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The propagation of gradient flow structures from microscopic to macroscopic models is a topic of
high current interest. In this paper, we discuss this propagation in a model for the diffusion of particles
interacting via hard-core exclusion or short-range repulsive potentials. We formulate the microscopic
model as a high-dimensional gradient flow in the Wasserstein metric for an appropriate free-energy
functional. Then we use the JKO approach to identify the asymptotics of the metric and the free-
energy functional beyond the lowest order for single particle densities in the limit of small particle
volumes by matched asymptotic expansions. While we use a propagation of chaos assumption at
far distances, we consider correlations at small distance in the expansion. In this way, we obtain a
clear picture of the emergence of a macroscopic gradient structure incorporating corrections in the
free-energy functional due to the volume exclusion.
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1 Introduction

An interesting feature of many partial differential equations (PDEs) describing dissipative mech-
anisms in particle systems is that they can be seen as gradient flows (or steepest descents) of
an associated free-energy functional. This is the case of the linear Fokker–Planck equation [27],
which describes the evolution of the probability of one or many Brownian independent par-
ticles, and many other nonlinear Fokker–Planck equations including nonlinear diffusions and
McKean–Vlasov like equations [3, 22, 35, 38, 42]. For example, if we consider N Brownian par-
ticles moving under an external potential V (x), their evolution can be described by the following
stochastic differential equation (SDE):

dXi(t) = √
2 dWi(t) − ∇Vx(Xi(t))dt, 1 � i � N , (1.1)
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where Wi(t) are independent Brownian motions. The set of N particles can equivalently
be described by a Fokker–Planck PDE for its joint probability density P(�x, t), where �x =
(x1, . . . , xN ):

∂P

∂t
(�x, t) = ∇�x · [∇�xP + ∇�xVN (�x)P] , (1.2)

and ∇�x and ∇�x ·, respectively, stand for the gradient and divergence operators with respect to the
N-particle position vector �x and VN (�x) =∑N

i=1 V (xi). The Fokker–Planck equation (1.2) can be
seen as a gradient flow

∂P

∂t
(�x, t) = ∇�x ·

(
P∇�x

δEN

δP

)
,

with respect to the Wasserstein metric and the free energy

EN (P) =
∫

[P(�x, t) log P(�x, t) + VN (�x)P] d�x. (1.3)

The connections between (1.1), (1.2) and (1.3) are well understood in the case of noninter-
acting particles, where essentially the macroscopic limit of a set of N particles coincides with
the case of a single Brownian particle [27], leading to the linear Fokker–Planck equation for the
one-particle probability density p(x, t)

∂p

∂t
(x, t) = ∇x · [∇xp + ∇xV (x)p] , (1.4)

In this paper, we are interested in the connections between these objects when we consider
interacting Brownian particles.

Having interactions makes the coarse-graining procedure, going from N particles to one,
highly non-trivial. In particular, the Fokker–Planck equation for the one-particle marginal den-
sity p(x, t) = ∫

P(�x, t)δ(x − x1)d�x becomes in general coupled to higher-order marginals, leading
to a BBGKY-type hierarchy, and its relation to the N-particle probability density becomes
much more complicated due to correlations between particles. The particular assumptions on the
interactions are crucial in order to derive the evolution of the one-particle probability density.

Consider a set of N pairwise interacting particles in a bounded domain � ⊂R
d with an

interaction potential u:

dXi(t) = √
2 dWi(t) − ∇xV (Xi(t))dt − χ

∑
j �=i

∇xu((Xi(t) − Xj(t))/�)dt, (1.5)

for 1 � i � N , where χ and � represent the strength and the range of the potential u, respectively.
Depending on χ and �, one expects different limit equations [9]. When the interactions are long
range (� ∼ 1), then one particle interacts on average with an order N particles. The mean-field
approximation P(�x, t) =∏N

i=1 p(xi, t) leads to the nonlinear McKean–Vlasov equation

∂p

∂t
(x, t) = ∇x ·

[
∇x p + ∇xV (x)p + χ (N − 1)p

∫
�

p(y, t)∇xu(x − y) dy

]
, (1.6)

for x, y ∈ �. The approximation can be made rigorous taking the so-called mean-field scaling
χ = 1/N and taking the limit N → ∞ so that the N-dependence in (1.6) drops out. Rigorous
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Coarse graining of a Fokker–Planck equation 713

