pj(βi(ω)) = 0 for every i 6= j. Then ψj = Pj(Xn)ϕ, and it follows
that the r distinct eigenvalues {βj(ω)}rj=1 of Xn on πIw already occur on the subspace F`[Xn]ϕ.

Consider now the map pT : πIw→ (πN )T0 , where N is the unipotent radical of the parabolic
subgroup of GLn(F ) containing T , opposite toB, and T0 =T ∩ GLn(OF ). By [Vig96, II.3.5], pT is
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an isomorphism. On the other hand, there is a commutative diagram,

πU0
i //

pM
��

πIw

pT

��
(πUM )U0,M

pM,T // (πN )T0

where i is the inclusion and pM and pM,T are the natural projection to the coinvariants. The
analogues of part (ii) of Proposition 1.5 for pM , pT and pM,T are still valid [Vig98, II.9]. Thus,
for f ∈ πU0 ,

pT (i(Vω,0f)) = pM,T (pM (Vω,0f)) = pM,T ([U0,MmωU0,M ]pM (f))
= [T0mωT0]pM,T (pM (f)) = [T0mωT0]pT (i(f)) = pT (Xni(f)).

It follows that Vω,0 =Xn on πU0 . In particular, F`[Xn]ϕ= F`[Vω,0]ϕ⊂ πU0 . By what we have seen
above, we conclude that the eigenvalues of Vω,0 on the r dimensional space πU0 are {βj(ω)}rj=1,
as claimed. 2

Corollary 1.8. Suppose that q ≡ 1(mod `) and let π be an irreducible unramified
representation of GLn(F ) over F`. Let ϕ ∈ πGLn(OF ) be a non-zero spherical vector. Then ϕ
generates πU0 as a module over the algebra F`[Vω,0].

Proof. This is actually a corollary of the proof of the above proposition. Indeed, Vω,0 has r
distinct eigenvalues on F`[Vω,0]ϕ⊂ πU0 , and dimF` π

U0 = r. 2

Lemma 1.9. Let π be an irreducible representation of GLn(F ) over Q` with a non-zero U1-fixed
vector but no non-zero GLn(OF )-fixed vectors. Then dimQ`

πU1 = 1 and there is a character

Vπ : F×→Q×`
with open kernel such that for every α ∈ F× with non-negative valuation, Vπ(α) is the eigenvalue
of Vα,1 on πU1 . Moreover, there is an exact sequence

0−→ s−→ r`(π)−→ Vπ ◦Art−1
F −→ 0,

where s is unramified. If πU0 6= 0 then q−1Vπ(ω) is a root of the characteristic polynomial of
s(FrobF ). If, on the other hand, if πU0 = 0, then r`(π)(Gal(F/F )) is abelian.

Proof. This is [CHT08, Lemma 3.1.5]. The proof basically consists in noting that if πU1 6= 0,
then either π ' χ1 � · · ·� χn with χ1, . . . , χn−1 unramified and χn tamely ramified, or π '
χ1 � · · ·� χn−2 � St2(χn−1) with χ1, . . . , χn−1 unramified. Then one just analyzes the cases
separately, and calculates explicitly the action of the operators U

(j)
F,1 (see [CHT08] for their

definition) and Vα,1. 2

Lemma 1.10. Suppose that q ≡ 1(mod `), and let π be an irreducible unramified representation

of GLn(F ) over F`. Let λπ(T (j)
F ) be the eigenvalue of T

(j)
F on πGLn(OF ), and tπ =

(λπ(T (1)
F ), . . . , λπ(T (n)

F )). Suppose that Pq,tπ = (X − a)mF (X) in F`[X], with m> 0 and
F (a) 6= 0. Then F (Vω,0), as an operator acting on πU0 , is non-zero on the subspace πGLn(OF ).

Proof. Suppose on the contrary that F (Vω,0)(πGLn(OF )) = 0. Let ϕ ∈ πGLn(OF ) be a non-zero
element. Suppose that π = β1[n1]× · · · × βr[nr], with βi distinct unramified F×` -valued characters
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of F×. Then, since q = 1 in F`,

Pq,tπ =
r∏
i=1

(X − βi(ω))ni .

Suppose that a= βj(ω1), so that F (X) =
∏
i6=j(X − βi(ω))ni . By Proposition 1.7(ii), πU0 has

dimension r and Vω,0 is diagonalizable on this space, with distinct eigenvalues βi(ω). Let ϕj ∈ πU0

denote an eigenfunction of Vω,0 of eigenvalue βj(ω). By Corollary 1.8, there exists a polynomial
Pj ∈ F`[X] such that ϕj = Pj(Vω,0)(ϕ). Since polynomials in Vω,0 commute with each other, we
must have F (Vω,0)(ϕj) = 0, but this also equals F (βj(ω))ϕj 6= 0, which is a contradiction. 2

2. Automorphic forms on unitary groups

2.1 Totally definite groups

Let F+ be a totally real field and F a totally imaginary quadratic extension of F+. Denote
by c ∈Gal(F/F+) the non-trivial Galois automorphism. Let n> 1 be an integer and V an
n-dimensional vector space over F , equipped with a non-degenerate c-hermitian form h :
V × V → F . To the pair (V, h) there is attached a reductive algebraic group U(V, h) over F+,
whose points in an F+-algebra R are

U(V, h)(R) = {g ∈Aut(F⊗F+R)−lin(V ⊗F+ R) : h(gx, gy) = h(x, y) ∀x, y ∈ V ⊗F+ R}.

By a unitary group attached to F/F+ in n variables, we shall mean an algebraic group of the
form U(V, h) for some pair (V, h) as above. Let G be such a group. Then GF =G⊗F+ F is
isomorphic to GLV , and in fact it is an outer form of GLV . Let G(F+

∞) =
∏
v|∞ G(F+

v ), and if v
is any place of F+, let Gv =G⊗F+ F+

v . We say that G is totally definite if G(F+
∞) is compact

(and thus isomorphic to a product of copies of the compact unitary group U(n)).

Suppose that v is a place of F+ which splits in F , and let w be a place of F above v,
corresponding to an F+-embedding σw : F ↪→ F+

v . Then F+
v = σw(F )F+

v is an F -algebra by
means of σw, and thus Gv is isomorphic to GLV⊗F+

v
, the tensor product being over F . Note that

if we choose another place wc of F above v, then σw and σwc give F+
v two different F -algebra

structures. If we choose a basis of V , we obtain two isomorphisms iw, iwc :Gv→GLn/F+
v

. If
X ∈GLn(F ) is the matrix of h in the chosen basis, then for any F+

v -algebra R and any g ∈Gv(R),
iwc(g) =X−1(tiw(g)−1)X, where we see X ∈GLn(R) via σw : F → F+

v →R.

The choice of a lattice L in V such that h(L× L)⊂ OF gives an affine group scheme over
OF+ , still denoted by G, which is isomorphic to G after extending scalars to F+. We will fix
from now on a basis for L over OF , giving also an F -basis for V ; with respect to these, for each
split place v of F+ and each place w of F above v, iw gives an isomorphism between G(F+

v ) and
GLn(Fw) taking G(OF+

v
) to GLn(OFw).

2.2 Automorphic forms

Let G be a totally definite unitary group in n variables attached to F/F+. We let A denote the
space of automorphic forms on G(AF+). Since the group is totally definite, A decomposes, as a
representation of G(AF+), as

A ∼=
⊕
π

m(π)π,
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where π runs through the isomorphism classes of irreducible admissible representations of
G(AF+), and m(π) is the multiplicity of π in A , which is always finite. This is a well-
known fact for any reductive group compact at infinity, but we recall the proof as a warm-up
for the following sections and to set some notation. The isomorphism classes of continuous,
complex, irreducible (and hence finite-dimensional) representations of G(F+

∞) are parametrized
by elements b = (bτ ) ∈ (Zn,+)Hom(F+,R). We denote them by Wb. Since G(F+

∞) is compact and
every element of A is G(F+

∞)-finite, A decomposes as a direct sum of irreducible G(AF+)-
submodules. Moreover, we can write

A ∼=
⊕
b

Wb ⊗HomG(F+
∞)(Wb,A )

as G(AF+)-modules. Denote by A∞F+ the ring of finite adèles. For any b, let Sb be the space of
smooth (that is, locally constant) functions f :G(A∞F+)→W∨b such that f(γg) = γ∞f(g) for all
g ∈G(A∞F+) and γ ∈G(F+). Then the map

f 7→ (w 7→ (g 7→ (g−1
∞ f(g∞))(w)))

induces a G(A∞F+)-isomorphism between HomG(F+
∞)(Wb,A ) and Sb, where the action on this

last space is by right translation. For every compact open subgroup U ⊂G(A∞F+), the space
G(F )\G(A∞F+)/U is finite, and hence the space of U -invariants of Sb is finite-dimensional. In
particular, every irreducible summand of Wb ⊗HomG(F+

∞)(Wb,A ) is admissible and appears
with finite multiplicity. Thus, every irreducible summand of A is admissible, and appears with
finite multiplicity because its isotypic component is contained in Wb ⊗HomG(F+

∞)(Wb,A ) for
some b.

