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Abstract

Space-borne passive microwave (PMW) data provide rich information on atmospheric state, including cloud
structure and underlying surface properties. However, PMW data are sparse and limited due to low Earth orbit
collection, resulting in coarse Earth system sampling. This study demonstrates that Bayesian deep learning (BDL) is a
promising technique for predicting synthetic microwave (MW) data and its uncertainties from more ubiquitously
available geostationary infrared observations. Our BDL models decompose predicted uncertainty into aleatoric
(irreducible) and epistemic (reducible) components, providing insights into uncertainty origin and guiding model
improvement. Low and high aleatoric uncertainty values are characteristic of clear sky and cloudy regions,
respectively, suggesting that expanding the input feature vector to allow richer information content could improve
model performance. The initially high average epistemic uncertainty metrics quantified by most models indicate that
the training process would benefit from a greater data volume, leading to improved performance at most studiedMW
frequencies. Using quantified epistemic uncertainty to select the most useful additional training data (a training
dataset size increase of 3.6%), the study reduced the mean absolute error and root mean squared error by 1.74% and
1.38%, respectively. The broader impact of this study is the demonstration of how predicted epistemic uncertainty can
be used to select targeted training data. This allows for the curation of smaller, more optimized training datasets and
also allows for future active learning studies.

Impact Statement

In this study, Bayesian deep learning was used to create synthetic microwave (MW) brightness temperatures that
deliver both the high spatial and temporal resolutions of infrared data and some information about the internal
structure of clouds. Additionally, we provide the estimated variance of each predicted MW brightness tempera-
ture to help scientists and downstream users discern whether or not each predicted MW brightness temperatures
are reliable. Furthermore, by decomposing variance into its aleatoric and epistemic components, scientists can
discern whether predictions can be improved with additional training data (e.g., high epistemic uncertainty) or if
there are inherent limitations of the model that warrant further scientific investigation into its utilization and
potential reformulation (e.g., high aleatoric uncertainty). This methodology also demonstrates how regression
models can utilize epistemic uncertainty predictions to actively select new training data that can lead to more
optimized datasets and improved skill in future models.
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1. Introduction

To fully understand and simulate how the Earth’s climate is changing, climate scientists need to
understand end-to-end how energy is transferred into, within, and out of the Earth’s climate system at
all wavelengths and time scales (Loeb et al., 2009; Trenberth et al., 2009; Stephens et al., 2012). While
much progress has been made toward closing this complete energy transfer “budget” since the develop-
ment of weather satellites (Vonder Haar and Suomi, 1971; Dines, 2007; Trenberth et al., 2009; Stephens
et al., 2012), one of the larger remaining sources of uncertainty is the budget of longwave radiation, which
is strongly influenced by net latent heat exchange into or out of the atmosphere (Stephens et al., 2012).
Earth’s heat budget is partially dependent on precipitation, which is extremely challenging to measure but
can be somewhat constrained using passive microwave (PMW) data. Furthermore, the concentrations of
ice and liquid water as well as limited information about ice habit in clouds (Sun and Weng, 2012;
Kroodsma et al., 2022) can be derived from microwave (MW) observations and also impacts radiative
heat budget in the atmosphere.

Constraining information about atmospheric water in various phases is challenging because no single
observing instrument can fully observe the distributions of each water phase over a large area at high
temporal resolution. For example, infrared (IR) wavelengths measured by the Advanced Baseline Imager
(ABI; Schmit et al., 2017) on Geostationary Operational Environmental Satellite (GOES)-16 provide
continuous observations with high spatial resolution over a large area (e.g., Figure 1a). In clear air, ABI IR
data are well-suited for providing information about water vapor concentration because its wavelengths
have various sensitivities to absorption by water vapor and therefore provide information about water
vapor concentration inmultiple layers of the atmosphere. However, ABI IR observations in regionswhere
thick, precipitating clouds occur are mostly representative of cloud top emissions. Thus, additional
information provided by the longer, less scattered MW emissions detected by the Global Precipitation
Measurement (GPM) Microwave Imager (GMI; Draper et al., 2015) are needed to provide information
about liquid and ice structures in precipitating clouds (Petković and Kummerow, 2017). However, spatial
resolutions for MW data are much coarser, and large gaps between the narrow data “swaths” are a
consequence of the low-earth orbits ofMW-detecting satellite platforms (Figure 1b). The low-earth orbits
mean that clouds—despite their important impacts on Earth’s energy budget and their prominent role in
many extreme weather events—are persistently undersampled. This undersampling therefore imposes
limitations on a wide variety of climate and weather applications, including models, forecasts, and
scientific understanding (Trenberth et al., 2007; Stephens and Hu, 2010; Stephens et al., 2012; Petković
and Kummerow, 2017; Pu et al., 2019).

As computational power has become more readily available over the past several years, deep learning
has become increasingly utilized for addressing earth science research problems that have an abundance
of data and require nonlinear mapping of inputs to output (e.g., Barnes and Barnes, 2021; Barnes et al.,
2021; Foster et al., 2021; Guillaumin and Zanna, 2021). Deep convolutional networks or deep residual
networks (He et al., 2016) are often used to facilitate this complexmapping.Moreover, such networks can
also quantify uncertainty, either through the modeling of an additional output in the last model layer or
through the use of dropout layers throughout themodel (e.g., Gal andGhahramani, 2016). However, when
quantified without separating uncertainty into epistemic and aleatoric components, the advantages of
having access to the uncertainty of each model prediction are not being fully leveraged. In contrast,
Orescanin et al. (2021) and Ortiz et al. (2022) used Bayesian deep learning (BDL) to quantify and
decompose the uncertainty in an earth science classification setting and proposed a methodology for
applying this additional knowledge to make decisions about collecting additional input data, handling
predictions with high uncertainty, choosing between several probabilistic models, and conducting
targeted data analysis. Finally, the calibration between error and total uncertainty for different Bayesian
architectures was explored in Ortiz et al. (2023).

In this study, we improve the regression model architectures presented in Ortiz et al. (2023) that used
BDL to generate synthetic MW brightness temperatures (Tmw

b ) to deliver both the high spatial and
temporal resolutions of IR data and information related to water below cloud tops (Figure 1c).
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Furthermore, whereas the prior models could only predict total uncertainty, the models presented in this
study can have variance decomposed into its aleatoric and epistemic components. Through this uncer-
tainty decomposition, we seek to help scientists discern whether predictive skill from our product can be
improvedwith additional training data (e.g., high epistemic uncertainty) or if there is inherent atmospheric
variability that warrants further scientific investigation into the utility of the model (e.g., high aleatoric
uncertainty).