proofs of the mean-field limit (1.6) typically require the potential u to be Lipschitz or other less
restrictive assumptions, see [10, 21, 25, 33, 40] and references therein, and only recently singular
potentials such as the Coulomb or Newtonian potential have been included [12, 26]. The mean-
field limit relies on each particle interacting on average with all the other particles, and it is
therefore, not suitable for repulsive short-range interactions (� � 1), where typically a particle
only interacts with close neighbours but when it does, the interaction is strong. In this paper,
we are interested in the regime � = ε � 1, χ = 1 and Nεd � 1. Using the method of matched
asymptotic expansions in this limit one obtains a nonlinear correction term in the development
for small ε and N fixed, leading to the nonlinear Fokker–Planck equation [17]

∂p

∂t
(x, t) = ∇x · {[1 + αu(N − 1)εdp

]∇xp + ∇xV (x)p
}
, (1.7)

where

αu =
∫
Rd

(
1 − e−u(x)

)
dx, (1.8)

is independent of ε. Here pε is used to indicate the asymptotic approximation of p for small ε.
Thus, we see that interactions introduce a nonlinear diffusion term into the macroscopic Fokker–
Planck (1.4). Interestingly though, (1.7) preserves the gradient flow structure of the original
microscopic Fokker–Planck (1.2), with the following free energy

Eε
N (p) =

∫
�

[
p log p + 1

2
αu(N − 1)εdp2 + V (x)p

]
dx, (1.9)

see for instance [22, 35, 42]. The same applies when, instead of soft interactions, one considers
hard-core interactions between particles (hard spheres of diameter ε). In that case, interactions do
not appear in (1.5) but as boundary conditions on a perforated domain, that is, ‖Xi(t) − Xj(t)‖ = ε

and the coefficient is αu = Vd(1), the volume of the unit ball in R
d . Note that both the microscopic

and the macroscopic densities P and p depend on the small parameter ε. We will not make this
dependency explicit for notational simplicity. We discuss this further in Subsection 4.4. Other
scaling limits are possible [9, 19, 34], and they will be discussed in Section 3.

The aim of this work is to study what happens to the gradient flow structure and free energy
of a particle-based model when coarse graining. In the examples above, it has been shown by
mean field or matched asymptotic expansions directly on the PDE level that the macroscopic
model preserves the structure and that interactions appeared as a quadratic term in the free
energy. But, can we recover this information from the variational viewpoint during the coarse
graining procedure? Understanding this point would be potentially useful in the description
of generalised models (1.1) for non-identical particles, for which the macroscopic model is a
cross-diffusion PDE system [15] without a gradient flow structure, at least not in general and in
the standard sense [14].

The idea of coarse graining at the level of the variational Fokker–Planck equation or the free
energy has already been considered for other systems, such as discrete simple-exclusion pro-
cesses and mean-field interactions, using the theory of large deviations or Gamma convergence,
see, e.g. [1, 2, 8, 23, 28]. This also embeds into a more abstract setting of evolutionary conver-
gence of gradient flows, see [4, 30, 32, 37, 39]. All these papers are working on the lowest-order
limit, while we seek to derive a first-order expansion in terms of the small volume of particles
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(note that the lowest order in our case is a linear Fokker–Planck equation for single particles that
can be obtained easily). Here we propose to work with the variational scheme, also called the
JKO scheme, leading to the Fokker–Planck equation [27] and use the method of matched asymp-
totics at that level to obtain a macroscopic variational scheme, thus ensuring the preservation of
the gradient flow structure. In this paper, we focus on the simple example with identical interact-
ing particles, for which we have a gradient flow structure at the macroscopic level as discussed
above.

The paper is organised as follows. In Section 2, we introduce the key definitions and give an
outline of the main results. We first introduce the variational formulation of the steepest descent
at the macroscopic and microscopic levels together with their optimality conditions in Section 3.
We discuss some aspects such as uniqueness of the variational formulations and their linearisa-
tion. Section 4 is the core of this work devoted to the strategy of matched asymptotic expansions
at the level of the optimality conditions for the variational schemes. This is all done in the case of
soft particles while a final subsection deals with the hard-sphere case. Section 5 illustrates these
results with numerical experiments emphasising the free-energy comparisons between micro-
scopic and macroscopic simulations. We conclude with a discussion of our results and future
work in Section 6.

