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Abstract

A combinator-based parser is a parser constructed directly from a BNF grammar, using
higher-order functions (combinators) to model the alternative and sequencing operations of
BNF. This paper describes a method for constructing parser combinators that can be used
to build efficient predictive parsers which accurately report the cause of parsing errors. The
method uses parsers that return values (parse trees or error indications) decorated with one
of four tags.

Capsule Review

Combinator parsers have become popular in functional programming circles in recent years,
although some questions have been raised regarding their practicality. This paper describes
how to construct efficient predictive combinator parsers, and in addition addresses an im-
portant pragmatic issue which is not usually handled well, even by conventional parsers: the
accurate identification of parsing errors.

1 Introduction

The idea behind combinator-based parsers is to construct a parser directly from
a BNF grammar by modelling the alternative and sequencing operations of BNF
using higher-order functions called parser combinators. Benefits of this technique
include: the parser can be written straightforwardly in the language in which the
rest of the program is written; semantic actions are easily incorporated; and special
purpose combinators can be defined in terms of the basic combinators, using the
full power of a lazy functional language.

Although combinator-based parsers in general can deal naturally with ambiguous
grammars, this paper is only concerned with the use of combinators to construct
predictive parsers for LL(1) grammars (Aho et al., 1986). A predictive parser is
a recursive-descent parser that needs no backtracking. LL(1) grammars have the
property that at most one of a set of alternatives will match at least one token (Lewis
and Stearns, 1968). Programming languages, for example, are usually context-free
languages whose grammars can be translated into LL(1) form by eliminating left-
recursion and common left factors.

https://doi.org/10.1017/S0956796800001714 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001714


356 A. S. Partridge and D. A. Wright

The main contribution of this paper is an improvement in the error reporting
provided by parser combinators when used to write predictive parsers. Using the
method described in this paper, the first token following the longest parse of the
input is automatically reported as the cause of a parse error. However, parsers
constructed using the method described in this paper do not recover from parse
errors.

The programming examples in the paper are given in Gofer (Jones, 1994). Any
other lazy language with higher-order functions and a polymorphic type system
could be used.

2 A parser combinator monad

Monads are a well-established means of structuring functional programs (Wadler,
1990), and it is convenient, but by no means essential, to present this work using
them. We will use the monad syntax provided by the Gofer system (Jones, 1994).
In this syntax, one can use indentation preceded by the keyword do instead of
writing the bind operator explicitly. The resul t combinator is still written explic-
itly.

A functor is a type constructor over which a map function is defined. A monad is a
functor with resul t and bind functions defined. Here are type class definitions for
functors, monads and monads with a zero and a plus, similar to those provided in
the Gofer constructor class prelude:

class Functor f where
map :: (a -> b) -> (f a -> f b)

class Functor m => Monad m where
result :: a -> m a
bind :: m a -> (a -> m b) -> m b

class Monad m => MonadO m where
zero :: m a

class MonadO c => MonadPlus c where
(++) : : c a -> c a -> c a

To model a BNF grammar the bind operator will be used to construct parsers
for sequences; resul t will have the dual purpose of enabling the construction of
the result of a successful parse and modelling the e parser from BNF; zero will be
defined as a primitive parser that fails after consuming no input tokens; and plus
(++) will be used to build parsers for alternatives. We also define a primitive parser
l i t for parsing literals. The map function may be used to apply a function to the
successful result of a parser.

This is by no means a complete set of primitive parsers and parser combinators,
but it is adequate for describing our method.
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3 Two-value combinators

Hutton (1992) presents a set of parser combinators based on the list of successes
method of Wadler (1985). Using this technique, parsers return a list of successful
parses. While this permits the writing of parsers for ambiguous grammars, the
resulting parsers cannot indicate where parse errors occur, since failure of a parser
to match is represented by an empty list.