Although not yet demonstrated, a product containing both synthetic Tmw
b and decomposed uncertainty

metrics in each prediction could then be utilized by atmospheric scientists to generate far-reaching,
downstream impacts wherever existing MW data are currently being used in models, forecasts, and
scientific analysis. For example, MW data are commonly used to: (1) retrieve precipitation rates (e.g.,
Adler et al., 1994; Cecil, 2007); (2) investigate moisture and precipitation evolutions (e.g., Wang and
Hankes, 2016; Hristova-Veleva et al., 2022); (3) estimate tropical cyclone intensity (e.g., Yang et al.,
2014; Olander and Velden, 2019); and (4) improve initial conditions through data assimilation in
numerical weather prediction models. By predicting bothMWbrightness temperatures and uncertainties,
future studies could then use Bayesian optimal estimation and assimilation techniques that require
uncertainty quantification to investigate whether utilizing ML predictions produces reasonable values
in derived products and therefore establish trust in the synthetic MW product. Additionally, directly
predictingMWbrightness temperatures and uncertainties allows for multiple applications stemming from
one set of models, and forecasters could also directly use the MW brightness temperatures and
uncertainties to diagnose convective structures in near real-time.

Ultimately, with this new synthetic product, one would be able to investigate weather systems using
synthetic MW data and uncertainties that has unprecedented temporal (10–15 min) and spatial resolution

Figure 1. Executive summary of this study, where: (a) training dataset features are the brightness
temperatures (TBs) measured by GOES-16 ABI Bands 7–16 (near IR and IR wavelengths) and are
exemplified by full disk imagery from 17:40 UTC on September 12, 2022 (GOES Image Viewer, 2017);
(b) training dataset labels are the microwave TBs from GMI, and are exemplified by the global, full-day
GMI coverage on February 01, 2020, where shading denotes data coverage (Negri et al., 1989; EOSDIS
Worldview, 2013), black denotes data gaps, and the red box denotes the domain in Figure 10); and (c) a
flowchart outlines the methods and scientific impact.
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(2–4 km). This would allow for near real-time analysis and characterization of high-impact, fast-evolving
weather systems and their convective structures, such as tropical cyclones. For comparison, current GMI
MW data swath typically only partially sample a tropical cyclone 3–4 times daily. Additionally, weather
events that GOES-16 observed in the past can also be analyzed in future case studies. While maximizing
the synthetic MW product’s skill will ultimately require more careful spatiotemporal co-location of ABI
and GMI data (e.g., correcting the ABI data for parallax and imposing a more stringent time difference
requirement between ABI and GMI scans), the current article demonstrates a pathway toward eventually
generating a reliable, globally available synthetic PMW product that can enhance current and prior IR
observations in locations where no PMW data exist.

Therefore, to work toward these long-term goals, this study has the following three primary objectives:

1. Establish a baseline of the relative differences in skill and decomposed uncertainties for predictions
at all GMI MW frequencies using a consistent training methodology (Sections 3.1 and 3.2).

2. Introduce a method for identifying optimal, additional training data by leveraging predicted
epistemic uncertainty (Section 3.3).

3. Assess the impacts of the new data selection method for a relatively small addition of training data
to better understand the implications of uncertainty decomposition (Section 3.4).

By demonstrating the utility of our methodology in the prototype models presented herein, we conclude
with discussion on how our results could be extended into an automated active learning framework that
would ultimately utilize smaller and optimized training datasets in the future.

2. Data and methods

2.1. Data and dataset construction

This study used data collected by GPM GMI and GOES-16 ABI sensors during January–June 2020. We
used the 1st, 11th, and 21st days in each month for the validation set; we used the remaining days as a
training set. We withheld 12 days from July and August as test sets, using days from the beginning (4th–
7th), the middle (15th–18th), and the end (26th–29th) of each month. A 4-day separation between the
training dataset and the two withheld test datasets ensure that the two datasets are independent and not
linked to the same synoptic weather patterns.

To create our dataset, we follow the general collocation methodology of Ortiz et al. (2023) by first
selecting 10% of all GMI swaths (every tenth file from an S3 bucket) during the study period, which kept
the training dataset manageable given the computing resources. Next, we temporally matched ABI and
GMI observations by choosing the ABI disk file with the closest end time to each GMI pixel. Because
GOES-16 does not scan the entire disk at once, co-located ABI and GMI data could be offset in time by as
much as 15 min, which was 1.5 times the temporal frequency of ABI data collection. Then, ABI and GMI
observations were spatially collocated by labeling 39 × 39 pixel ABI patches from Bands 7–16 (near IR
and IR wavelengths) with a single GMI Tmw

b corresponding to the center location of the ABI patch, such
that independent BDLmodels with identical ABI patch training datasets are trained for each of the 13GMI
channels. The location of ABI data was not corrected for parallax, meaning that in deep clouds observed
not at nadir, there is some offset between the reported latitude/longitude of the data and the coordinates
from where the radiation is actually upwelling. This co-location error will generally increase as distance
from the GOES-16 nadir point increases. Additionally, any records containing an ABI patch with a pixel
over land, containing anymissing data, or too close to the limb of the ABI viewing disk (west of 140°Wor
otherwise within 20 data pixels from the edge of the available data) were discarded, as in Ortiz et al.
(2023). Land pixels were removed from training and predictions to constrain effects from additional
sources of uncertainty related to highly variable surface emissivities. Thus, the training dataset is
composed of ocean-only ABI patches within the GOES-16 viewing disk that are not at the limbs.
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2.2. Bayesian deep learning (BDL)

BDL assumes distributions over weights,w, of a neural network. If p wð Þ is a prior distribution overw and
p Dð Þ is a distribution over the training data, then the goal of a BDL is to quantify a posterior distribution
over the network weights conditioned on the distribution of the training data, p wjDð Þ. For high
dimensional problems, the calculation of p wjDð Þ has no closed formed solution making it intractable
(Blei et al., 2017).

We use variational inference to approximate p wjDð Þ via the evidence lower bound (ELBO; Blei et al.,
2017) by implementing a 56-layer Bayesian Residual Network (ResNet) version 2 (He et al., 2016) model
architecture, using convolutional Flipout layers (Wen et al., 2018). This model architecture performs
heteroscedastic regression, where the model outputs the parameters of a Gaussian distribution, μ and σ2,
using a pre-built distribution layer from the Tensorflow Probability library version 0.12.1 (Dillon et al.,
2017). Both the prior distribution and the posterior distributions are initialized using the Tensorflow
Probability default settings of μ= 0:0 and σ = 1:0 for the prior and of μ= 0:0 and σ = 0:05 for the posterior.