2.3 `-adic models of automorphic forms

Let ` be an odd prime number. We will assume, from now on to the end of this section, that
every place of F+ above ` splits in F . Let K be a finite extension of Q`. Fix an algebraic closure
K of K, and suppose that K is big enough to contain all embeddings of F into K. Let O be its
ring of integers and λ its maximal ideal. Let S` denote the set of places of F+ above `, and I`
the set of embeddings F+ ↪→K. Thus, there is a natural surjection h : I`� S`. Let S̃` denote a
set of places of F such that S̃`

∐
S̃c` consists of all the places above S`; thus, there is a bijection

S` ' S̃`. For v ∈ S`, we denote by ṽ the corresponding place in S̃`. Also, let Ĩ` denote the set of
embeddings F ↪→K giving rise to a place in S̃`. Thus, there is a bijection between I` and Ĩ`,
which we denote by τ 7→ τ̃ . Also, denote by τ 7→ wτ the natural surjection Ĩ`→ S̃`. Finally, Let
F+
` =

∏
v|` F

+
v .

Let a ∈ (Zn,+)Hom(F,K). Consider the following representation of G(F+
` )'

∏
ṽ∈S̃` GLn(Fṽ).

For each τ̃ ∈ Ĩ`, we have an embedding GLn(Fwτ̃ ) ↪→GLn(K). Taking the product over τ̃ and
composing with the projection on the wτ̃ -coordinates, we have an irreducible representation

ξa :G(F+
` )−→GL(Wa),

where Wa =
⊗

τ̃∈Ĩ` Waτ̃ ,K . This representation has an integral model ξa :G(OF+
`

)→GL(Ma). In
order to base change to automorphic representations of GLn, we need to impose the additional
assumption that

aτc,i =−aτ,n+1−i

for every τ ∈Hom(F, K) and every i= 1, . . . , n.
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Besides the weight, we will have to introduce another collection of data, away from `, for
defining our automorphic forms. This will take care of the level-raising arguments needed later
on. Let Sr be a finite set of places of F+, split in F and disjoint from S`. For v ∈ Sr, let
U0,v ⊂G(F+

v ) be a compact open subgroup, and let

χv : U0,v→ O×

be a morphism with open kernel. We will use the notation Ur =
∏
v∈Sr U0,v and χ=

∏
v∈Sr χv.

Fix the data {a, Ur, χ}. Let Ma,χ =Ma ⊗O (
⊗

v∈Sr O(χv)). Let U ⊂G(A∞F+) be a compact
open subgroup such that its projection to the vth coordinate is contained in U0,v for each v ∈ Sr.
Let A be an O-algebra. Suppose either that the projection of U to G(F+

` ) is contained in G(OF+
`

),
or that A is a K-algebra. Then define Sa,χ(U, A) to be the space of functions

f :G(F+)\G(A∞F+)→Ma,χ ⊗O A

such that

f(gu) = u−1
`,Sr

f(g) ∀g ∈G(A∞F+), u ∈ U,
where u`,Sr denotes the product of the projections to the coordinates of S` and Sr. Here, uSr
acts already on Ma,χ by χ, and the action of u` is via ξa.

Let V be any compact subgroup of G(A∞F+) such that its projection to G(F+
v ) is contained

in U0,v for each v ∈ Sr, and let A be an O-algebra. If either A is a K-algebra or the projection of
V to G(F+

` ) is contained in G(OF+
`

), denote by Sa,χ(V, A) the union of the Sa,χ(U, A), where U
runs over compact open subgroups containing V for which their projection to G(F+

v ) is contained
in U0,v for each v ∈ Sr, and for which their projection to G(F+

` ) is contained in G(OF+
`

) if A is
not a K-algebra. Note that if V ⊂ V ′ then Sa,χ(V ′, A)⊂ Sa,χ(V, A).

If U is open and we choose a decomposition

G(A∞F+) =
∐
j∈J

G(F+)gjU,

then the map f 7→ (f(gj))j∈J defines an injection of A-modules

Sa,χ(U, A) ↪→
∏
j∈J

Ma,χ ⊗O A. (2.3.1)

Since G(F+)\G(A∞F+)/U is finite and Ma,χ is a free O-module of finite rank, we have that
Sa,χ(U, A) is a finitely generated A-module.

We say that a compact open subgroup U ⊂G(A∞F+) is sufficiently small if for some finite
place v of F+, the projection of U to G(F+

v ) contains only one element of finite order. Note that
the map (2.3.1) is not always surjective, but it is if, for example, U is sufficiently small. Thus,
in this case, Sa,χ(U, A) is a free A-module of rank

(dimK Wa).#(G(F+)\G(A∞F+)/U).

Moreover, if either U is sufficiently small or A is O-flat, we have that

Sa,χ(U, A) = Sa,χ(U, O)⊗O A.

Let U and V be compact subgroups of G(A∞F+) such that their projections to G(F+
v ) are

contained in U0,v for each v ∈ Sr. Suppose either A is a K-algebra or that the projections of U
and V to G(F+

` ) are contained in G(OF+
`

). Also, let g ∈G(ASr,∞
F+ )× Ur; if A is not a K-algebra,
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we suppose that g` ∈G(OF+
`

). If V ⊂ gUg−1, then there is a natural map

g : Sa,χ(U, A)−→ Sa,χ(V, A)

defined by

(gf)(h) = g`,Srf(hg).

In particular, if V is a normal subgroup of U , then U acts on Sa,χ(V, A), and we have that

Sa,χ(U, A) = Sa,χ(V, A)U .

Let U1 and U2 be compact subgroups of G(A∞F+) such that their projections to G(F+
v ) are

contained in U0,v for all v ∈ Sr. Let g ∈G(ASr,∞
F+ )× Ur. If A is not a K-algebra, we suppose that

the projections of U1 and U2 to G(F+
` ) are contained in G(OF+

`
), and that g` ∈G(OF+

`
). Suppose

also that #U1gU2/U2 <∞ (this will be automatic if U1 and U2 are open). Then we can define
an A-linear map

[U1gU2] : Sa,χ(U2, A)−→ Sa,χ(U1, A)

by

([U1gU2]f)(h) =
∑
i

(gi)`,Srf(hgi),

if U1gU2 =
∐
i giU2.

Lemma 2.1. Let U ⊂G(A∞,Sr
F+ )×

∏
v∈Sr U0,v be a sufficiently small compact open subgroup

and let V ⊂ U be a normal open subgroup. Let A be an O-algebra. Suppose that either A
is a K-algebra or the projection of U to G(F+

` ) is contained in G(OF+
`

). Then Sa,χ(V, A) is

a finite free A[U/V ]-module. Moreover, let IU/V ⊂A[U/V ] be the augmentation ideal and let
Sa,χ(V, A)U/V = Sa,χ(V, A)/IU/V Sa,χ(V, A) be the module of coinvariants. Define

TrU/V : Sa,χ(V, A)U/V → Sa,χ(U, A) = Sa,χ(V, A)U

as TrU/V (f) =
∑

u∈U/V uf . Then TrU/V is an isomorphism.

Proof. This is the analog of [CHT08, Lemma 3.3.1], and can be proved in the same way. 2

Choose an isomorphism ι :K '−−→ C. The choice of Ĩ` gives a bijection

ι+∗ : (Zn,+)Hom(F,K)
c

∼−−→ (Zn,+)Hom(F+,R), (2.3.2)

where (Zn,+)Hom(F,K)
c denotes the set of elements a ∈ (Zn,+)Hom(F,K) such that

aτc,i =−aτ,n+1−i

for every τ ∈Hom(F, K) and every i= 1, . . . , n. The map is given by (ι+∗ a)τ = a˜ι−1τ
. We have

an isomorphism θ :Wa ⊗K,ι C→Wι+∗ a,. Then the map

Sa,∅({1}, C)−→ S(ι+∗ a)∨

given by

f 7→ (g 7→ θ(g`f(g)))

is an isomorphism of C[G(A∞F+)]-modules, where, (ι+∗ a)∨τ,i =−(ι+∗ a)τ,n+1−i. Its inverse is given by

φ 7→ (g 7→ g−1
` θ−1(φ(g))).
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It follows that Sa,∅({1}, C) is a semi-simple admissible module. Hence, Sa,∅({1}, K) is also
semi-simple admissible, and this easily implies that Sa,χ(Ur, K) is a semi-simple admissible
G(A∞,Sr

F+ )-module. If π ⊂ Sa,∅({1}, K) is an irreducible G(A∞,Sr
F+ )× Ur-constituent such that the

subspace on which Ur acts by χ−1 is non-zero, then this subspace is an irreducible constituent
of Sa,χ(Ur, K), and every irreducible constituent of it is obtained in this way.