2 Outline of the results

We consider N identical particles evolving according to (1.5) with χ = 1 and � = ε � 1 in a
bounded domain � ⊂R

d with |�| = 1 and no-flux boundary conditions on ∂�. The main result
of this work is obtained for strong repulsive short-ranged interactions. We shall indeed assume
throughout this text the following properties for u (a short-range potential).

Assumptions 2.1 (Short-range potential) The potential u : Rd →R is a radial, nonnegative
function whose gradient is locally Lipschitz outside the origin. Moreover, it is assumed that u is
unbounded near zero, goes to zero at ∞ with bounded derivatives and u = O(r−(d+δ)) for some
δ > 0 as r → ∞. Note that in particular u may not be integrable.

Assumptions 2.2 (Asymptotic regime) We assume that the range of the potential ε and the
volume fraction φ are small parameters, ε � 1 and φ = Nεd � 1. The number of particles N
can either be fixed and finite or consider the case N → ∞ at the appropriate rate as ε → 0 so
that φ remains finite.

Remark 2.3 We note that our regime corresponds to a higher density than in the Boltzmann
scaling of ε → 0 and N → ∞ with Nεd−1 = k finite. The volume fraction in the Boltzmann limit
goes to zero, so the first correction we are calculating would vanish in that regime.

The joint probability density P(�x, t), �x = (x1, . . . , xN ), of N particles evolving according to
(1.5) satisfies the following problem

∂P

∂t
= ∇�x · [∇�xP + ∇�xVN (�x)P + ∇�xU ε

N (�x)P
]

, �x ∈ �N , t > 0, (2.1a)

0 = �n · [∇�xP + ∇�xVN (�x)P + ∇�xU ε
N (�x)P

]
, �x ∈ ∂�N , t > 0, (2.1b)
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where �n is the outward normal vector on ∂�N , VN (�x) =∑N
i=1 V (xi) as before, and UN is the total

interaction potential of the system

U ε
N (�x) =

N∑
i=1

N∑
j>i

u

(
xi − xj

ε

)
. (2.1c)

The corresponding free energy is given by

Eε
N (P) =

∫
�N

[
P(�x, t) log P(�x, t) + VN (�x)P + U ε

N (�x)P
]

d�x. (2.1d)

Assumptions 2.4 (Initial conditions) Throughout this work, we will consider the initial
positions Xi(0) to be random, indistinguishable and identically distributed, with

Law
(
X1(0), X2(0), . . . , XN (0)

)= P0(�x).

This implies that P0 is invariant to permutations of the particle labels. Moreover, we assume that
their initial law to behave at small distances (‖Xi − Xj‖ ∼ ε) such that (2.1a) has sufficiently
regular solutions and to behave like a chaotic ensemble at larger distances (‖Xi − Xj‖ � ε). We
will be more precise in the Subsection 4.2.1 (see Assumptions 4.1).

As we will recall in the next section, there exists a natural variational scheme associated to the
Fokker–Planck equation (2.1), consisting of the following time-discrete approximation [27, 35].
Let P̄k(�x) be the approximated N-particle probability density at time t = k
t. Given P̄k−1, then
we define P̄k as any solution of the variational problem

inf
Pk

inf
(P, �U)

{
1

2

∫ 
t

0

∫
�N

P‖ �U‖2d�xds + Eε
N (Pk)

}
, (2.2a)

where the infimum is taken among all the pairs (P, �U) and ‘final position’ Pk = P(·, 
t) such that
Pk ∈P2(�N ), P : [0, 
t] →P2(�N ) with

∂P

∂s
+ ∇�x · (P �U) = 0, in �N × (0, 
t), (2.2b)

�U · �n = 0, on ∂�N × (0, 
t), (2.2c)

P = P̄k−1(�x), in �N × {0}, (2.2d)

Pk(�x) = P, in �N × {
t}. (2.2e)

The scheme is initialised for k = 0 with P̄0 = P0 as given in Assumptions 2.4.
Starting from the N-particle problem (2.2), we derive an analogous problem for the one-

particle density and the associated flow. In general, there might be a uniqueness issue in the
determination of the flow, which is related to the problem of tilting gradient flows (cf. [31]).
However, we have a natural convention in our case, since we can enforce consistency with an
equation of non-interacting particles, that is, the variational formulation of the Fokker–Planck
equation (cf. [27]). Following the wide spread rationale that the Wasserstein metric is the right
one for this equation (and it is also tilt invariant for changing external potentials) will fix the
metric structure and entropy also at higher order as we shall see later in the proof.
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Assumptions 2.5 (Flow variable) The macroscopic flow φ is defined such that, in the absence of
interactions (u = 0), it is consistent with the fluid-dynamic formulation of the Wasserstein metric.