Since the trained models have distributions over weights, we use Monte Carlo integration to conduct
model inference (Filos et al., 2019; Feng et al., 2021), sampling from the weight distribution T times and
averaging over the output values. Following the approach described in Filos et al. (2019), we chose
T = 100 to calculate ŷn. As the output of our regression models represents the parameters of a Normal
distribution, we calculate ŷn as a mixture of Normal distributions (Lakshminarayanan et al., 2017) with
uniform mixture weights:

ŷn �
1
T

XT

t = 1

N μt xn,wtð Þ,σ2t xn,wtð Þ� �
= μ̂n, σ̂

2
n

� �
, (1)

where 1
T

PT
t = 1μt xn,wtð Þ= μ̂n is the model’s predicted Tmw

b based on the T ir
b input features. Following the

law of total variance, we calculate the variance of the ŷn mixture distribution as

σ̂2n =
1
T

XT

t = 1

σ̂2t xn,wtð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Aleatoric Uncertainty

þ μ̂2t xn,wtð Þ� μ̂2n|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Epistemic Uncertainty

, (2)

where σ̂2t xn,wtð Þ and μ̂t xn,wtð Þ are the outputs of the last layer of the model (heteroscedastic regression).
Aleatoric uncertainty is irreducible (Kiureghian and Ditlevsen, 2009), and epistemic uncertainty can

be reduced given enough data (Kendall and Gal, 2017).

2.3. Model architecture and training methodology

Our BDLmodels build off of the prior architecture reported in Ortiz et al. (2023) to quantify both aleatoric
and epistemic uncertainty (see Eq. (2)), with user-specified hyperparameters remaining consistent
between the two studies. The model architecture used for this study is shown in Figure 2a. It is a
56-layer ResNet with an output layer that explicitly models a Normal distribution (highlighted in yellow
in Figure 2a). The defining feature of ResNets is the skip connection (highlighted in yellow in Figure 2b),
which allow for easier training of deep networks that generalize better (He et al., 2016). For each
prediction, the distribution variance (σ2) is the aleatoric uncertainty of the predicted Tmw

b value
(σ̂2t xn,wtð ) in Eq. (2)). Quantifying the heteroscedastic aleatoric uncertainty in this way using determin-
istic models was previously demonstrated to lead to better performance on geoscience regression tasks
(Barnes et al., 2021; Gordon and Barnes, 2022). The distribution mean (μ) is the predicted Tmw

b value
(μ̂t xn,wtð Þ in Eq. (2)). To implement the BDL probabilistic framework into these models, convolutional
two-dimensional Flipout layers are used inside each ResNet block (highlighted in yellow in Figure 2b)
instead of deterministic convolutional two-dimensional layers. Since the layer weight distributions are
sampled T times for each input tomake T predictions (see Eq. (1)), the variance of the predicted Tmw

b value
of a single input provides quantification of the epistemic uncertainty. The addition of epistemic
uncertainty through BDL can help identify out-of-distribution samples (concept drift) (Ortiz et al.,
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2022) and data distributions that would be beneficial for additional training to improve amodel’s skill on a
given task.

We maintained consistency with our prior work (Ortiz et al., 2023) in our training approach. Model
weights followed He initialization (He et al., 2016), utilizing the Adam optimizer (Kingma and Ba, 2017)
with an initial learning rate of 0.001. We monitored validation loss for learning rate annealing (Li et al.,
2019) and implemented a 4x learning rate reduction if no improvement occurred over five consecutive
epochs. Early stopping (Goodfellow et al., 2016) was applied to prevent overfitting, and training could
have continued up to 500 epochs if early stopping criteria were notmet. Our Bayesianmodels used a batch
size of 2,048 and were trained on 4 NVIDIA RTX 8000 48GB GPUs.

a) 56-Layer ResNet with Normal Distribution Output
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Figure 2. Network architecture. (a) 56-block Residual Network (ResNet) with output modeled as a
Normal distribution (highlighted in yellow). (b) Internal structure of each ResNet block depicted in panel
(a). The skip connection (highlighted in yellow) inside each block is the defining characteristic of a
ResNet architecture. The convolutional 2D Flipout layers (highlighted in yellow) implement variational
inference, making this a Bayesian model architecture.
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3. Results and discussion

3.1. Initial model performance on July test set

Together, the BDLmodels are first used to predict synthetic GMI Tmw
b and uncertainties from the ABI T ir

b
July test set to establish a baseline skill for later comparison. Figure 3 shows the mean error and
uncertainty statistics for the GMI channels predicted (see Appendix Table A1). The 0.62% and 0.76%
mean absolute percentage error (MAPE) produced at 183 ± 3GHz and 183 ± 7GHz are examples of how
well neural networks can learn any nonlinear function with a large enough training dataset (26.6 million
examples). These models are expected to have the highest skill since, like the ABI Band 8 (6.2 μm) in the
input features, these GMI channels also primarily sense emissions from the upper troposphere due to
strong water vapor absorption at these frequencies and wavelengths. In contrast, the 19 GHz Hmodel has
an MAPE of 4.79%. We also expect models for lower frequencies to not perform as well because
emissions measured at these MW frequencies are less scattered and originate from lower in the

Figure 3. Results using models trained on 26,587,000 samples from January to June 2020 to generate
synthetic GMI data using the July test dataset of 1.63 million samples. H = horizontal polarization;
V = vertical polarization.
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atmosphere than IR wavelengths. For the July test set, the MAPE and root mean square error (RMSE)
trends of higher frequencies having less MAPE and RMSE than lower frequencies corresponds with the
information content overlap between the ABI inputs and GMI frequency for which the model is
predicting.

Whenmodel results for July 2020 are organized by polarization, several items are noted. In general, the
MAPE and RMSEmostly decrease as frequency increases for each polarization. However, in the vertical
polarization, 23 GHz predictions have the largest MAPE (Figure 3b), and 166 GHz has a larger RMSE
than 37 GHz, and 89 GHz (Figure 3a). For horizontally polarized channels, the general error trends are
similar, but average error magnitudes are larger because the innermost 95% of brightness temperature
distributions at horizontal polarization are wider than those at vertical polarization for the same frequency
(Appendix Figure A1). For mean absolute error (MAE), each polarization exhibits different error
characteristics. For channels with vertical polarization, theMAEmostly decreases as frequency increases
above 10 GHz with the exception of 23 GHz, which has the largest MAE (Figure 3a). For channels with
horizontal polarization, the MAE peaks at the moderate frequency of 89 GHz (Figure 3a). Overall, the
horizontally polarized error metrics have larger magnitude than the vertically polarized error metrics due
to the fact that horizontally polarized channels have wider Tmw

b -value distributions than the vertically
polarized channels (see Appendix Figure A1).

The mean standard deviation (MSD) provides a measure of total uncertainty, and unlike MAPE and
RMSE, a primary benefit of MSD is that this metric provides additional information in a deployed setting
that is not readily accessible with deterministic models because Tmw

b -value labels are not required to
calculate the MSD of collected ABI data. Similar to RMSE, Figure 3c also shows that MSD generally
decreases as frequency increases. Exceptions to this behavior for the vertical polarization are that
predictions at 166 GHz have higher MSD than at 89 GHz and predictions at 23 GHz have higher
MSD than at 19 GHz (Figure 3d); for both frequencies, this behavior is the same as with RMSE
(Figure 3a). For horizontally polarized predictions, the relative pattern of MSD and RMSE are very
similar, but predictions at 89 GHz have a comparatively highMSD that is slightly higher than 19GHz and
37 GHz. Similar to MAPE and RMSE for the July test set, the MSDmagnitudes also correspond with the
information content overlap between the ABI inputs and GMI frequency for which the model is
predicting.