For unambiguous grammars, parsers need only return a single parse. This leads
Hutton to the idea of parsers that return either the Ok tagged result of a sin-
gle successful parse paired with the remaining input, or a Fail tagged indication
of the location and nature of parse failure. Because there are two tag values,
we shall call the combinator sets used to build such parsers two-value combina-
tors. The following types and access function are suitable for two-value combina-
tors:

data Parser a b = Parser ([a] -> Reply (b, [a]) (Error a))

data Reply x y = Ok x I Fail y

type Error a = a

getParser (Parser pf) = pf

In the type Parser a b, a is the type of tokens to be parsed, and b is the type of
the result of a successful parse. In general, Error could be an algebraic type with
separate tags for indicating different classes of errors, such as lexical errors, expected
end of file, and unexpected end of file.

The map function applies a function to the successful result of a parser:

instance Functor (Parser a) where
map f p = Parser (\inp ->

case getParser p inp of
Fail e -> Fail e
Ok (x, inpl) -> Ok (f x, inpl))

The primitive parser zero fails without consuming any tokens:

instance MonadO (Parser a) where
zero = Parser (\(tok:toks) -> Fail tok)

The function l i t takes a token as an argument and returns a parser that checks
whether the next input token matches the argument. If it does, the token is returned
as the result of the parse, tagged with Ok; otherwise the failing token is returned,
tagged with Fail. If it is necessary to indicate the absolute position of a failing
token, tokens may be tagged with their position in the input at the lexical analysis
stage. This information can then be extracted to indicate the location of the error if
the top-level parse fails.

l i t :: Eq a => a -> Parser a a
lit x = Parser (\(y:ys) -> if (x==y) then Ok (y, ys) else Fail y)
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Table 1. Behaviour of the ++ and bind combinators with two values

a b a 'b ind ' (\_ -> b) a ++ b

F a i l F a i l Fa i l Fa i l
F a i l Ok F a i l Ok
Ok Fail Fail Ok
Ok Ok Ok Ok"

" Technically, if the grammar is LL(1), both parses cannot succeed. The result is defined to
be Ok here so that it does not depend on the result from the second parse. Hence, the
second parse need not be evaluated if the first succeeded.

Table 1 gives the abstract behaviour required of bind and ++ for the two-value
method. The abstraction is that only the tags on the values returned by the parsers
a and b are necessary to compute the tag returned by the result parser.

Here is the code for bind and resul t using the two-value method:

instance Monad (Parser a) where
pi 'bind' p2 = Parser (\inp ->

case getParser pi inp of
Fail el -> Fail el
Ok (x, inpl) ->

case getParser (p2 x) inpl of
Fail e2 -> Fail e2
Ok (y, inp2) -> Ok (y, inp2))

resul t x = Parser (\ inp -> Ok (x, inp))

The bind combinator constructs parsers for sequences. Its first argument is a parser,
and its second argument is a function that returns a parser after being given the
result of the first parse as argument. Table 1 shows that both argument parsers
must succeed for the sequence parser to succeed. The result function takes one
argument and returns a parser that consumes no input tokens and succeeds, returning
the argument as the result of the parse.

Table 1 shows that in an alternative either parse may succeed for the alternative
to succeed:

instance MonadPlus (Parser a) where
pi ++ p2 = Parser (\ inp ->

case getParser pi inp of
Fai l e -> getParser p2 inp
Ok x -> Ok x)

If a tree of ++'s contains a resu l t , the resul t must appear as the second argument
of the rightmost ++. This is necessary to ensure that the longest successful parse
is always returned, because the ++ combinator only attempts to match its second
parser argument to the input if its first argument failed to match.
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There are two problems with the two-value approach: the parsers tend to show
the location of errors as appearing earlier in the source than they really are, and ++
sometimes unnecessarily tries to match its second argument onto the input. These
problems are linked, as can be seen by considering the following grammar:

exl = do {a; b} ++ c

which is Gofer monad syntax for:

exl = (a 'bind' (\_ -> b)) ++ c

If a matches but b does not, the bind subexpression will return Fail, so the ++
operator will attempt to match c. Since we assume that the grammar is unambiguous,
there is no possibility that c will match here, so this is wasted work. Furthermore,
when c fails to match, the ++ operator has insufficient information to decide whether
to report one failed parse or the other. In this case it happens to return the error
from the c parser, effectively indicating that the error lies in the piece of the input
that was correctly matched by parser a!