Proposition 1 Consider a short range repulsive interaction potential u satisfying Assumptions
2.1 and the problem (2.2) with N = 2 and initial data satisfying Assumption 2.4 in the asymptotic
regime defined by Assumption 2.2 with the consistency relation in Assumption 2.5. Then the one-
particle marginal density p of the optimality conditions of (2.2a) and associated flow φ satisfies
the following equations up to order εd:

∂p

∂s
+ ∇x1 · (p∇x1φ) = 0, in � × (0, 
t),

∂φ

∂s
+ 1

2
‖∇x1φ‖2 = 0, in � × (0, 
t),

∇x1φ · n1 = 0, on ∂� × (0, 
t),

p = p̄k−1(x1), in � × {0},

φ = − (
log p̄k + V + αuε

dp̄k

)= −δEε
2(p̄k)

δpk
, in � × {
t}.

where Eε
2 is given in (1.9), αu in (1.8) and p̄k is the approximated one-particle marginal p at time

t = k
t. Furthermore, P̄k(x1, x2) for k > 0 inherits the structure of k = 0 in Assumption 2.4 of
being chaotic for ‖x1 − x2‖ � ε, that is the leading order term of P̄k(x1, x2) is p̄k(x1)p̄k(x2).

Remark 2.6 (Validity of the asymptotic expansion) The result in Proposition 1 obtains the
formal asymptotic expansion of the one-particle pair (p, φ) up to order εd assuming smoothness
of its terms. The validity of the asymptotic expansion, that is, showing that the rest of terms are
of lower order, is an open problem.

Corollary 1 (Hard sphere particles) The result stated in Proposition 1 is also valid for the
hard-sphere potential u(r/ε) with u(r) = +∞ for r < 1, u(r) = 0 otherwise. This corresponds to
hard sphere particles with diameter ε. The coefficient in the final time condition is αu = Vd(1),
the volume of the unit ball.

Corollary 2 (N particles case) The result stated in Proposition 1 and Corollary 1 formally
extend to any number of particles N under Assumptions 2.2, that is, that the total volume of
interaction is small compared to the macroscopic volume �. The final condition reads

φ(x, 
t) = − [
log p̄k + V + αu(N − 1)εdp̄k

]
,

which coincides with − δEε
N (p̄k )
δpk

.

Remark 2.7 (Macroscopic gradient flow structure) The results above obtain a variational
formulation and compatibility conditions for the one-particle density p and the associated flow
φ from the corresponding microscopic quantities satisfying (2.2) in the asymptotic limit ε → 0
given by Assumptions 2.2. The final step to obtain convergence to a macroscopic gradient flow
solution including the first correction term in volume fraction (Nεd) is to take the limit 
t → 0

https://doi.org/10.1017/S0956792520000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000285


Coarse graining of a Fokker–Planck equation 717

in the variational formulation. Our results show that the limits commute: taking first 
t → 0 in
(2.2) would take us back to the N-particle Fokker–Planck equation (2.1), which was the starting
point in [16, 17] to obtain a macroscopic Fokker–Planck equation for ε � 0. This equation was
shown to admit a gradient flow structure associated to the free-energy functional (1.9).

3 Variational formulation

In this section, we define the microscopic problem in detail and present the corresponding macro-
scopic problem. We then write both problems in variational form. For generality, we expose the
problem for soft particles interacting via a repulsive potential (in Subsection 4.4, we discuss how
the hard-core particles case can be seen as a particular limit of soft spheres).

3.1 Models for soft spheres

We consider the problem satisfied by the joint law of the N-particle system P(�x, t), where each
particle evolves according to (1.5) with χ = 1 and � = ε � 1:

∂P

∂t
= ∇�x · [∇�xP + ∇�xVN (�x)P + ∇�xU ε

N (�x)P
]

, �x ∈ �N , t > 0, (3.1a)

0 = �n · [∇�xP + ∇�xVN (�x)P + ∇�xU ε
N (�x)P

]
, �x ∈ ∂�N , t > 0, (3.1b)

P = P0, �x ∈ �N , t = 0, (3.1c)

where �n is the outward normal vector on ∂�N , VN (�x) =∑N
i=1 V (xi) is the total external potential,