2.4 Base change and descent

Keep the notation as above. We will assume from now on the following hypotheses.

– The extension F/F+ is unramified at all finite places.

– The group Gv is quasi-split for every finite place v.

It is not a very serious restriction for the applications we have in mind, because we will always
be able to base change to this situation. First, note that, given F/F+, if n is odd there always
exists a totally definite unitary group G in n variables with Gv quasi-split for every finite v. If
n is even, such a G exists if and only if [F+ : Q]n/2 is also even. This follows from the general
classification of unitary groups over number fields in terms of the local Hasse invariants.

Let G∗n = ResF/F+(GLn). Let v be a finite place of F+, so that Gv is an unramified group.
In particular, it contains hyperspecial maximal compact subgroups. Let σv be any irreducible
admissible representation of G(F+

v ). If v is split in F , or if v is inert and σv is spherical, there
exists an irreducible admissible representation BCv(σv) of G∗n(F+

v ), called the local base change of
σv, with the following properties. Suppose that v is inert and σv is a spherical representation
of G(F+

v ); then BCv(σv) is an unramified representation of G∗n(F+
v ), whose Satake parameters

are explicitly determined in terms of those of σv; the formula is given in [Min], where we take
the standard base change defined there. If v splits in F as wwc, the local base change in this
case is BCv(σv) = σv ◦ i−1

w ⊗ (σv ◦ i−1
wc )∨ as a representation of G∗n(F+

v ) = GLn(Fw)×GLn(Fwc).
In this way, if we see BCv(σv) as a representation of G(F+

v )×G(F+
v ) via the isomorphism iw ×

iwc :G(F+
v )×G(F+

v ) ∼−−→GLn(Fw)×GLn(Fwc), then BCv(σv) = σv ⊗ σ∨v . The base change for
ramified finite places is being treated in the work of Mœglin, but for our applications it is enough
to assume that F/F+ is unramified at finite places.

In the global case, if σ is an automorphic representation of G(AF+), we say that an
automorphic representation Π of G∗n(AF+) = GLn(AF ) is a (strong) base change of σ if Πv

is the local base change of σv for every finite v, except those inert v where σv is not spherical,
and if the infinitesimal character of Π∞ is the base change of that of σ∞. In particular, since
G(F+

∞) is compact, Π is cohomological.

The following theorem is one of the main results of [Lab], and a key ingredient in this paper.
We use the notation � for the isobaric sum of discrete automorphic representations, as in [Clo90].

Theorem 2.2 (Labesse). Let σ be an automorphic representation of G(AF+). Then there exists
a partition

n= n1 + · · ·+ nr

and discrete, conjugate self-dual automorphic representations Πi of GLni(AF ), for i= 1, . . . , r,
such that

Π1 � · · ·�Πr

is a base change of σ.
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Conversely, let Π be a conjugate self-dual, cuspidal, cohomological automorphic representa-
tion of GLn(AF ). Then Π is the base change of an automorphic representation σ of G(AF+).
Moreover, if such a σ satisfies that σv is spherical for every inert place v of F+, then σ appears
with multiplicity one in the cuspidal spectrum of G.

Proof. The first part is [Lab, Corollaire 5.3] and the second is [Lab, Théorème 5.4]. 2

Remarks. (1) In [Lab] there are two hypotheses to Corollaire 5.3, namely, the property called
(∗) by Labesse and that σ∞ is a discrete series, which are automatically satisfied in our case
because the group is totally definite.

(2) Since Π1 � · · ·�Πr is a base change of σ, it is a cohomological representation of
GLn(AF ). However, this doesn’t imply that each Πi is cohomological, although it will be if
n− ni is even.

(3) The partition n= n1 + · · ·+ nr and the representations Πi are uniquely determined by
multiplicity one for GLn, because the Πi are discrete.

2.5 Galois representations of unitary type via unitary groups
Keep the notation and assumptions as in the last sections.

Theorem 2.3. Let π be as above. Let π =
⊗

v 6∈Sr πv be an irreducible constituent of the space

Sa,χ(Ur, K). Then there exists a unique continuous semisimple representation

r`(π) : Gal(F/F )→GLn(K)

satisfying the following properties.

(i) If v 6∈ S` ∪ Sr is a place of F+ which splits as v = wwc in F , then

r`(π)|ssΓw ' (r`(πv ◦ i−1
w ))ss.

(ii) There is an isomorphism r`(π)c ∼= r`(π)∨(1− n).
(iii) If v is an inert place such that πv is spherical then r`(π) is unramified at v.

(iv) If w|` then r`(π) is de Rham at w, and if moreover πw|F+
is unramified, then r`(π) is

crystalline at w.

(v) For every τ ∈Hom(F, K) giving rise to an place w|` of F , the Hodge–Tate weights of
r|Γw with respect to τ are given by

HTτ (r|Γw) = {j − n− aτ,j}j=1,...,n.

In particular, r is Hodge–Tate regular.

Proof. For the uniqueness, note that the set of places w of F which are split over a place v
of F+ which is not in S` ∪ Sr has Dirichlet density 1, and hence, if two continuous semisimple
representations Gal(F/F )→GLn(Q`) satisfy property (i), they are isomorphic.

Take an isomorphism ι :K ∼−−→ C. By the above argument, the representation we will
construct will not depend on it. By means of ι and the choice of Ĩ`, we obtain a (necessarily
cuspidal) automorphic representation σ =

⊗
v σv of G(AF+), such that σv = ιπv for v 6∈ Sr finite

and σ∞ is the representation of G(F+
∞) given by the weight (ι+∗ a)∨ ∈ (Zn,+)Hom(F+,R). By

Theorem 2.2, there is a partition n= n1 + · · ·+ nr and discrete automorphic representations
Πi of GLni(AF ) such that

Π = Π1 � · · ·�Πr
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is a strong base change of σ. Moreover, Π is cohomological of weight ι∗a, where (ι∗a)τ = aι−1τ

for τ ∈Hom(F, C). For each i= 1, . . . , r, let Si ⊃ S` be any finite set of finite primes of F+,
unramified in F . For each i= 1, . . . , r, let ψi : A×F /F

×→ C× be a character such that the
following hold.

– There is an equality ψ−1
i = ψci .

– For every place w above a place in Si, ψi is unramified at w.

– For every τ ∈Hom(F, C) giving rise to an infinite place w, we have

ψi,w(z) = (τz/|τz|)δi,τ,

where |z|2 = zz and δi,τ = 0 if n− ni is even, and δi,τ =±1 otherwise.

Thus, if n− ni is even, we may just choose ψi = 1. The proof of the existence of such a
character follows from a similar argument used in the proof of [HT01, Lemma VII.2.8]. With
these choices, it follows that Πiψi is cohomological. Also, by the classification of Mœglin
and Waldspurger [MW89], there is a factorization ni = aibi, and a cuspidal automorphic
representation ρi of GLai(AF ) such that

Πiψi = ρi � ρi||� · · ·� ρi||bi−1.

Moreover, ρi||(bi−1)/2 is cuspidal and conjugate self-dual. Let χi : A×F /F
×→ C× be a character

such that the following hold.

– There is an equality χ−1
i = χci .

– For every place w above a place in Si, χi is unramified at w.

– For every τ ∈Hom(F, C) giving rise to an infinite place w, we have

χi,w(z) = (τz/|τz|)µi,τ ,

where µi,τ = 0 if ai is odd or bi is odd, and µi,τ =±1 otherwise.

Then ρi||(bi−1)/2χi is cuspidal, cohomological and conjugate self-dual. Note that
χ−1
i ||(ai−1)(bi−1)/2 and ψ−1

i ||(ni−n)/2 are algebraic characters. Let

r`(π) =
r⊕
i=1

(r`(ρiχi||(bi−1)/2)⊗ εai−ni ⊗ r`(χ−1
i ||

(ai−1)(bi−1)/2)

⊗ (1⊕ ε⊕ · · · ⊕ εbi−1)⊗ r`(ψ−1
i ||

(ni−n)/2)),

where r` = r`,ι and ε is the `-adic cyclotomic character. This is a continuous semisimple
representation which satisfies all the required properties. We use the freedom to vary the sets Si
to achieve property (iii). 2

Remark 2.4. In the proof of the above theorem, if r = 1 and Π is already cuspidal, then
r`(π)∼= r`,ι(Π). As a consequence, suppose that ι : Q`

∼−−→ C is an isomorphism and Π is a
conjugate self-dual, cohomological, cuspidal automorphic representation of GLn(AF ) of weight
ι∗a. Then, by Theorem 2.2, we can find an irreducible constituent π ⊂ Sa,∅({1}, K) such that
r`,ι(Π)∼= r`(π).