4 Two tag values plus position information

For accurate error reporting it is usual to tag tokens with their row and column
positions. This information can be used to compare the relative positions of two
tokens in the input, enabling ++ to choose the longer of the two parses when one
of them fails. This guarantees that error messages indicate the position of an error
as occurring at the end of the longest parse, and so solves the problems with the
two-value combinators from the previous section.

Note that even a failed parse is a candidate for being the longer of two parses
being considered by ++. For example, a parse that consumes a number of tokens and
then fails is longer than one that consumes no tokens at all and succeeds. (Recall
that with an LL(1) grammar, at most one of the alternatives may match a token.)

Because the production rules are left factored and any result parsers appear at
the far right of any trees of ++'s, the ++ combinator can safely assume that if the
first parse succeeds it is longer than the second parse. Only if the first parse fails
does the second parse have to be attempted to find its length. In this case, ++ should
return the longer of the two parses, regardless of which succeeded.

Unfortunately, using this method the type of ++ becomes cluttered because of the
need to examine the positions of tokens. This makes the combinators less abstract,
so we seek a better method.

5 Three-value combinators

An alternative solution to the problem with two-value combinators is given by
Hutton (1992). Hutton's solution is to make parsers return values with one of three
tag values: Ok, Fail, and Err.

The Err value is generated using a new combinator called noFail. The noFail
combinator translates Fail tags into Err tags, but leaves Ok tags alone. For example,
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the use of noFail in (p ++ q ++ nof a i l r) captures the notion that failure of
any alternative to succeed gives rise to an error. The use of noFail in (p 'bind'
(\x -> nof a i l q)) captures the notion that failure of one parser after success of
another gives an error rather than just failure.

Explicit use of the noFail combinator requires some care to obtain informative
error reporting. Fortunately, if we assume an LL(1) grammar it is possible to
automate the generation of the Err value. The next section shows how this is done.

6 Four-value combinators

The following observation is the key to automating the generation of the Err value:
with an LL(1) grammar, if an alternative successfully consumes at least one token
(possibly followed by failure), we can assume that the other alternative will not be
able to successfully consume any tokens. Conversely, if an alternative consumes no
tokens (successfully or not), then the other alternative may be able to consume some
tokens.

Note the essential difference between Err and Fail: Err should be returned by a
parser that failed after successfully consuming at least one token, in which case no
alternative parser should be tried; Fail is returned by a parser that failed without
consuming any tokens at all, in which case an alternative parser may be tried.

It is also necessary to distinguish between a successful parse that consumed at least
one token and one that consumed no tokens. A parser that successfully consumes at
least one token but then fails must return the Err value. However, a parser may suc-
ceed without consuming any tokens (for example, the resul t parser). It is therefore
possible for a parser to successfully consume no tokens, followed by failure. Here the
parser has consumed no tokens, and must return the Fail value. This is necessary in
case the parser is part of an alternative, as the other alternative should then be tried.

To distinguish between a successful parse that consumed at least one token and
a successful parse that consumed no tokens, we introduce the new tag value Epsn
and redefine the meaning of Ok. The meanings of the tag values are now satisfyingly
symmetrical:

• Epsn: the parser succeeded without consuming any tokens.
• Ok: the parser succeeded after consuming at least one token.
• Fai l : the parser failed without consuming any tokens.
• Err: the parser failed after consuming at least one token.