UN is the total interaction potential of the system given by (2.1c), and N , ε, and P0 are such that
Assumptions 2.2 and 2.4 are satisfied. The corresponding free energy is given by

Eε
N (P) =

∫
�N

[
P(�x, t) log P(�x, t) + VN (�x)P + U ε

N (�x)P
]

d�x. (3.1d)

As discussed in the introduction, using the method of matched asymptotics on (3.1) under
Assumptions 2.2 results in the following nonlinear Fokker–Planck equation for the one-particle
marginal pε(x, t) (valid up to order εd) [17]

∂pε

∂t
= ∇x · {[1 + αu(N − 1)εdpε

]∇xpε + ∇xV (x) pε
}
, x ∈ �, t > 0, (3.2a)

0 = n · {[1 + αu(N − 1)εdpε
]∇xpε + ∇xV (x) pε

}
, x ∈ ∂�, t > 0, (3.2b)

pε = pε
0, x ∈ �, t = 0, (3.2c)

where pε
0(x) = ∫

�N P0(�x)δ(x1 − x)d�x. The associated free energy to (3.2a) is

Eε
N (pε) =

∫
�

[
pε log pε + 1

2
αu(N − 1)εd(pε)2 + V (x)pε

]
dx. (3.2d)

We want to study the correspondence between the microscopic model (3.1) and the macro-
scopic model (3.2) using the free energy and gradient flow description. In other words, is the
gradient flow of (3.2d) the macroscopic counterpart of the gradient flow of (3.1d) in the limit
given by Assumptions 2.2? In order to gain some insight into this question, we will consider the
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minimising movement scheme, a time-discrete variational approximation of gradient flows [27].
We then perform an asymptotic expansion in an outer region, where it is natural to assume the
asymptotic independence of two particles, and in an inner region at the scale of particle sizes,
where the size exclusion leads to significant dependence. In order to argue meaningfully with the
first-order asymptotics, we also need to understand the linearised problem and its uniqueness.
These building blocks will be discussed in the next subsections.

3.2 Minimising movement scheme

It is well-known that, under certain conditions of the drift, the stationary solutions of the Fokker–
Planck equations (3.1a) and (3.2a) satisfy a variational principle. Namely, they minimise their
associated free-energy functionals Eε

N and Eε
N over the associated class of probability densi-

ties, P2(�N ) and P2(�), respectively. We will use an extra connection between the free-energy
functional and the Fokker–Planck equation, namely that the solutions of the Fokker–Planck
equation follow, at each instant in time, the direction of the steepest descent of the associated
free-energy functional. In fact, Jordan et al. [27] showed that the linear Fokker–Planck equation
can be obtained as the limit of a variational scheme. Let P̄k be the approximated N-particle prob-
ability density at time t = k
t. Given P̄k−1, then we define P̄k as any solution of the variational
problem

inf
Pk∈P2(�N )

{
1

2
W 2

2

(
Pk , P̄k−1

)+ Eε
N (Pk)

}
, (3.3)

where W2 the Wasserstein metric. In order to find the Euler–Lagrange optimality conditions of
(3.3), we make use of the Benamou–Brenier formulation of W2 [7] to rewrite (3.3) as

inf
Pk

inf
(P, �U)

{
1

2

∫ 
t

0

∫
�N

P‖ �U‖2d�xds + Eε
N (Pk)

}
, (3.4a)

where the infimum is taken among all the pairs (P, �U) and ‘final position’ Pk such that Pk ∈
P2(�N ), P : [0, 
t] →P2(�N ) with

∂P

∂s
+ ∇�x · (P �U) = 0, in �N × (0, 
t), (3.4b)

�U · �n = 0, on ∂�N × (0, 
t), (3.4c)

P = P̄k−1(�x), in �N × {0}, (3.4d)

P = Pk(�x), in �N × {
t}. (3.4e)

This can be understood as an optimal control problem: we need to find not only the best end
point P̄k so that Eε

N (P̄k) is the smallest but also the optimal path with flux P �U to get there. We
note that in the literature it is also common to find this problem defined in the time interval [0, 1];
in this case, the dependency on 
t appears as a coefficient 1/
t outside the integral in (3.4a).
Benamou and Brenier pointed out that the variational scheme (3.4) can be seen as a convex
minimisation problem with linear constraints. The constraint, or the continuity equation (3.4b),
will be eliminated by introducing a Lagrange multiplier � in the next subsection.
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3.3 Weak formulation and compatibility conditions