Remark 2.5. If r`(π) is irreducible, then the base change of π is already cuspidal. Indeed, from
the construction made in the proof and Remark 2.4, (2), we see that r`(π) is a direct sum of
r representations ri of dimension ni. If r`(π) is irreducible, we must have r = 1. Similarly, the
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discrete base change Π must be cuspidal, because otherwise there would be a factorization n= ab
with a, b > 1 and r`(π) would be a direct sum of b representations of dimension a. This proves
our claim.

3. An Rred = T theorem for Hecke algebras of unitary groups

3.1 Hecke algebras
Keep the notation and assumptions as in the last section. For each place w of F , split above a
place v of F+, let Iw(w)⊂G(OF+

v
) be the inverse image under iw of the group of matrices in

GLn(OFw) which reduce modulo w to an upper triangular matrix. Let Iw1(w) be the kernel of
the natural surjection Iw(w)→ (k×w )n, where kw is the residue field of Fw. Similarly, let U0(w)
(respectively U1(w)) be the inverse image under iw of the group of matrices in GLn(OFw) whose
reduction modulo w has last row (0, . . . , 0, ∗) (respectively (0, . . . , 0, 1)). Then U1(w) is a normal
subgroup of U0(w), and the quotient U0(w)/U1(w) is naturally isomorphic to k×w .

Let Q be a finite (possibly empty) set of places of F+ split in F , disjoint from S` and Sr,
and let T ⊃ Sr ∪ S` ∪Q be a finite set of places of F+ split in F . Let T̃ denote a set of primes
of F above T such that T̃

∐
T̃ c is the set of all primes of F above T . For v ∈ T , we denote by ṽ

the corresponding element of T̃ , and for S ⊂ T , we denote by S̃ the set of places of F consisting
of the ṽ for v ∈ T . Let

U =
∏
v

Uv ⊂G(A∞F+)

be a sufficiently small compact open subgroup such that the following hold.

– If v 6∈ T splits in F then Uv =G(OF+
v

).

– If v ∈ Sr then Uv = Iw(ṽ).

– If v ∈Q then Uv = U1(ṽ).

– If v ∈ S` then Uv ⊂G(OF+
v

).

We write Ur =
∏
v∈Sr Uv. For v ∈ Sr, let χv be an O-valued character of Iw(ṽ), trivial on Iw1(ṽ).

Since Iw(ṽ)/Iw1(ṽ)' (k×ṽ )n, χv is of the form

g 7→
n∏
i=1

χv,i(gii),

where χv,i : k×ṽ → O×.
Let w be a place of F , split over a place v of F+ which is not in T . We translate the Hecke

operators T (j)
Fw

for j = 1, . . . , n on GLn(OFw) to G via the isomorphism iw. More precisely, let

g
(j)
w denote the element of G(A∞F+) whose v-coordinate is

i−1
w

(
ωw1j 0

0 1n−j

)
,

and with all other coordinates equal to 1. Then we define T (j)
w to be the operator [Ug(j)

w U ] of
Sa,χ(U, A). We will denote by TTa,χ(U) the O-subalgebra of EndO(Sa,χ(U, O)) generated by the

operators T (j)
w for j = 1, . . . , n and (T (n)

w )−1, where w runs over places of F which are split
over a place of F+ not in T . The algebra TTa,χ(U) is reduced, and finite free as an O-module
(see [CHT08]). Since O is a domain, this also implies that TTa,χ(U) is a semi-local ring. If v ∈Q,
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we can also translate the Hecke operators Vα,1 of § 1, for α ∈ F×ṽ with non-negative valuation, in
exactly the same manner to operators in Sa,χ(U, A), and similarly for Vα,0 if Uv = U0(ṽ).

Write

Sa,χ(U, K) =
⊕
π

πU , (3.1.1)

where π runs over the irreducible constituents of Sa,χ(Ur, K) for which πU 6= 0. The Hecke algebra
TTa,χ(U) acts on each πU by a scalar, say, by

λπ : TTa,χ(U)−→K.

Then, ker(λπ) is a minimal prime ideal of TTa,χ(U), and every minimal prime is of this form. If
m⊂ TTa,χ(U) is a maximal ideal, then

Sa,χ(U, K)m 6= 0,

and localizing at m kills all the representations π such that ker(λπ) 6⊂m. Note also that TTa,χ(U)/m
is a finite extension of k. For w a place of F , split over a place v 6∈ T , we will denote by Tw the
n-tuple (T (1)

w , . . . , T
(n)
w ) of elements of TTa,χ(U). We denote by Tw its reduction modulo m. We

use the notation of [CHT08, § 2.4.1] regarding torsion crystalline representations and Fontaine–
Laffaille modules.

Proposition 3.1. Suppose that m is a maximal ideal of TTa,χ(U) with residue field k. Then
there is a unique continuous semisimple representation

rm : Gal(F/F )→GLn(k)

with the following properties. The first two already characterize rm uniquely.

(i) The representation rm is unramified at all but finitely many places.

(ii) If a place v 6∈ T splits as wwc in F then rm is unramified at w and rm(Frobw) has
characteristic polynomial Pqw,Tw(X).

(iii) There is an isomorphism rcm
∼= r∨m(1− n).

(iv) If a place v of F+ is inert in F and if Uv is a hyperspecial maximal compact subgroup of
G(F+

v ), then rm is unramified above v.

(v) If w ∈ S̃` is unramified over `, Uw|F+
=G(OF+

w
) and for every τ ∈ Ĩ` above w we have

that

`− 1− n> aτ,1 > · · ·> aτ,n > 0,

then

rm|Γw = Gw(Mm,w)

for some object Mm,w of MF k,w. Moreover, for every τ ∈ Ĩ` over w, we have

dimk(gr−iMm,w)⊗OFw⊗Z`O,τ⊗1 O = 1

if i= j − n− aτ,j for some j = 1, . . . , n, and 0 otherwise.

Proof. Choose a minimal prime ideal p⊂m and an irreducible constituent π of

Sa,χ(Ur, K)

such that πU 6= 0 and TTa,χ(U) acts on πU via TTa,χ(U)/p. Choose an invariant lattice for r`(π)
and define then rm to be the semi-simplification of the reduction of r`(π). This satisfies all of the
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statements of the proposition, except for the fact that a priori it takes values on the algebraic
closure of k. Since all the characteristic polynomials of the elements on the image of rm have
coefficients in k, we may assume (because k is finite) that, after conjugation, rm actually takes
values in k. 2

We say that a maximal ideal m⊂ TTa,χ(U) is Eisenstein if rm is absolutely reducible. We
define (see [CHT08, ch. 2]) Gn as the group scheme over Z given by the semi-direct product of
GLn ×GL1 by the group {1, } acting on GLn ×GL1 by

(g, µ)−1 = (µtg−1, µ).

There is a homomorphism ν : Gn→GL1 which sends (g, µ) to µ and  to −1.

Proposition 3.2. Let m be a non-Eisenstein maximal ideal of TTa,χ(U), with residue field equal
to k. Then rm has an extension to a continuous morphism

rm : Gal(F/F+)→ Gn(k).

Pick such an extension. Then there is a unique continuous lifting

rm : Gal(F/F+)→ Gn(TTa,χ(U)m)

of rm with the following properties. The first two of these already characterize the lifting rm
uniquely.

(i) The representation rm is unramified at almost all places.

(ii) If a place v 6∈ T of F+ splits as wwc in F , then rm is unramified at w and rm(Frobw) has
characteristic polynomial Pqw,Tw(X).

(iii) We have ν ◦ rm = ε1−nδµm

F/F+ , where δF/F+ is the non-trivial character of Gal(F/F+) and

µm ∈ Z/2Z.

(iv) If v is an inert place of F+ such that Uv is a hyperspecial maximal compact subgroup of
G(F+

v ) then rm is unramified at v.

(v) Suppose that w ∈ S̃` is unramified over `, that Uw|F+
=G(OF+

w
), and that for every τ ∈ Ĩ`

above w we have that

`− 1− n> aτ,1 > · · ·> aτ,n > 0.
Then for each open ideal I ⊂ TTa,χ(U)m,

(rm ⊗TTa,χ(U)m
TTa,χ(U)m/I)|Γw = Gw(Mm,I,w)

for some object Mm,I,w of MFO,w.

(vi) If v ∈ Sr and σ ∈ IFṽ then rm(σ) has characteristic polynomial

n∏
j=1

(X − χ−1
v,j(Art−1

Fṽ
σ)).