When the total uncertainty is decomposed into aleatoric and epistemic uncertainty, different patterns
emerge. First, aleatoric uncertainty represents the dominant source of uncertainty, such that the relative
differences between frequencies for each polarization are the same between themean square root aleatoric
uncertainty (MSRA) and MSD (Figure 3c,d). However, while epistemic uncertainty contributes a small
portion of total uncertainty (roughly an order of magnitude smaller), the relative pattern of mean square
root epistemic uncertainty (MSRE) is similar to the MAE pattern for each polarization with 19 GHz H
being the exception. Moreover, the quantified epistemic uncertainty provides a metric that indicates the
relative benefit of providing each model with additional training data (i.e., the 19 GHz H model would
benefit the most and the 183 ± 3 GHz V would benefit the least).

Together, comparison between the error and decomposed uncertainty metric characteristics indicate
several relationships of interest. For example, the overall relationship between prediction error and
uncertainty corresponds well with the overall atmospheric opacity at each frequency, such that higher
frequencies are associated with higher opacity and higher skill (e.g., 166–183 GHz). This relationship is
expected, because the weighting functions for brightness temperatures peak at higher altitudes for higher
MW frequencies and are therefore more similar to the shape of weighting functions for IR wavelengths.
Conversely, the lowest frequencies (19–23 GHz) have some of the highest amounts of error and aleatoric
uncertainty, which is also expected because the weighting functions peak at lower altitudes for lowerMW
frequencies and are therefore less similar to the distributions of emission altitudes observed at IR
wavelengths. Additionally, comparison of the middle frequencies (23–89 GHz) indicates that these
frequencies have less extreme outlier error (due to atmospheric transparency at 23 GHz and higher-
altitude peaks in weighting functions at 37 and 89 GHz), since the difference betweenMAE and RMSE is
smaller. Finally, the middle frequencies appear to have the most potential for skill improvement with
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additional training data, since these frequencies have larger MSRE relative to MSRA. However, before
testing this hypothesis, predictions will be tested for potential over-fitting by examining model perform-
ance on temporally distant days.

3.2. Comparative model performance on August test set

One of the main challenges with training machine learning models is generalizing to unseen data because
models tend to experience increased error when making model predictions on new data. Therefore, we
tested the same models from Section 3.1 by making predictions on data from a different month (August
2020) to allow for the atmospheric state to be sufficiently decorrelated across multiple timescales to be
considered “unseen” data. The overall results within this set of results remain consistent with the results
described in Section 3.1 (see Appendix Table A2). Thus, we will instead focus on the differences between
the results from July and August. Figure 4 reflects the change in error and uncertainty metrics (August

Figure 4. Change in metrics for the August test dataset of 1.53 million samples compared to July metrics
in Figure 3. H= horizontal polarization; V= vertical polarization. Table of August metrics is in Appendix
Table A2.
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values from Appendix Table A2 minus July values from Appendix Table A1), where positive numbers
reflect an increase for the August test set.

When the same models used in Section 3.1 are used to create synthetic MW data from the August test
set, there is a less than 1 K increase in the MAE, ranging from 0.15 K to 0.97 K, and a less than 2.5 K
increase in RMSE, ranging from 0.65 K–2.46 K. In relative terms, for the 13 GMI channels in this study,
this translates into an increase of less than 0.45% MAPE. Since average model skill for each channel on
the August test dataset is minimally different than July predictions, we conclude that these models are not
likely to be overfitting to the training dataset and generalize to unseen data.

When comparing the uncertainty metrics (Figure 4c,d), there is a trend that the percentage increase in
total uncertainty and aleatoric uncertainty is higher for the V channels than for the H channels. There is a
corresponding trend between the two polarizations where the percentage increase in error is higher for the
vertical polarization than for the horizontal polarization at each frequency. This is likely due to the fact that
the H distributions contain a wider range of Tmw

b values than the V distribution for each frequency (see
Appendix Figure A1). The width of the horizontal channel Tmw

b -value distributions make it more likely
that amodel has seen a sample with a similar Tmw

b -value; however, thewidth of the horizontal distributions
also diffuses the Tmw

b -value distribution density such that they inherently have higher aleatoric uncer-
tainty. Conversely, the vertical distributions are narrower, and these models have likely learned the center
of the training distribution and are being presented with inputs that were either in the tails of the training
distribution or outside of the distribution completely.

The change in the epistemic uncertainty from July to August enables some insights about whichmonth
contains data that would be useful for future training. The 10GHzH, 10GHzV, 19GHzV, 89GHzH, and
166 GHz H models produced predictions with less uncertainty for the August dataset than for the July
dataset. For these models, training on additional data from July would be more beneficial than training on
data from August. Conversely, the 19 GHz H, 37 GHz H, and the 23 GHz–183 GHz V models except
89 GHzV produced predictions withmore uncertainty for the August dataset than for the July dataset (see
Appendix Figure A2). For these models, training on additional data from August would be more
beneficial than training on data from July. Since the 89 GHz V predictions had the same amount of
epistemic uncertainty for both months, training on data from either month would be equally beneficial.
These trends demonstrate one way the epistemic uncertainty of model predictions can be used to make
decisions about whether or not to select particular data for additional model training.

3.3. Relationship between labels, epistemic uncertainty, and error

Since researchers are often limited by the availability of labeled data and of computing resources, it would
aid the research process if the epistemic uncertainty could be used to identify the most beneficial samples
for future training. In contrast to data with high aleatoric uncertainty, data with epistemic uncertainty can
be used to reduce the model uncertainty. Selecting the data with the most epistemic uncertainty helps
identify the data that also most likely produces the most error. Furthermore, by only training on the data
that produces the highest epistemic uncertainty, any increase in the size of the training dataset can be
limited to a percentage of any newly collected data.