Following the procedure by Brenier [11], the variational problem (3.4) is equivalent to

inf
Pk

inf
(P, �U)

sup
�

{ ∫ 
t

0

∫
�N

(
‖ �U‖2

2
− ∂s� − �U · ∇�x�

)
Pd�xds +

∫
�N

�(�x, 
t)Pkd�x

−
∫

�N
�(�x, 0)P̄k−1d�x + Eε

N (Pk)

}
,

which leads to the classical optimality conditions [38, 42]

∇�x� = �U , in �N × (0, 
t), (3.5a)

�(�x, 
t) = −δEε
N (P̄k)

δPk
, in �N × {
t} (3.5b)

∂�

∂s
+ 1

2
‖∇�x�‖2 = 0, in �N × (0, 
t). (3.5c)

Here � can be interpreted as a Lagrange multiplier for conditions (3.4).
This yields the following variational problem: given the initial distribution P̄k−1 at time t =

(k − 1)
t and a free energy Eε
N , determine the pair (P, �) and P̄k(�x) = P(�x, 
t) such that

∂P

∂s
+ ∇�x · (P∇�x�) = 0, in �N × (0, 
t), (3.6a)

∂�

∂s
+ 1

2
‖∇�x�‖2 = 0, in �N × (0, 
t), (3.6b)

∇�x� · �n = 0, on ∂�N × (0, 
t), (3.6c)

P = P̄k−1(�x), in �N × {0}, (3.6d)

� = −δEε
N (P̄k)

δPk
, in �N × {
t}. (3.6e)

We can repeat the procedure to obtain the weak formulation and optimality conditions for the
macroscopic Fokker–Planck equation (3.2a). We arrive at

∂pε

∂s
+ ∇x · (pε∇xφ

ε) = 0, in � × (0, 
t), (3.7a)

∂φε

∂s
+ 1

2
‖∇xφ

ε‖2 = 0, in � × (0, 
t), (3.7b)

∇xφ
ε · n = 0, on ∂� × (0, 
t), (3.7c)

pε = p̄ε
k−1(x), in � × {0} (3.7d)

φε = −δEε
N (p̄ε

k)

δpε
k

, in � × {
t}, (3.7e)

where Eε
N is given in (3.2d) deduce the convergence of the gradient flow solutions from this

For ease of notation, from now on, we will eliminate the bars on P̄k−1 and P̄k from the
optimality conditions and analogously for the macroscopic densities.
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3.4 Uniqueness of solutions of the optimality conditions

In the following, we study the system of nonlinear compatibility conditions in a unified way
such that it comprises the microscopic as well as the macroscopic problem. We thus consider
a domain D ⊂R

M of arbitrary dimension M ; D can be the domain in R
dN for the microscopic

model (perforated in the case of hard spheres), or D = � with M = d in the macroscopic model.
We look for solutions (p, φ) of

∂p

∂s
+ ∇ · (p∇φ) = 0, in D × (0, 
t), (3.8a)

∂φ

∂s
+ 1

2
‖∇φ‖2 = 0, in D × (0, 
t) (3.8b)

p∇φ · n = 0, on ∂D × (0, 
t), (3.8c)

p = p0, in D × {0} (3.8d)

φ = −δF

δp
(p), in D × {
t}, (3.8e)

where n is the normal vector on ∂D. Here, F is a strictly convex functional in the classical
sense as (1.9) and (2.1d), which we assume to be differentiable for the sake of simplicity, but an
analogous proof based on subgradients can be carried out in general.

In order to verify the uniqueness of a solution, we can follow the formal proof of Lasry and
Lions [29] for mean-field games, which have the same structure as (3.8). The key idea is to take
the difference of the equations for two solutions (pi, φi), i = 1, 2, that is,

∂p1

∂s
− ∂p2

∂s
= −∇ · (p1∇φ1 − p2∇φ2),

∂φ1

∂s
− ∂φ2

∂s
= −1

2
‖∇φ1‖2 + 1

2
‖∇φ2‖2,

then multiply the first equation with φ1 − φ2, the second with p1 − p2, and integrate with respect
to space and time. This, together with integration by parts, yields

−
〈δF

δp
(p1(·, 
t)) − δF

δp
(p2(·, 
t)), p1(·, 
t) − p2(·, 
t)

〉

=
∫

D
[φ1(·, 
t) − φ2(·, 
t)] [p1(·, 
t) − p2(·, 
t)] dx

=
∫ 
t

0

∫
D

∂

∂s
[(p1 − p2)(φ1 − φ2)] dxds

= −
∫ 
t

0

∫
D

[
∇ · (p1∇φ1 − p2∇φ2)(φ1 − φ2) + 1

2
(p1 − p2)(‖∇φ1‖2 − ‖∇φ2‖2)

]
dxds

= 1

2

∫ 
t

0

∫
D

(p1 + p2)‖∇φ1 − ∇φ2‖2 dxds.