(vii) Suppose that v ∈Q. Let φṽ be a lift of Frobṽ to Gal(F ṽ/Fṽ). Suppose that α ∈ k is a
simple root of the characteristic polynomial of rm(φṽ). Then there exists a unique root α̃ ∈
TTa,χ(U)m of the characteristic polynomial of rm(φṽ) which lifts α.

Let ωṽ be the uniformizer of Fṽ corresponding to φṽ via ArtFṽ . Suppose that Y ⊂ Sa,χ(U, K)m

is a TTa,χ(U)[V$ṽ ,1]-invariant subspace such that V$ṽ ,1 − α̃ is topologically nilpotent on Y , and

let TT (Y ) denote the image of TTa,χ(U) in EndK(Y ). Then for each β ∈ F×ṽ with non-negative
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valuation, Vβ,1 (in EndK(Y )) lies in TT (Y ), and β 7→ V (β) extends to a continuous character V :
F×ṽ → TT (Y )×. Further, (X − V$ṽ ,1) divides the characteristic polynomial of rm(φṽ) over TT (Y ).

Finally, if qv ≡ 1 mod ` then

rm|Γṽ ∼= s⊕ (V ◦Art−1
Fṽ

),

where s is unramified.

Proof. This is the analogue of [CHT08, Proposition 3.4.4], and can be proved exactly in the same
way. 2

Corollary 3.3. Let Q′ denote a finite set of places of F+, split in F and disjoint from T . Let m

be a non-Eisenstein maximal ideal of TTa,χ(U) with residue field k, and let U1(Q′) =
∏
v 6∈Q′ Uv ×∏

v∈Q′ U1(ṽ). Denote by ϕ : TT∪Q
′

a,χ (U ′)→ TTa,χ(U) the natural map, and let m′ = ϕ−1(m), so that

m′ is also non-Eisenstein with residue field k. Then the localized map ϕ : TT∪Q
′

a,χ (U1(Q′))m′ →
TTa,χ(U)m is surjective.

Proof. It suffices to see that T (j)
w /1 is in the image of ϕ for j = 1, . . . , n and w a place of F over

Q′, which follows easily because rm = ϕ ◦ rm′ , and so

T (j)
w = ϕ

(
qj(1−j)/2w Tr

( j∧
rm′

)
(φw)

)
,

where φw is any lift of Frobenius at w. 2

3.2 The main theorem
In this section we will use the Taylor–Wiles method in the version improved by Diamond,
Fujiwara, Kisin and Taylor. We will recapitulate the running assumptions made until now, and
add a few more. Thus, let F+ be a totally real field and F/F+ a totally imaginary quadratic
extension. Fix a positive integer n and an odd prime ` > n. Let K/Q` be a finite extension, let
K be an algebraic closure of K, and suppose that K is big enough to contain the image of every
embedding F ↪→K. Let O be the ring of integers of K, and k its residue field. Let S` denote the
set of places of F+ above `. Let S̃` denote a set of places of F above ` such that S̃`

∐
S̃c` are

all the places above `. We let Ĩ` denote the set of embeddings F ↪→K which give rise to a place
in S̃`. We will suppose that the following conditions are satisfied.

– The extension F/F+ is unramified at all finite places.
– The prime ` is unramified in F+.
– Every place of S` is split in F .

Let G be a totally definite unitary group in n variables, attached to the extension F/F+ such
that Gv is quasi-split for every finite place v (cf. § 2.4 for conditions on n and [F+ : Q] to
ensure that such a group exists). Choose a lattice in F+ giving a model for G over OF+ , and fix
a basis of the lattice, so that for each split v = wwc, there are two isomorphisms

iw :Gv −→GLn/Fw
and

iwc :Gv −→GLn/Fwc
taking G(OF+

v
) to GLn(OFw) and GLn(OFwc ) respectively.
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Let Sa denote a finite, non-empty set of primes of F+, disjoint from S`, such that if v ∈ Sa
then the following hold.

– The prime v splits in F .
– If v lies above a rational prime p then v is unramified over p and [F (ζp) : F ]> n.

Let Sr denote a finite set of places of F+, disjoint from Sa ∪ S`, such that if v ∈ Sr then the
following hold.

– The prime v splits in F .
– We have qv ≡ 1 mod `.

We will write T = S` ∪ Sa ∪ Sr, and T̃ ⊃ S̃` for a set of places of F above those of T such
that T̃

∐
T̃ c is the set of all places of F above T . For S ⊂ T , we will write S̃ to denote the set

of ṽ for v ∈ S. We will fix a compact open subgroup

U =
∏
v

Uv

of G(A∞F+), such that the following hold.

– If v is not split in F then Uv is a hyperspecial maximal compact subgroup of G(F+
v ).

– If v 6∈ Sa ∪ Sr splits in F then Uv =G(OF+
v

).
– If v ∈ Sr then Uv = Iw(ṽ).
– If v ∈ Sa then Uv = i−1

ṽ ker(GLn(OFṽ)→GLn(kṽ)).

Then, U is sufficiently small (Uv has only one element of finite order if v ∈ Sa) and its projection
to G(F+

` ) is contained in G(OF+
`

). Write

Ur =
∏
v∈Sr

Uv.

For any finite set Q of places of F+, split in F and disjoint from T , we will write T (Q) = T ∪Q.
Also, we will fix a set of places T̃ (Q)⊃ T̃ of F over T (Q) as above, for each Q. We will also write

U0(Q) =
∏
v 6∈Q

Uv ×
∏
v∈Q

U0(ṽ)

and
U1(Q) =

∏
v 6∈Q

Uv ×
∏
v∈Q

U1(ṽ).

Thus, U0(Q) and U1(Q) are also sufficiently small compact open subgroups of G(A∞F+).

Fix an element a ∈ (Zn,+)Hom(F,K) such that for every τ ∈ Ĩ` we have:

– aτc,i =−an+1−i; and
– `− 1− n> aτ,1 > · · ·> aτ,n > 0.

Let m⊂ TTa,1(U) be a non-Eisenstein maximal ideal with residue field equal to k. Write
T = TTa,1(U)m. Consider the representation

rm : Gal(F/F+)→ Gn(k)

and its lifting
rm : Gal(F/F+)→ Gn(T)
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given by Proposition 3.2. For v ∈ T , denote by rm,v the restriction of rm to a decomposition group
Γṽ at ṽ. We will assume that rm has the following properties.

– The image rm(Gal(F/F+(ζ`))) is big (see [CHT08, Definition 2.5.1], where the same notion
is also defined for subgroups of GLn(k)).

– If v ∈ Sr then rm,v is the trivial representation of Γṽ.
– If v ∈ Sa then rm is unramified at v and

H0(Γṽ, (ad rm)(1)) = 0.

We will use the Galois deformation theory developed in [CHT08, § 2], to where we refer the
reader for the definitions and results. Consider the global deformation problem

S = (F/F+, T, T̃ , O, rm, ε
1−nδµm

F/F+ , {Dv}v∈T ),

where the local deformation problems Dv are as follows. For v ∈ T , we denote by

runiv
v : Γṽ→GLn(Rloc

v )

the universal lifting ring of rm,v, and by Iv ⊂Rloc
v the ideal corresponding to Dv.

– For v ∈ Sa, Dv consists of all lifts of rm,v, and thus Iv = 0.
– For v ∈ S`, Dv consist of all lifts whose Artinian quotients all arise from torsion Fontaine–

Laffaille modules, as in [CHT08, § 2.4.1].

– For v ∈ Sr, Dv corresponds to the ideal I
(1,1,...,1)
v of Rloc

v , as in [Tay08, § 3]. Thus, Dv

consists of all the liftings r : Γṽ→GLn(A) such that for every σ in the inertia subgroup Iṽ,
the characteristic polynomial of r(σ) is

n∏
i=1

(X − 1).

Let
runiv
S : Gal(F/F+)→ Gn(Runiv

S )
denote the universal deformation of rm of type S . By Proposition 3.2, rm gives a lifting of rm

which is of type S ; this gives rise to a surjection

Runiv
S −→ T.

Let H = Sa,1(U, O)m. This is a T-module, and under the above map, a Runiv
S -module. Our main

result is the following.

Theorem 3.4. Keep the notation and assumptions of the start of this section. Then

(Runiv
S )red ' T.

Moreover, µm ≡ n mod 2.