The first step in leveraging quantified epistemic uncertainty to reducemodel error is to identify the data
for which each model produces predictions with the highest epistemic uncertainty. Figure 5 illustrates the
relationship between the label distribution, epistemic uncertainty, and error. Figure 5a–c shows the
relationship between the label distribution and epistemic uncertainty. In these figures, each sample in
the July training dataset was categorized as either in-distribution or out-of-distribution (OOD).
In-distribution samples had Tmwb values that fell in the middle 95% of the data distribution (see Appendix
Figure A1). All other samples were categorized as OOD. OOD samples were further sub-categorized as
either being below the lowest in-distribution Tmwb value (Low) or above the highest in-distribution Tmwb
value (High). The light blue horizontal lines denote the 75th percentile epistemic uncertainty value for all
samples in the July dataset, which we will use as the threshold to identify high epistemic uncertainty
predictions for the remainder of this work.
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The 183 ± 3 GHz model produces the least amount of predictive error of all the models; however,
calculating the predictive epistemic uncertainty may help to lower the amount of error even further.
Selecting July data with epistemic uncertainty values greater than the 75th percentile (above the blue line
in Figure 5a) for future training has the potential to help the model learn in two ways. First, this threshold
identifies almost all OOD low samples and approximately 25% of the high OOD samples, which
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Figure 5. Box plots for square root epistemic uncertainty (SRE) and absolute error in Kelvin (K) for July
data, where orange lines denote the median values and green triangles denotes the mean value for a given
frequency. The whiskers span from 2.5% to 97.5%. (a–c) Each label (Tmwb value) is categorized as “in
distribution” if the Tmwb belongs to middle 95% of the label distribution (see Appendix Figure A1). Out of
distribution (OOD) labels are further divided into “low” and “high” by Tmwb , where “low”means lowest
2.5% of Tmwb values and “highest”means highest 2.5% of Tmwb values. The blue horizontal line denotes the
75th percentile square root epistemic uncertainty (SRE) value for all labels. (d–f) The three leftmost box
plots depict the prediction error using the label categorization scheme from panels (a) to (c). The two
rightmost box plots depict the prediction error using the 75th percentile SRE value for categorization. The
mean absolute error for each category is labeled in Kelvin.
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correspond to the lowest density Tmwb values for this GMI frequency (see Appendix Figure A1). In
Figure 5d, the box plot for lowOOD samples shows that these samples produce some of the largest errors.
In addition to OOD samples, the 75 percentile of epistemic uncertainty aids in identifying the 25% of
in-distribution samples for which the model parameters are most uncertain. Figure 5d shows that median,
mean, and 97.5 percentile errors are all higher for samples with SRE greater than the 75th percentile.
Selecting July data with epistemic uncertainty values greater than the 75th percentile for future training
has the potential to help the 183 GHz model reduce errors by allowing it to train on samples that are
currently outside of training distribution and that are inside the current training distribution but produce
high epistemic uncertainty.

Similarly, for 19 GHz H, the 75th percentile for epistemic uncertainty helps identify almost all of the
high OOD samples and approximately 25% of the lowOOD samples (see Figure 5c). Again, this is useful
as training the model on samples that are dissimilar to the original training dataset distribution may help
decrease the model error. However, since all of the OOD samples only comprise 5% of a single month of
data and less than 1% the size of the training dataset, any decrease from these samples alone would likely
be minimal. If the data are already labeled, these samples could be selected by using the label value;
however, there is still value to be gained from having the epistemic uncertainty. Again, for in-distribution
samples, the 75th percentile helps identify samples that the model has already seen but for which it still
had high model parameter uncertainty. Even with access to labels, identifying these samples as the most
beneficial would be difficult and require more time than using a model to produce predictions. Using the
75th percentile epistemic uncertainty value to select new training data would likely benefit the 19 GHz H
model in the same way as the 183 ± 3 GHz V model.

In Figure 5f, the 75th percentile epistemic uncertainty value is used to illustrate how uncertainty relates
to error. For 19 GHz H, the OOD samples have higher MAE (green triangles) and higher 97.5 percentile
absolute error values. When using the 75th percentile epistemic uncertainty value to categorize the
samples, the error trend is similar to the trend for in-distribution and OOD samples. For samples with
epistemic uncertainty less than 1.76K (75th percentile), theMAE is lower than for sampleswith epistemic
uncertainty greater than 1.76 K, and the low epistemic uncertainty samples have a lower 97.5 percentile
absolute error value than the high uncertainty samples.

Unlike the 183 ± 3 GHz V and 19 GHz V models, the 89 GHz H model uncertainty identifies less
than 25% of both types of OOD samples (see Figure 5b); however, the model uncertainty still identifies
the 25% of in-distribution samples with the highest epistemic uncertainty. This is an indicator that this
model has not learned the underlying training distribution as well as the other two models. This is likely
due to the fact that 89 GHz H has the widest in-distribution Tmwb value range of all GMI frequencies (see
Appendix Figure A1). While this model would likely benefit for any additional training data, Figure 5e
illustrates that training on sample with epistemic uncertainty greater than 2.05 K would be the most
beneficial, as themedian, mean, and 97.5 percentile error is higher than for samples with less than or equal
to 2.05 K epistemic uncertainty. Using the 75th percentile epistemic uncertainty value to select new
training data would likely benefit the 89 GHz model differently than the 183 GHz and 19 GHz models
since fewer OOD samples have epistemic uncertainty greater than 2.05 K.

In all three cases, the highest epistemic uncertainty samples correspond to higher error than samples
with lower epistemic uncertainty. Epistemic uncertainty is attributable to the uncertainty in the model
weight distributions and is reducible with more data that is representative of the underlying training
distribution. In theory, selecting additional training data from the July dataset that has epistemic
uncertainty greater the 75th percentile for each GMI frequency should reduce the epistemic uncertainty
and, consequently, the amount of error. The next section presents the results of applying this methodology.

3.4. Selective model updating

Since the results in Figures 3 and 4 show epistemic uncertainty greater than zero, none of the models have
learned the entire underlying data distribution. However, as discussed in Section 3.1, higher MW
frequencies (166–183 ± 3 GHz) were associated with the least error and epistemic uncertainty, which
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implies that additional training data would not provide a large improvement of skill. In contrast, the lower
MW frequencies (19–23 GHz) were associated with a relatively large amount of error and aleatoric
uncertainty, which implies that additional training data may not be as helpful at reducing error for the
lowest frequencies. Finally, the middle MW frequencies (23–89 GHz) were associated with a moderate
level of error and the highest fraction of epistemic uncertainty out of total uncertainty, which implies the
middle MW frequencies could benefit the most from additional training data. Quantified epistemic
uncertainty serves as a metric that enables insights as to how additional training data might affect the
model performance at each frequency. Therefore, this section has two objectives: (1) test how the above
noted relationships inferred from uncertainty decomposition are affected with additional training data,
and (2) demonstrate how to use the quantified epistemic uncertainty of each model to help select the
samples that are most likely to reduce the error without using 100% of the data.

As an illustrative case, the models from Section 3.1 were used to create synthetic GMI data for the
entire month of July, and the per-pixel epistemic uncertainty was calculated as discussed in Section 3.3.
Eachmodel for each channel was then trained using the data from July that had uncertainty greater than or
equal to the 75th percentile value of MSRE. By selecting the 25% of the data for which the model
produces predictions with highest epistemic uncertainty, the new training data will contain examples of
inputs with in-distribution Tmwb values that produce predictions with higher uncertainty (and likely
produce higher error), as well as examples of inputs that are outside of the previous training distribution
(i.e., previously unseen or rarely seen examples). Because each frequency had a different model, the per-
sample epistemic uncertainty varied for each GMI frequency. This resulted in 13 unique training sets, but
containing the same number of samples (965,000).