For nonnegative p1 and p2, the right-hand side is obviously nonnegative, while the left-hand side
is negative due to the strict convexity of F if p1(·, 
t) �= p2(·, 
t). Thus, we conclude p1(·, 
t) =
p2(·, 
t) and ∇φ1 = ∇φ2 on the support of p1 + p2. The uniqueness of the transport equation
(3.8a) thus implies p1 ≡ p2.
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3.5 The linearised compatibility conditions

In order to justify an asymptotic expansion, it is a key issue to understand the linearised
problem and its well posedness. In the following, we will provide an analysis based on the
Ladyzhenskaya–Babuska–Brezzi theory [13] for linear saddle-point problems under suitable
conditions, which can be carried out in a dimension-independent way, hence being applicable
for the high-dimensional microscopic as well as for the macroscopic problem. As before, we
consider a general domain D ⊂R

M .
Given a known pair (q, ϕ), around which we linearise the optimality conditions (3.8), we obtain

the following linear problem for (h, f ):

0 = ∂h

∂s
+ ∇ · (q∇f + h∇ϕ) in D × (0, 
t), (3.9a)

0 = ∂f

∂s
+ ∇ϕ · ∇f in D × (0, 
t), (3.9b)

0 = (q∇f + h∇ϕ) · n, on ∂D × (0, 
t), (3.9c)

h = h0 in D × {0}, (3.9d)

f = −h

q
− Cq in D × {
t}, (3.9e)

for a nonnegative constant C.
Here we prove the existence and uniqueness of the linearised system (3.9). In order to ver-

ify existence and uniqueness of a weak solution of (3.9), we introduce a weak formulation,
which actually corresponds to a second-order approximation of the original variational prob-
lem. We will assume that q and ϕ are sufficiently smooth and q is strictly positive in D × [0, 
t].
Consequently, we introduce a variable corresponding to the flux, that is, a vector field g = q∇f .
Then consider the variational problem of minimising

inf
g,h

(
1

2

∫ 
t

0

∫
D

|g|2
q

dxds + 1

2

∫
D

h(·, 
t)2

q
dx + C

∫
D

h(·, 
t)q(·, 
t) dx

)
, (3.10)

subject to

∂h

∂s
+ ∇ · (g + h∇ϕ) = 0. (3.11)

Introducing f as a Lagrange parameter, we obtain the saddle-point problem

inf
g,h

sup
f

{
1

2

∫ 
t

0

∫
D

|g|2
q

dxds + 1

2

∫
D

h(·, 
t)2

q(·, 
t)
dx + C

∫
D

h(·, 
t)q(·, 
t) dx

+
∫ 
t

0

∫
D

(
∂h

∂s
f − (g + h∇ϕ) · ∇f

)
dxds

}
.

Clearly an appropriate space for g is L2((0, 
t) × D)M due to the first term in the functional.
Since we expect ∇f = g

q , an obvious choice is f ∈ L2(0, 
t; H1(D)). Hence, the constraint on

h and g is to be interpreted in the dual space L2(0, 
t; H1(D)∗), which makes sense also since
∇ · g ∈ L2(0, 
t; H1(D)∗).
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It remains to define an appropriate space for h, which will be based on the method of
characteristics. First of all, let r denote the push-forward of h(·, 0), that is, the unique solution of

∂r

∂s
+ ∇ · (r∇ϕ) = 0,

with initial value h(·, 0). Then we look for a distributional solution f ∈ r + W , where

W =
{

h ∈ L2(0, 
t; H1(D)∗)
∣∣∣ ∂h

∂s
+ ∇ · (h∇ϕ) ∈ L2(0, 
t; H1(D)∗), h(·, 0) = 0.

}
.

Note that, for ∂h
∂s + ∇ · (h∇ϕ) ∈ L2(0, 
t; H1(D)∗) given, one can reconstruct h with zero initial

value by appropriate integration along characteristics and obtains also a distributional trace at
s = 
t.