Proof. The proof is essentially the same as Taylor’s [Tay08], except that here there are no primes
S(B)1 and S(B)2, in his notation. One has just to note that his argument is still valid in our
simpler case. The idea is to use Kisin’s version [Kis09] of the Taylor–Wiles method in the following
way, in order to avoid dealing with non-minimal deformations separately. There are essentially
two moduli problems to consider at places in Sr. One of them consists in considering all the
characters χv to be trivial. This is the case in which we are ultimately interested, but the local
deformation rings are not so well behaved (for example, they are not irreducible). We call this
the degenerate case. On the other hand, we can also consider the characters χv in such a way
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that χv,i 6= χv,j for all v ∈ Sr and all i 6= j. This is the non-degenerate case, and we can always
consider such a set of characters by our assumption that ` > n. Note that both problems are
equal modulo `. The Taylor–Wiles–Kisin method does not work with the first moduli problem,
but it works fine in the non-degenerate case. Taylor’s idea is to apply all the steps of the method
simultaneously for the degenerate and non-degenerate cases, and obtain the final conclusion of
the theorem by means of comparing both processes modulo λ, and using the fact that in the
degenerate case, even if the local deformation ring is not irreducible, every prime ideal which is
minimal over λ contains a unique minimal prime, and this suffices to proof what we want. We
will reproduce most of the argument in the following pages. What we will prove in the end is
that H is a nearly faithful Runiv

S -module, which by definition means that the ideal AnnRuniv
S

(H)
is nilpotent. Since T is reduced, this proves the main statement of the theorem.

We will be working with several deformation problems at a time. Consider a set Q of finite
set of places of F+, disjoint from T , such that if v ∈Q, then the following hold.

– The prime v splits as wwc in F .
– We have qv ≡ 1 mod `.
– The representation rm,v decomposes as rm,v = ψv ⊕ sv, with dim ψv = 1 and such that sv

does not contain ψv as a sub-quotient.

Let T (Q) and T̃ (Q) be as in the start of the section. Also, let {χv : Iw(ṽ)/Iw1(ṽ)→ O×}v∈Sr
be a set of characters of order dividing `. To facilitate the notation, we will write χv =
(χv,1, . . . , χv,n) and χ= {χv}v∈Sr . Consider the deformation problem given by

Sχ,Q = (F/F+, T (Q), T̃ (Q), O, rm, ε
1−nδµm

F/F+ , {D ′v}v∈T (Q)),

where the local deformation problems D ′v are given as follows.

– For v ∈ Sa ∪ S`, D ′v = Dv.
– For v ∈ Sr, D ′v consists of all the liftings r : Γṽ→GLn(A) such that the characteristic

polynomial of r(σ) for σ ∈ Iṽ is
n∏
i=1

(X − χ−1
v,i (Art−1

Fṽ
σ))

(see [Tay08, § 3]).
– For v ∈Q, D ′v consists of all Taylor–Wiles liftings of rm,v, as in [CHT08, § 2.4.6]. More

precisely, D ′v consists of all the liftings r : Γṽ→GLn(A) which are conjugate to one of the
form ψv ⊕ sv with ψv a lift of ψv and sv an unramified lift of sv.

Denote by I χv
v the corresponding ideal of Rloc

v for every v ∈ T (Q). Let

runiv
Sχ,Q

: Gal(F/F+)→ Gn(Runiv
Sχ,Q

)

denote the universal deformation of r of type Sχ,Q, and let

r�TSχ,Q
: Gal(F/F+)→ Gn(R�TSχ,Q

)

denote the universal T -framed deformation of r of type Sχ,Q (see [CHT08, 2.2.7] for the definition
of T -framed deformations; note that it depends on T̃ ). Thus, by definition of the deformation
problems, we have that Runiv

S1,∅
=Runiv

S . As we claimed above, both problems are equal modulo `.
We have isomorphisms

Runiv
Sχ,Q

/λ∼=Runiv
S1,Q

/λ (3.2.1)
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and
R�TSχ,Q

/λ∼=R�TS1,Q
/λ, (3.2.2)

compatible with the following natural commutative diagrams.

Runiv
Sχ,Q

// //

��

Runiv
Sχ,∅

��
R�TSχ,Q

// // R�TSχ,∅

Runiv
S1,Q

// //

��

Runiv
S1,∅

��
R�TS1,Q

// // R�TS1,∅

Also, let

Rloc
χ,T =

⊗̂
v∈T

Rloc
v /I χv

v .

Then
Rloc
χ,T /λ

∼=Rloc
1,T /λ. (3.2.3)

To any T -framed deformation of type Sχ,Q and any v ∈ T we can associate a lifting of rm,v of
type Dv, and hence there are natural maps

Rloc
χ,T −→R�TSχ,Q

which, modulo λ, are compatible with the identifications (3.2.3) and (3.2.2).
Let T = O[[Xv,i,j ]]v∈T ;i,j=1,...,n. Then a choice of a lifting runiv

Sχ,Q
of rm over Runiv

Sχ,Q
representing

the universal deformation of type Sχ,Q gives rise to an isomorphism of Runiv
S ,Q-algebras

R�TSχ,Q
'Runiv

Sχ,Q
⊗̂O T , (3.2.4)

so that
(runiv

Sχ,Q
; {1n + (Xv,i,j)}v∈T )

represents the universal T -framed deformation of type Sχ,Q (see [CHT08, Proposition 2.2.9]).
Moreover, we can choose the liftings runiv

Sχ,Q
so that

runiv
Sχ,Q

⊗O k = runiv
S1,Q

⊗O k

under the natural identifications (3.2.1). Then the isomorphisms (3.2.4) for χ and 1 are
compatible with the identifications (3.2.2) and (3.2.1).

For v ∈Q, let ψv denote the lifting of ψṽ to (Runiv
Sχ,Q

)× given by the lifting runiv
Sχ,Q

. Also, write
∆Q for the maximal `-power order quotient of

∏
v∈Q k

×
ṽ , and let aQ denote the ideal of T [∆Q]

generated by the augmentation ideal of O[∆Q] and by the Xv,i,j for v ∈ T and i, j = 1, . . . , n.
Since the primes of Q are different from ` and ψṽ is unramified, ψv is tamely ramified, and then∏

v∈Q
(ψv ◦ArtFṽ) : ∆Q −→ (Runiv

Sχ,Q
)×

makes Runiv
Sχ,Q

an O[∆Q]-algebra. This algebra structure is compatible with the identifications
(3.2.1), because we chose the liftings runiv

Sχ,Q
and runiv

S1,Q
compatibly. Via the isomorphisms (3.2.4),

R�TSχ,Q
are T [∆Q]-algebras, which are compatible modulo λ for the different choices of χ. Finally,
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we have an isomorphism

R�TSχ,Q
/aQ 'Runiv

Sχ,∅ , (3.2.5)

compatible with the identifications (3.2.2) and (3.2.1), the last one with Q= ∅.

Note that since

Sa,1(U, k) = Sa,χ(U, k)

we can find a maximal ideal mχ,∅ ⊂ TTa,χ(U) with residue field k such that for a prime w of F split

over a prime v 6∈ T of F+, the Hecke operators T (j)
w have the same image in TTa,χ(U)/mχ,∅ = k as

in TTa,1(U)/m = k. It follows that rmχ,∅
∼= rm, and in particular mχ,∅ is non-Eisenstein. We define

mχ,Q ⊂ TT (Q)
a,χ (U1(Q)) as the preimage of mχ,∅ under the natural map

TT (Q)
a,χ (U1(Q))� TT (Q)

a,χ (U0(Q))� TT (Q)
a,χ (U) ↪→ TTa,χ(U).

Then TT (Q)
a,χ (U1(Q))/mχ,Q = k, and if a prime w of F splits over a prime v 6∈ T (Q) of F+, then

the Hecke operators T (j)
w have the same image in TT (Q)

a,χ (U1(Q))/mχ,Q = k as in TTa,1(U)/m = k.
Hence, rmχ,Q

∼= rm and mχ,Q is non-Eisenstein. Let

rmχ,Q : Gal(F/F+)→ Gn(TT (Q)
a,χ (U1(Q))mχ,Q)

be the continuous representation attached to mχ,Q as in Proposition 3.2. Write Tχ = TTa,χ(U)mχ,∅

and Hχ = Sa,χ(U, O)mχ,∅ . We have the following natural surjections

TT (Q)
a,χ (U1(Q))mχ,Q � TT (Q)

a,χ (U0(Q))mχ,Q � TT (Q)
a,χ (U)mχ,Q = Tχ. (3.2.6)

The last equality follows easily from Corollary 3.3.