Figure 6 shows the overall results for the changes of August predictions in response to updating the
model weight distributions by training only on the identified high epistemic uncertainty July pixels (see
Appendix Table A3). Training with this additional data resulted in a decrease in MAE for 9 of the
13models (dark blue). TheMAEof the 166GHzVand 183 ± 7GHzVincreased by 0.03K (0.075%) and
0.01 K (0.59%), while the 10 GHz H and 10 GHz V models increased by 0.11 K (2.07%) and
0.18 K (5.71%). The models for frequencies from 19 GHz to 89 GHz exhibited a decrease in RMSE
(orange), except 23 GHz model (no change). The models for frequencies above 89 GHz experienced less
than 1% increases in RMSE, ranging from 0.28% to 0.89%, while the 10 GHz models had increases of
2.69% (horizontal) and 0.13% (vertical). In relative terms, increasing the amount of training data by 3.6%
resulted in average decreases of 1.74% inMAE and 1.38% in RMSE for the channels where these metrics
decreased. Further examination of the change in error confirms the hypotheses developed in Section 3.1.
While the highest MW frequencies had a relatively small change in error with additional training data, the
middle MW frequencies (19–89 GHz except 37 V) experienced a considerable skill improvement in both
MAE and RMSE from a relatively small amount of additional training data. The lowest frequency
(19 GHz) had the largest percentage decrease in RMSE and MAE of any channel for the vertical
polarization, while the horizontal polarization had nominal decreases in both RMSE and MAE.

Examination of the decomposed uncertainty changes from training with additional high epistemic
uncertainty also reveal interesting characteristics (Figure 6). While the highest MW frequencies had very
minimal differences in error, they also had a more than 7% increase in MSRA (Figure 6, yellow bars).
Interestingly, out of the highest frequency channels, the 166 GHz H model experienced a decrease in
aleatoric uncertainty and an increase in epistemic uncertainty. In contrast, models for the lowest frequency
(10 GHz) experienced decreases in epistemic uncertainty similar to the highest frequencies, yet it led to
greater increase in aleatoric uncertainty and error. Finally, the middle frequencies (23–89 GHz except
37 GHz H) experienced reductions in epistemic uncertainty; however, the 37 GHz H model was the only
model in this range to exhibit an increase in epistemic uncertainty. Four of the middle GMI channel
frequencies (23 GHz V, 37 GHz H, 89 GHz H, and 89 GHz V) experienced decreases in aleatoric
uncertainty, while 37 GHz Vexperienced an increase in aleatoric uncertainty. To further investigate, why
these changes occurred, spatial plots from three example frequencies are examined.

Figures 7–9 show examples of results both before and after updating the models with additional
training data for 183 ± 3 GHz (vertical), 23 GHz (vertical), and 19 GHz (horizontal) in a domain
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southwest of Mexico that was observed by GMI. The top row of each figure contains the GMI
observations and the ABI observations for Bands 8 (6.2 μm) and 14 (11.2 μm) for a patch of both cloudy
and clear conditions at 13:41 UTC on August 26, 2020. The first and second columns of the remaining
rows depict the model predictions, the prediction absolute error, the prediction aleatoric uncertainty, and
the prediction epistemic uncertainty, where the first column was produced using the model before the
update and the second column was produced using the model after the update. The third column contains
the difference between the values from column 1 and column 2, where red indicates that ametric increased
after the model was updated and blue indicates that a metric decreased after the model was updated.

First, Figure 7 shows an example of how the spatial distributions of 183 ± 3 GHz predictions changed
in response to additional high epistemic uncertainty training data. Section 3.1 showed that this channel
was already associated with the highest accuracy prior to additional training data, but there was still
nonzero epistemic uncertainty. When additional training data are utilized, Figure 7 shows that the largest
changes in the predicted Tmw

b and absolute error values occur in and around areas containing clouds, and
the rest of the predicted Tmw

b values had changes in Tmw
b and absolute error less than 1 K. However,

additional insight is provided through the uncertainty decomposition. With additional training data,
epistemic uncertainty decreased the most in the largest area of convection in the same region where
aleatoric uncertainty increased (roughly 12°N, 93°W). Additionally, decreases in aleatoric uncertainty are
also associated with decreases in error, which implies that the model is better learning where the edges of
the associated convection are located.

Figure 8 depicts the results for the 23 GHz (vertical) model and is an example of the desired result of
updating the model using high epistemic uncertainty samples. In the cloudy region located between 6°N
and 10°N and between 92°Wand 96°W, the GMIwas able to see below cloud top level where the ABI did
not for the two channels depicted (8 and 14). In the pre-update model predictions, this areas has scattered
predicted Tmw

b values below 240K, which are indicative of clouds for 23GHz. After themodel update, the
predicted Tmw

b values below 240 K in this area almost completely disappear. Moreover, north of 6°N the
model predictions increase in value, and south of 6°N the predicted values decrease, bringing the model

Figure 6.Percentage change in error and uncertainty due to updating themodel by training on additional
data from July that has uncertainty greater than the 75th percentile ([Appendix Table A3
values – Appendix Table A2 values]/Appendix Table A2 values). The dashed line at �3.6% indicates a
decrease proportional to the size of the growth in the training dataset.
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Figure 7.GMI 183 ± 3 GHz (vertical) change in metrics due to model update. Row 1: GMI observations
and the ABI observations for Bands 8 (6.2 μm) and 14 (11.2 μm) at 13:41 UTC on August 26, 2020. Rows
2–5: Model predictions, prediction absolute error, prediction aleatoric uncertainty, and prediction
epistemic uncertainty. The first column was produced using the model before the update and the second
column was produced using the model after the update. The third column contains the difference between
the values from column 1 and column 2, where red indicates that a metric increased after the model was
updated and blue indicates that a metric decreased after the model was updated.
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predictions in closer alignment with the observed GMI Tmw
b values than before the model update. This is

evident when comparing the absolute error before and after the update as there are fewer areas with high
error (yellow), particularly between 6°N and 10°N and between 92°W and 96°W. Unsurprisingly, the
decrease in this area correlates with the highest decrease in epistemic uncertainty. What is perhaps

Figure 8. Change in metrics due to model update as in Figure 7, but for GMI 23 GHz (vertical).
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unexpected is the changes in aleatoric uncertainty, which is irreducible noise in the data. Before the model
update, the bright yellow areas on the aleatoric uncertainty plot indicates that the uncertainty (and
associated error) of the model cannot be reduced with more data. However, since these models are
Bayesian and not deterministic, the additional information of higher epistemic uncertainty indicates that
in fact there may be little aleatoric uncertainty if more training data similar to these inputs can be provided
to the model. And, the aleatoric uncertainty for the post-update model has fewer bright yellow pixels. For
this reason, an uncertainty analysis without measuring both components, aleatoric and epistemic, may
lead to erroneous conclusions.