Table 2 shows the abstract behaviour of ++ and bind using the four tag values.
The requirement to respect the definitions of the tag values completely defines the
behaviour of the bind combinator. Note particularly two points about the behaviour
of bind. First, even if both parses in a sequence are successful, bind only returns
Ok if at least one of the two parsers consumed some input, otherwise returns Epsn.
Second, if the first parse returns Epsn and the second parse returns Fail, the result
is Fai l rather than Err.

The ++ combinator is not so straightforward, since the definitions of the tag values
do not completely constrain its behaviour. We therefore introduce the following

https://doi.org/10.1017/S0956796800001714 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001714


Err
Err
Err
Err
Fail
Fail
Fail
Fail
Epsn
Epsn
Epsn
Epsn
Ok
Ok
Ok
Ok

Err
Fail
Epsn
Ok
Err
Fail
Epsn
Ok
Err
Fail
Epsn
Ok
Err
Fail
Epsn
Ok

Err
Err
Err
Err
Fail
Fail
Fail
Fail
Err
Fail
Epsn
Ok
Err
Err
Ok
Ok

Predictive parser combinators need four values to report errors 361

Table 2. Behaviour of the ++ and bind combinators with four values

a b a 'b ind ' (\_ -> b) a ++ b

Err
Err
Err
Err
Err
Fa i l
Epsn
Ok
Err
Epsn
Epsn
Ok
Ok
Ok
Ok
Ok

desirable properties for ++. These properties, in conjunction with the definitions of
the tag values, completely constrain the behaviour of++:

• associativity, so that (a ++ b) ++ c is equivalent to a ++ (b ++ c).
• Ok is a left zero, to save ++ from looking at the right parse when the left parse

has consumed some input.
• Fail is a left and right identity, so that if one alternative fails to match

anything at all, ++ will return the other alternative.
• Err is a left zero, to guarantee that the longest possible parse is returned.
• (Epsn ++ Ok) = Ok and (Epsn ++ Err) = Err, so that Epsn no longer needs

to appear at the rightmost position in a tree of ++'s.

The behaviour of ++ in Table 2 satisfies all of these properties, as well as satisfying
the definitions of the four tag values.

Note that if an LL(1) grammar is assumed, the cases (Ok ++ Ok), (Ok ++ Err),
(Err ++ Ok), and (Err ++ Err) cannot arise. The definitions of these cases in the
table are consistent with lazy evaluation of the right argument of ++. For example,
(Ok ++ x) is defined to be Ok for all x, including x equal to Ok and to Err. Similarly,
(Err ++ x) is defined to be Err for all x. This enables the implementation to avoid
evaluation that would only be necessary to check that the grammar is indeed LL(1).

We now give Gofer code to implement the combinators and primitive parsers
using the four-value scheme:

data Reply a b = Ok a I Fail b I Err b | Epsn a

instance Functor (Parser a) where
map f p = Parser (\inp ->

case getParser p inp of
Err e -> Err e
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Fail e -> Fail e
Epsn (x, inpl) -> Epsn (f x, inpl)

Ok (x, inpl) -> Ok (f x, inpl))

instance Monad (Parser a) where

pi 'bind' p2

= Parser (\inp ->

case getParser pi inp of

Err el -> Err el

Fail el -> Fail el

Epsn (x, inpl) ->

case getParser (p2 x) inpl of

Err e2 -> Err e2

Fail e2 -> Fail e2

Epsn (y, inp2) -> Epsn (y, inp2)

Ok (y, inp2) -> Ok (y, inp2)

Ok (x, inpl) ->

case getParser (p2 x) inpl of

Err e2 -> Err e2

Fail e2 -> Err e2

Epsn (y, inp2) -> Ok (y, inp2)

Ok (y, inp2) -> Ok (y, inp2))

result x = Parser (\inp —> Epsn (x, inp))

instance MonadPlus (Parser a) where

pi ++ p2

= Parser (\inp ->

case getParser pi inp of
Err e -> Err e
Fail e -> getParser p2 inp
Epsn x ->

case getParser p2 inp of
Err e2 -> Err e2
Fail e2 -> Epsn x
Epsn y -> Epsn y
Ok y -> Ok y

Ok x -> Ok x)

The functions l i t and zero are the same as their two-value versions.
We now prove that parsers constructed from the four-value combinators defined

above return the longest parse. If there is an error, they will therefore pinpoint it as
occurring at the end of the longest parse.