For each v ∈Q, choose φṽ ∈ Γṽ a lift of Frobṽ, and let ωṽ ∈ F×ṽ be the uniformizer
corresponding to φṽ via ArtFṽ . Let

Pṽ ∈ TT (Q)
a,χ (U1(Q))mχ,Q [X]

denote the characteristic polynomial of rmχ,Q(φṽ). Since ψv(φṽ) is a simple root of the
characteristic polynomial of rm(φṽ), by Hensel’s lemma, there exists a unique root Aṽ ∈
TT (Q)

a,χ (U1(Q))mχ,Q of Pṽ lifting ψv(φṽ). Thus, there is a factorization

Pṽ(X) = (X −Aṽ)Qṽ(X)

over TT (Q)
a,χ (U1(Q))mχ,Q , where Qṽ(Aṽ) ∈ TT (Q)

a,χ (U1(Q))×mχ,Q . By part (i) of Proposition 1.7 and
Lemma 1.9, Pṽ(V$ṽ ,1) = 0 on Sa,χ(U1(Q), O)mχ,Q . For i= 0, 1, let

Hi,χ,Q =
(∏
v∈Q

Qṽ(V$ṽ ,i)
)
Sa,χ(Ui(Q), O)mχ,Q ⊂ Sa,χ(Ui(Q), O)mχ,Q ,

and let Ti,χ,Q denote the image of TT (Q)
a,χ (U1(Q))mχ,Q in EndO(Hi,χ,Q). We see that H1,χ,Q is a

direct summand of Sa,χ(U1(Q), O) as a TT (Q)
a,χ (U1(Q))-module. Also, we have an isomorphism(∏

v∈Q
Qṽ(Vωṽ ,0)

)
:Hχ

∼=H0,χ,Q.

This can be proved using Proposition 1.7 and Lemmas 1.9 and 1.10, as in [CHT08, 3.2.2].
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For all v ∈Q, V$ṽ ,1 =Aṽ on H1,χ,Q. By part (vii) of Proposition 3.2, for each v ∈Q there is
a character with open kernel

Vv : F×ṽ −→ T×1,χ,Q
such that the following hold.

– If α ∈ OFṽ is non-zero, then Vα,1 = Vv(α) on H1,χ,Q.
– There is an isomorphism (rmχ,Q ⊗ T1,χ,Q)|Γṽ ∼= sv ⊕ (Vv ◦Art−1

Fṽ
), where sv is unramified.

It is clear that Vv ◦Art−1
Fṽ

is a lifting of ψv and sv is a lifting of sv. It follows by (v) and (vi)
of the same proposition that rmχ,Q ⊗ T1,χ,Q gives rise to a deformation of rm of type Sχ,Q, and
thus to a surjection

Runiv
Sχ,Q

� T1,χ,Q,

such that the composition ∏
v∈Q

O×Fṽ �∆Q→ (Runiv
Sχ,Q

)×→ T×1,χ,Q

coincides with
∏
v∈Q Vv. We then have that H1,χ,Q is an Runiv

Sχ,Q
-module, and we set

H�T1,χ,Q =H1,χ,Q ⊗Runiv
Sχ,Q

R�TSχ,Q
=H1,χ,Q ⊗O T .

Since ker(
∏
v∈Q k

×
ṽ →∆Q) acts trivially on H1,χ,Q and H1,χ,Q is a TT (Q)

a,χ (U1(Q))-direct sum-
mand of Sa,χ(U1(Q), O), Lemma 2.1 implies that H1,χ,Q is a finite free O[∆Q]-module, and that

(H1,χ,Q)∆Q
∼=H0,χ,Q

∼=Hχ.

Since U is sufficiently small, we get isomorphisms

Sa,χ(U, O)⊗O k ∼= Sa,χ(U, k) = Sa,1(U, k)∼= Sa,1(U, O)⊗O k

and
Sa,χ(U1(Q), O)⊗O k ∼= Sa,χ(U1(Q), k) = Sa,1(U1(Q), k)∼= Sa,1(U1(Q), O)⊗O k.

Thus we get identifications

Hχ/λ∼=H1/λ,

H1,χ,Q/λ∼=H1,1,Q/λ

and
H�T1,χ,Q/λ

∼=H�T1,1,Q/λ,

compatible with all the pertinent identifications modulo λ made before.
Let

ε∞ = (1− (−1)µm−n)/2
and

q0 = [F+ : Q]n(n− 1)/2 + [F+ : Q]nε∞.
By [CHT08, Proposition 2.5.9], there is an integer q > q0, such that, for every natural number
N , we can find a set of primes QN (and a set of corresponding ψv and sv for rm) such that the
following hold.

– The set QN has q elements.
– For v ∈QN , qv ≡ 1(mod `N ).
– The algebra R�TS1,QN

can be topologically generated over Rloc
1,T by q′ = q − q0 elements.
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Define

R�Tχ,∞ =Rloc
χ,T [[Y1, . . . , Yq′ ]].

Then there is a surjection

R�T1,∞�R�TS1,QN

extending the natural map Rloc
1,T →R�TS1,QN

. Reducing modulo λ and lifting the obtained
surjection, via the identifications

R�Tχ,∞/λ'R
�T
1,∞/λ,

we obtain a surjection

R�Tχ,∞�R�TSχ,QN

extending the natural map Rloc
χ,T →R�TSχ,QN

.

For v ∈ Sa, Rloc
v /I χv

v is a power series ring over O in n2 variables (see [CHT08, Lemma 2.4.9]),
and for v ∈ S` it is a power series ring over O in n2 + [Fṽ : Q`]n(n− 1)/2 variables (see [CHT08,
Corollary 2.4.3]).

Suppose that χv,i 6= χv,j for every v ∈ Sr and every i, j = 1, . . . , n with i 6= j. Then, by [Tay08,
Proposition 3.1], for every v ∈ Sr, Rloc

v /I χv
v is irreducible of dimension n2 + 1 and its generic

point has characteristic zero. It follows that (Rloc
v /I χv

v )red is geometrically integral (in the sense
that (Rloc

v /I χv
v )red ⊗O O ′ is an integral domain for every finite extension K ′/K, where O ′ is the

ring of integers of K ′) and flat over O. Moreover, by [BGHT, Lemma 3.3, part 3],

(R�Tχ,∞)red '
((⊗̂

v∈Sr
(Rloc

v /I χv
v )red

)⊗̂(⊗̂
v∈Sa∪S`

Rloc
v /Iv

))
[[Y1, . . . , Yq′ ]],

and the same part of that lemma implies that (R�Tχ,∞)red is geometrically integral. We conclude
that in the non-degenerate case, R�Tχ,∞ is irreducible, and, by [BGHT, Lemma 3.3, part 2], its
Krull dimension is

1 + q + n2#T − [F+ : Q]nε∞.

Suppose now that we are in the degenerate case, that is, χv = 1 for every v ∈ Sr. Then
(see [Tay08, Proposition 3.1]) for every such v, Rloc

v /I χv
v is pure of dimension n2 + 1, its generic

points have characteristic zero, and every prime of Rloc
v /I χv

v which is minimal over λ(Rloc
v /I χv

v )
contains a unique minimal prime. After eventually replacing K by a finite extension K ′ (which
we are allowed to do since the main theorem for one K implies the same theorem for every K ′),
Rloc
v /I χv

v satisfies that for every prime ideal p which is minimal (respectively every prime ideal q

which is minimal over λ(Rloc
v /I χv

v )), the quotient (Rloc
v /I χv

v )/p (respectively (Rloc
v /I χv

v )/q) is
geometrically integral. It follows then by [BGHT, Lemma 3.3, parts 2, 5 and 7] that every prime
ideal of R�T1,∞ which is minimal over λR�T1,∞ contains a unique minimal prime, the generic points
of R�T1,∞ have characteristic zero and R�T1,∞ is pure.

Let ∆∞ = Zq` , S∞ = T [[∆∞]] and a = ker(S∞� O), where the map sends ∆∞ to 1 and the
variables Xv,i,j to 0. Thus, S∞ is isomorphic to a power series ring over O in q + n2#T variables.
For every N , choose a surjection

∆∞�∆QN .

We have an induced map on completed group algebras

O[[∆∞]]� O[∆QN ].
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and thus a map

S∞�T [∆QN ]→R�TSχ,QN
(3.2.7)

which makes R�TSχ,QN
an algebra over S∞. The map S∞�T [∆QN ] sends the ideal a to aQN .

Let cN = ker(S∞�T [∆QN ]). Note that every open ideal of S∞ contains cN for some N . The
following properties hold.

– The algebra H�T1,χ,QN
is finite free over S∞/cN .

– There is an isomorphism R�TSχ,QN
/a'Runiv

Sχ,∅
.

– There is an isomorphism H�T1,χ,QN
/a'Hχ.

In what follows, we will use that we can patch the R�TSχ,QN
to obtain in the limit a copy of

R�Tχ,∞, and simultaneously patch the H1,χ,QN to form a module over R�Tχ,∞, finite free over S∞.
The patching construction is carried on in exactly the same way as in [Tay08]. The outcome of
this process is a family of R�Tχ,∞ ⊗̂O S∞-modules H�T1,χ,∞ with the following properties.

(1) They are finite free over S∞, and the S∞-action factors through R�Tχ,∞, in such a way
that the obtained maps S∞→R�Tχ,∞�R�TSχ,QN

are the maps defined in (3.2.7) for every N ; in
particular, there is a surjection

R�Tχ,∞/a�Runiv
Sχ,QN

/a =Runiv
Sχ,∅ .