Figure 9 is an example of a lowMW frequency (19 GHz horizontal), which was found to be associated
with a large fraction of aleatoric uncertainty because this channel is the channel with the least covariance
between 19 GHz labels and IR input features in clouds. The greatest decrease in absolute error occurs in
the dense cloudy region located between 10°N and 14°N and between 92°Wand 96°W, where the model
learns that this region should be warmer than previously predicted. However, not all precipitation is
predicted by themodel, such as the elongated yellowGMI feature from approximately 90°W to 86°Wand
7°N to 9°N. Examination of the ABI Bands 8 and 14 indicate that this precipitation is likely shallow and
partially obscured by thin cirrus. However, while mean Tmw

b predictions did not capture this feature,
aleatoric and epistemic uncertainty is quite high in this region, indicating that themodel has identified that
precipitation is possible in this area. Finally, epistemic uncertainty changed minimally after the model
update, but absolute magnitudes indicate that the model can learn to further warm the warmest Tmw

b
associated with heavy precipitation with additional training data.

Together, the example spatial distributions in Figures 7–9 provide context to the overall changes shown
in Figure 6. First, the increased mean aleatoric uncertainty was found to be predominately occurring in or
around areas of precipitation across frequencies, which suggests that the model is better learning the full
potential distribution of Tmw

b distributions. However, decreases in aleatoric uncertainty also occurred,
which typically corresponded with noticeable decreases in absolute error. Third, aleatoric and epistemic
uncertainty can also be used to identify additional regions of interest that may not be identifiable in mean
Tmw
b predictions. Finally, epistemic uncertainty continues to be high in clouds where model skill is

currently weakest, which suggests that even more training data can further reduce total uncertainty and
error.

4. Conclusion

IR, visible, andMW data collected for observing the atmosphere have different strengths and limitations.
IR and visible radiances are captured from geostationary orbit, meaning that observations are nearly
continuous over a large domain; however, they contain little information about clouds below their tops.
MW data, in contrast, can provide more information about internal cloud structure but does not have the
continuous, full-disk coverage of geostationary data. We have demonstrated herein the ability to:
(1) predict over-ocean syntheticMWbrightness temperatures and their uncertainties for all GMI channels
using IR radiances obtained from geostationary orbit (Example of 166v GHz in Figure 10); (2) apply a
Bayesian technique to provide estimates of both aleatoric and epistemic uncertainty associated with each
individual uncertainty prediction; and (3) utilize epistemic uncertainty predictions to identify additional,
optimal training data that improved new models in accordance with the expectations inferred from the
initial aleatoric and epistemic uncertainty prediction characteristics.

By training models, both before and after the addition of selected training data for the majority of
frequencies observed by GMI, we found several results. First, all models performed well in non-cloudy
regions, which was expected considering that maximum information overlap exists between IR radiances
and MW brightness temperatures given the sensitivity to water vapor shared by both IR and MW
radiation. In cloudy areas, error is still large for MW frequencies that are sensitive to scattering by cloud
hydrometeors (see, e.g., 37GHz and 89GHz in Appendix Table A1). Additionally, lower frequencies that
are less sensitive to absorption by water vapor tended to be predicted with larger error as the models
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struggled to make predictions at the tails of observed brightness temperature distributions (i.e., cloudy
areas). Together, these results are generally consistent with Ortiz et al. (2023), but the average errors
associated with the models in this study are lower due to utilizing a larger training dataset.

Figure 9. Change in metrics due to model update as in Figure 7, but for GMI 19 GHz (horizontal).
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Nevertheless, the key finding of this study is that further scientific understanding can be derived from
uncertainty decomposition. Without the context of the decomposed uncertainty metrics, the channels
associated with the highest error metrics, such as 89GHzH, could be interpreted tomean that our network
architecture is not suitable for this regression task. However, the initially high, model-predicted mean
square root of epistemic uncertainty (MSRE) for these channels indicated that the error metrics for these
frequencies could be further reduced by training on additional data because the MSRE for frequencies
below 183GHz ranges from 2 to 6 times higher than themodel with the lowest error. Furthermore, we also
demonstrate that the presented square root epistemic uncertainty data selectionmethod presented herein is
robust for differently skewed label distributions, such that the selected data consistently indicates that the
incorporation of more cloud data relative to the properties of each channel would provide the most benefit
in future models. Finally, by training new models on both the original plus new selected data, we found
that frequencies associated with higher initial epistemic uncertainty improved more than those with lower
initial epistemic uncertainty. Thus, we find that BDL with uncertainty decomposition is a promising
technique for increasing understanding of model predictions for our regression task.

The results from executing a targeted model update informed by the uncertainty decomposition (e.g.,
Figure 6) suggests that it may be possible to reduce the size of the training dataset by using the model
uncertainty as a criteria to select new training data. When this process is conducted in an iterative manner,
it is referred to as active learning (Settles, 2010), and Bayesian deep active learning has proven effective
for both classification and regression computer vision tasks (Kendall and Gal, 2017). However, active
learning has yet to be demonstrated on a large-scale regression task in the Earth Sciences. Applying an
active learning framework to this regression problem will likely involve ablation studies to determine the
optimal percentage of newly acquired data to use for the next round of training, the optimal interval for
acquiring new training data (e.g., daily, weekly,monthly, etc.), and amethod for incorporating the existing
model weight distributions as a prior distribution. If active learning can successfully be applied, then it
would reduce the data storage requirements and the model training time; moreover, it would automate the
training data selection process, allowing researchers to focus on other tasks.

While epistemic uncertainty remains the primary focus of this study due to its utility for future active
learning applications, value can also be gained from aleatoric uncertainty predictions. First, we find that
predicted aleatoric uncertainty tends to be higher in regions associated with extreme brightness temper-
atures in true GMI data, even if model predictions of mean brightness temperatures are not extreme. Thus,
we find that aleatoric uncertainty shows promise for identifying features like precipitation in our synthetic
MW product. Furthermore, comparison of aleatoric uncertainty predictions before and after data addition
can highlight regions where a model’s epistemic uncertainty was too high to produce trustworthy
predictions. Since aleatoric uncertainty does not decrease with additional training data when epistemic
uncertainty is sufficiently low, the presence of substantial decreases in predicted aleatoric uncertainty with
additional training data indicates that the original model had not sufficiently learned enough of the
underlying label distribution to be considered trustworthy. An example of this scenario is clearly seen in

Figure 10. (a)�15 min of GMI observations. (b) Synthetic Tmwb generated from 15 min of ABI data (GPM
orbit number 33679 at 14:40 UTC on February 1, 2020) corresponding to the box in Figure 1.
(c) Standard deviation of each Tmwb in panel (b).
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the 23 GHz V predictions in Figure 8. In contrast, the minimal changes in aleatoric uncertainty for
183 ± 3 GHz in Figure 7 indicate that epistemic uncertainty is sufficiently low and that predictions from
this model are relatively more trustworthy.