Lemma 6.1
The functions ++, bind, resu l t and l i t respect the definitions of the tag values.
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Proof
By case analysis of the code. Details omitted. •

Theorem 6.1
Parsers for LL(1) grammars constructed from the four-value combinators denned
above return the longest parse.

Proof
By induction on the structure of parsers, as follows:

Basis cases: If the grammar is either l i t t or resul t v, the result holds by
Lemma 6.1.

Inductive assumption: The theorem holds for parsers a and b.

Inductive cases: If the grammar is (a 'bind' (\x -> b)), then the result follows
from the inductive assumption and Lemma 6.1.

If the grammar is (a ++ b), then by cases on the result of a:

• If a partially matches, then by Lemma 6.1 it returns either Ok or Err. Exam-
ination of the code for ++ shows that (a ++ b) returns the result from a in
this case. Because the grammar is LL(1) and a partially matches, b will not
match at all, so a is the longer parse. Hence (a ++ b) returns the result from
the longer parse in this case.

• If a does not match at all, then by Lemma 6.1 it returns either Epsn or Fail.
Here, b may match, partially match, or not match at all. Hence, the parse
returned by b is at least as long as the parse returned by a. Examination of
the code for ++ shows that (a ++ b) mostly returns the result from b in this
case. The only exception is that the result from a is returned when a returns
Epsn and b returns Fail, in which case both parses are equally long.

•
Finally, Table 3 shows the results for various inputs when the parsers exl and ex2

(below) are implemented using the two-value and four-value combinators defined in
this paper.

ex2 = do {a; b} ++ eps i lon
where eps i lon = r e s u l t ' e '

a = l i t ' a ' ; b = l i t ' b ' ; c = l i t ' c '

7 Conclusion

In traditional parser construction, bottom-up approaches are used. This has the
benefits of improved efficiency and the ability to recover from errors. The grammar
transformations necessary are often complicated, but they can be done automatically
using tools such as yacc (Aho et al., 1986).
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Table 3. Comparing exl and ex2 with two-value and four-value combinators

Input exl (2 values) exl (4 values) ex2 (2 values) ex2 (4 values)

11 a b "
" a d "
"c"
"f"

Ok (
Fail
Ok (
Fail

'b\m
'a'

'f

I Ok (
Err

1 Ok (
Fail

'd'

•c, u:

) O k i
O k i

) O k i
O k i

C ' b '
Ce1

Ce'
C ' e 1

> [ J )
,"ad")
,"c")
,"f")

Ok (
Err
Epsn
Epsn

'b'
'd'
('

(>

,[];)

"c")
"f")

One advantage of parser combinators over the traditional techniques is that they
can be used with very little infrastructure: there is no need to buy, build, maintain or
understand any complex compiler-compiler tools. The necessary grammar transfor-
mations can be performed by hand, or by using parser transformers (Fokker, 1995).

Previous sets of parser combinators are not very good at pinpointing the location
of parse errors, making them unsuitable for building programming language parsers.
This paper has shown a method for producing combinator-based parsers that
automatically report the first token following the longest parse of the input as the
cause of a parse error. The method uses parsers that return values (parse trees or
error indications) decorated with one of four tags. The resulting parsers do not try
alternatives unnecessarily, making them more efficient than parsers built using two-
value combinators. Another small benefit of the four-value method is that, because
the tag values returned by the parser combinators are determined solely by the tag
values returned by the argument parsers, it is possible to code the combinators using
continuation-passing style (Appel, 1992).
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