(2) There are isomorphisms H�T1,χ,∞/λ'H
�T
1,1,∞/λ of R�Tχ,∞/λ'R

�T
1,∞/λ-modules.

(3) There are isomorphisms H�T1,χ,∞/a'Hχ of R�Tχ,∞/a-modules, where we see Hχ as a module
over R�Tχ,∞/a by means of the map in (1). Moreover, these isomorphisms agree modulo λ via the
identifications of (2).

Let us place ourselves in the non-degenerate case. That is, let us choose the characters χ such
that χv,i 6= χv,j for every v ∈ Sr and every i 6= j. This is possible because ` > n and qv ≡ 1(mod `)
for v ∈ Sr. Since the action of S∞ on H�T1,χ,∞ factors through R�Tχ,∞,

depth
R
�T
χ,∞

(H�T1,χ,∞)> depthS∞(H�T1,χ,∞). (3.2.8)

Also, since H�T1,χ,∞ is finite free over S∞, which is a Cohen–Macaulay ring, by the Auslander–
Buchsbaum formula we have that

depthS∞(H�T1,χ,∞) = dim S∞ = 1 + q + n2#T. (3.2.9)

Since the depth of a module is at most its Krull dimension, by equations (3.2.8) and (3.2.9) we
obtain that

dim(R�Tχ,∞/Ann
R
�T
χ,∞

(H�T1,χ,∞))> 1 + q + n2#T. (3.2.10)

Recall that R�Tχ,∞ is irreducible of dimension

1 + q + n2#T − [F+ : Q]nε∞. (3.2.11)

Then, (3.2.10), (3.2.11) and [Tay08, Lemma 2.3] imply that ε= 0 (that is, µm ≡ n(mod 2))
and that H�T1,χ,∞ is a nearly faithful R�Tχ,∞-module. This implies in turn that H�T1,χ,∞/λ'H

�T
1,1,∞/λ

is a nearly faithful R�Tχ,∞/λ'R
�T
1,∞/λ-module (this follows from Nakayama’s lemma, as in [Tay08,

Lemma 2.2]). Since the generic points of R�T1,∞ have characteristic zero, R�T1,∞ is pure and every
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prime of R�T1,∞ which is minimal over λR�T1,∞ contains a unique minimal prime of R�T1,∞, the same
lemma implies that H�T1,1,∞ is a nearly faithful R�T1,∞-module. Finally, using the same lemma again,
this implies that H�T1,1,∞/a'H is a nearly faithful R�T1,∞/a-module, and since R�T1,∞/a�Runiv

S ,
H is a nearly faithful Runiv

S -module. 2

4. Modularity lifting theorems

In this section we apply the results of the previous sections to prove modularity lifting theorems
for GLn. We deal first with the case of a totally imaginary field F .

Theorem 4.1. Let F+ be a totally real field, and F a totally imaginary quadratic extension of
F+. Let n> 1 be an integer and ` > n be a prime number, unramified in F . Let

r : Gal(F/F )−→GLn(Q`)

be a continuous irreducible representation with the following properties. Let r denote the
semisimplification of the reduction of r.

(i) There is an isomorphism rc ∼= r∨(1− n).
(ii) The representation r is unramified at all but finitely many primes.

(iii) For every place v|` of F , r|Γv is crystalline.

(iv) There is an element a ∈ (Zn,+)Hom(F,Q`) such that the following hold.

– For all τ ∈Hom(F+,Q`), we have either

`− 1− n> aτ,1 > · · ·> aτ,n > 0

or

`− 1− n> aτc,1 > · · ·> aτc,n > 0.
– For all τ ∈Hom(F,Q`) and every i= 1, . . . , n,

aτc,i =−aτ,n+1−i.

– For all τ ∈Hom(F,Q`) giving rise to a prime w|`,

HTτ (r|Γw) = {j − n− aτ,j}nj=1.

In particular, r is Hodge–Tate regular.

(v) The field F
ker(ad r)

does not contain F (ζ`).
(vi) The group r(Gal(F/F (ζ`))) is big.

(vii) The representation r is irreducible and there is a conjugate self-dual, cohomological,
cuspidal automorphic representation Π of GLn(AF ), of weight a and unramified above `, and an
isomorphism ι : Q`

∼−−→ C, such that r ∼= r`,ι(Π).

Then r is automorphic of weight a and level prime to `.

Proof. Arguing as in [Tay08, Theorem 5.2], we may assume that F contains an imaginary
quadratic field E with an embedding τE : E ↪→Q` such that

`− 1− n> aτ,1 > · · ·> aτ,n > 0

for every τ : F ↪→Q` extending τE . This will allow us to choose the set S̃` (in the notation of § 2.3)
in such a way that the weights aτ,i are all within the correct range for τ ∈ Ĩ`. Let ι : Q`

'−−→ C and
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let Π be a conjugate self-dual, cuspidal, cohomological automorphic representation of GLn(AF )
of weight ι∗a, with Π` unramified, such that r ∼= r`,ι(Π). Let Sr denote the places of F not

dividing ` at which r or Π is ramified. Since F ker(ad r) does not contain F (ζ`), we can choose a
prime v1 of F with the following properties.

– It does not belong to Sr and does not divide l.

– It is unramified over a rational prime p, for which [F (ζp) : F ]> n.

– It does not split completely in F (ζ`).

– We have ad r(Frobv1) = 1.

Choose a totally real field L+/F+ with the following properties.

– The degree [L+ : Q] is even.

– The extension L+/F+ is Galois and soluble.

– The composite L= L+E is unramified over L+ at every finite place.

– The field L is linearly disjoint from F
ker(r)(ζ`) over F .

– The prime ` is unramified in L.

– All primes of L above Sr ∪ {v1} are split over L+.

– The places v1 and cv1 split completely in L/F .

– Let ΠL denote the base change of Π to L. If v is a place of L above Sr, then:

∗ Nv ≡ 1(mod `);
∗ r(Gal(Lv/Lv)) = 1;
∗ r|ssIv = 1; and

∗ ΠIw(v)
L,v 6= 0.

Since [L+ : Q] is even, there exists a unitary group G in n variables attached to L/L+ which
is totally definite and such that Gv is quasi-split for every finite place v of L+. Let S`(L+)
denote the set of primes of L+ above `, Sr(L+) the set of primes of L+ lying above the
restriction to F+ of an element of Sr, and Sa(L+) the set of primes of L+ above v1|F+ . Let
T (L+) = S`(L+) ∪ Sr(L+) ∪ Sa(L+). It follows from Remarks 2.4 and 2.5 and Theorem 3.4 that
r|Gal(F/L) is automorphic of weight aL and level prime to `, where aL ∈ (Zn,+)Hom(L,Q`) is defined
as aL,τ = aτ |F . By [BGHT, Lemma 1.4] (note that the hypotheses there must say ‘r∨ ∼= rc ⊗ χ’
rather than ‘r∨ ∼= r ⊗ χ’), this implies that r itself is automorphic of weight a and level prime
to `. 2

We can also prove a modularity lifting theorem for totally real fields F+. The proof goes
exactly like [Tay08, Theorem 5.4], using [BGHT, Lemma 1.5] instead of [CHT08, Lemma 4.3.3].

Theorem 4.2. Let F+ be a totally real field. Let n> 1 be an integer and ` > n be a prime
number, unramified in F . Let

r : Gal(F+
/F+)−→GLn(Q`)

be a continuous irreducible representation with the following properties. Let r denote the
semisimplification of the reduction of r.

(i) There is an isomorphism r∨ ∼= r(n− 1)⊗ χ for some character χ : Gal(F+
/F+)→Q×`

with χ(cv) independent of v|∞ (here cv denotes a complex conjugation at v).
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(ii) The representation r is unramified at all but finitely many primes.

(iii) For every place v|` of F , r|Γv is crystalline.

(iv) There is an element a ∈ (Zn,+)Hom(F+,Q`) such that the following hold.

– For all τ ∈Hom(F+,Q`), we have either

`− 1− n> aτ,1 > · · ·> aτ,n > 0

or

`− 1− n> aτc,1 > · · ·> aτc,n > 0.

– For all τ ∈Hom(F+,Q`) and every i= 1, . . . , n,

aτc,i =−aτ,n+1−i.

– For all τ ∈Hom(F+,Q`) giving rise to a prime v|`,

HTτ (r|Γv) = {j − n− aτ,j}nj=1.

In particular, r is Hodge–Tate regular.

(v) The field (F+)ker(ad r) does not contain F+(ζ`).

(vi) The group r(Gal(F+
/F+(ζ`))) is big.

(vii) The representation r is irreducible and automorphic of weight a.

Then r is automorphic of weight a and level prime to `.
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