To further reduce aleatoric uncertainty after epistemic uncertainty is sufficiently low, changes must be
made to the model experimental design, such as including more input features, changing model
architectures, or simply better co-locating ABI and GMI data. Specifically, there are several sources of
uncertainty that we hope to reduce in future iterations of this syntheticMWproduct. First, training dataset
collocations between the center pixels of IR patch input features andMW pixel labels are associated with
very different viewing angles and are currently not parallax-corrected, which likely would result in better
spatial co-locations, reduced label variance, and predicted uncertainties for low-latitude and low-altitude
cloud tops compared to high-latitude and high-altitude cloud tops. In addition to parallax corrections,
future work will also investigate whether adding additional input features (such as visible radiances and
ABI viewing angles per pixel), refining the temporal collocation technique, or switching to more efficient
model architectures (such as U-Nets) improves model performance.

Looking forward, as we continue to utilize our uncertainty decompositionmethodology to improve the
predictive skill of Tmwb from Tirb , we hope to provide a highly useful synthetic product for atmospheric
scientists. The extreme boost in both spatial and temporal resolution provided by our synthetic product
may allow atmospheric scientists to perform previously impossible analyses in theMW spectrum, such as
how individual oceanic storms contribute toward the energy budget. Furthermore, the large, continuous
spatial coverage could allow scientists to investigate interactions across many temporal and spatial scales,
which could lead to increased scientific understanding of weather and climate interactions and more
accurate model physics. Additionally, MW data accompanied by uncertainties could be assimilated into
models to improve simulated structures, which may lead to more accurate weather predictions. Further-
more, since MW imagery is also used in real-time forecasts of hurricane intensity and other extreme
weather phenomena, forecast lead times for high-impact events could also be increased, which helps
mitigate loss of life and property. Finally, the uncertainty metrics provided by our product will allow
atmospheric scientists to assess which predictions are most trustworthy, which can further improve
interpretation of the product and facilitate widespread adoption.
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A. Appendix. Supporting tables and figures
The following tables were used to construct Figures 3, 4, and 6.

100 150 200 250 300
Brightness Temperature [K]

10 GHz H

10 GHz V

19 GHz H

19 GHz V

23 GHz V

37 GHz H

37 GHz V

89 GHz H

89 GHz V

166 GHz H

166 GHz V

183±7 GHz V

183±3 GHz V

G
M

IF
re

qu
en

cy

Kernel Density Estimation

Quartiles

Mean

2.5% to 97.5%

≤ 2.5% or ≥ 97.5%

H
V

Figure A1. GMI observed microwave temperature brightness (Tbmw) value distributions for the August
dataset. Orange indicates horizontal polarization; blue indicates vertical polarization. Orange and blue
shaded areas indicate the Tmwb value density for a given GMI frequency. Vertical lines mark the 0th, 25th,
50th, 75th, and 100th percentile. White dots mark the mean Tmwb values. Bold lines indicate Tmwb values in
the middle 95% of the distribution; thin lines indicate Tmwb values below or above the middle 95% of the
distribution.
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Figure A2. Percentage of uncertainty by component for each GMI channel and polarization using the
predictions from the July dataset.
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Table A1. Results using models trained on 26,587,000 sample from January to June to generate synthetic GMI data using the July test dataset of
1.63 million samples

10 GHz 19 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polar. H V H V V H V H V H V V± 7 V± 3

RMSE 12.04 7.04 11.60 6.43 6.55 10.82 5.24 9.80 4.78 7.87 6.28 4.65 3.13
MAE 4.57 2.76 6.29 3.34 4.26 6.54 3.04 6.86 2.93 4.01 2.65 1.94 1.59
MAPE 4.51% 1.57% 4.79% 1.70% 1.95% 3.97% 1.37% 3.05% 1.15% 1.60% 1.04% 0.76% 0.62%
MSD 6.31 3.80 7.76 4.27 4.60 7.61 3.49 7.85 3.41 5.38 3.62 2.76 2.09
MSRA 6.16 3.70 7.55 4.17 4.47 7.46 3.40 7.65 3.32 5.31 3.57 2.72 2.06
MSRE 1.26 0.85 1.72 0.85 1.05 1.41 0.76 1.66 0.72 0.77 0.52 0.44 0.32

Abbreviations: K = Kelvin; MAE = mean absolute error; MAPE = mean absolute percentage error; MSD = mean standard deviation; MSRA = mean square root aleatoric uncertainty; MSRE = mean square root epistemic
uncertainty; RMSE = root mean squared error.
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Table A2. Results as in Appendix Table A1, but for the August test dataset of 1.53 million samples

10 GHz 19 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polar. H V H V V H V H V H V V±7 V± 3

RMSE 13.77 9.05 14.05 8.37 7.72 12.84 6.34 10.67 5.81 8.85 7.50 5.65 3.78
MAE 5.13 3.19 7.12 3.92 4.54 7.50 3.48 7.16 3.25 4.23 3.08 2.22 1.74
MAPE 4.42% 1.68% 5.01% 1.91% 2.03% 4.42% 1.55% 3.13% 1.29% 1.71% 1.24% 0.89% 0.70%
MSD 6.31 3.87 8.53 4.62 4.99 8.68 3.93 8.41 3.66 5.75 4.08 3.22 2.39
MSRA 6.19 3.77 8.32 4.54 4.87 8.54 3.84 8.24 3.58 5.70 4.04 3.17 2.36
MSRE 1.16 0.81 1.80 0.84 1.05 1.48 0.81 1.61 0.72 0.72 0.54 0.50 0.34
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Table A3. Results as in Appendix Table A2, but using the updated models

10 GHz 19 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polar. H V H V V H V H V H V V± 7 V± 3

RMSE 14.14 9.06 13.92 8.14 7.72 12.79 6.28 10.60 5.66 8.93 7.52 5.69 3.81
MAE 5.24 3.37 7.07 3.79 4.41 7.33 3.48 6.96 3.15 4.21 3.11 2.23 1.74
MAPE 4.41% 1.78% 4.98% 1.85% 1.98% 4.26% 1.55% 3.03% 1.25% 1.71% 1.25% 0.90% 0.70%
MSD 7.24 4.56 9.45 4.89 4.37 7.47 4.12 8.31 3.57 5.69 4.53 3.47 2.56
MSRA 7.15 4.48 9.28 4.82 4.24 7.30 4.05 8.16 3.51 5.63 4.49 3.44 2.53
MSRE 1.09 0.78 1.70 0.81 1.02 1.51 0.75 1.51 0.66 0.72 0.53 0.48 0.33
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