In the following, we thus look for a solution

( f , g, h) ∈ L2(0, 
t; H1(D)) × L2((0, T) × D)M × (r + W ),

using the general theory of saddle-point problems in Hilbert spaces [13].

Theorem 3.1 Let q ∈ C(0, 
t; L∞(D)) be positive, r ∈ L2(0, 
t; H1(D)∗) and ϕ ∈ C(0, 
t;
W 1,∞(D)). Then there exists a unique solution

( f , g, h) ∈ L2(0, 
t; H1(D)) × L2((0, T) × D)M × (r + W ),

of the variational problem (3.10) subject to (3.11), respectively, a weak solution of (3.9).

Proof Following [13, Theorem 1.1, p. 42], we need to verify an inf-sup condition for the con-
straint and the coercivity of the quadratic functional on the kernel of the constraint, that is, in the
setting of [13]

a(g, h; g̃, h̃) =
∫ 
t

0

∫
D

g g̃

q
dxds + 1

2

∫
D

h(·, 
t)h̃(·, 
t)

q(·, 
t)
dx

and

b( f ; g, h) =
∫ 
t

0

∫
D

(
∂h

∂s
f − (g + h∇ϕ) · ∇f

)
dxds.

The inf-sup condition follows immediately by estimating the supremum over all g, h by the
value at g = −λ∇f with λ > 0 sufficiently large, and h constant in space defined via ∂sh(s) =∫

D f (x, s) dx, that is,

sup
g,h

∫ 
t
0

∫
D

(
∂h
∂s f − (g + h∇ϕ) · ∇f

)
dxds

‖(g, h)‖ ≥ c1

∫ 
t
0 (

∫
D f dx)2 ds + ∫ 
t

0

∫
�

|∇f |2 dxds

‖(h, −λ∇f )‖

≥ c2

√∫ 
t

0

(∫
D

f dx

)2

ds + ‖∇f ‖2
L2 .

Finally, the Poincaré inequality implies that the right-hand side can be estimated from below by
a multiple of the norm of f in L2(0, T ; H1(D)).
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For coercivity, we restrict ourselves to 1
2

∫ 
t
0

∫
�

g2

q dxds, which is clearly coercive with

respect to g in L2((0, 
t) × D). However, for g ∈ L2((0, 
t) × �) and (g, h) in the kernel of the
constraint, we immediately have

‖h‖2
W =

∫ 
t

0

∥∥∥∥∂h

∂s
+ ∇ · (h∇ϕ)

∥∥∥∥
2

L2(0,
t;H1(D)∗)

ds =
∫ 
t

0
‖∇ · g‖2

L2(0,
t;H−1(D)) ds

≤ ‖g‖2
L2((0,
t)×D),

which implies also coercivity.

4 Derivation of the macroscopic variational Fokker–Planck equation

In this section, we show that the macroscopic compatibility conditions (3.7) can be derived from
the corresponding microscopic problem (3.6). We begin by the simple case of noninteracting
particles and then consider the case of interacting particles. We show the derivation for soft
spheres and conclude the section presenting the key differences in deriving the macroscopic
variational problem for hard spheres.

In order to reduce the dimensionality of the problem (3.6), we consider the marginal densities

Pn(x1, . . . , xn, s) =
∫

�N−n
P(�x, s)dxn+1 . . . dxN , (4.1)

for n = 1, 2, . . . N − 1. Integrating (3.6a) over dx2 . . . dxN using the boundary conditions (3.6e)
gives

∂p

∂s
(x1, s) + ∇x1 ·

∫
�N−1

(
P∇x1�

)
dx2 . . . dxN = 0, (4.2)

where p is the one-particle marginal density (p ≡ P1),

p(x1, s) =
∫

�

P2(x1, x2, s) dx2. (4.3)

4.1 Non-interacting particles

We begin by the simplest case of non-interacting particles, so that the interaction potential is
u ≡ 0. Using that particles are initially independent and identically distributed, we can write

P(�x, s) =
N∏

i=1

p(xi, s). (4.4)

Using (4.4) and (3.6b)–(3.6e), the problem for � reads

0 = ∂�

∂s
+ 1

2

(‖∇x1�‖2 + · · · + ‖∇xN �‖2
)
, (4.5a)

�(�x, 
t) = −
N∑

i=1

[log pk(xi) + V (xi)], (4.5b)
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Using the decomposition of the flux

�(�x, s) =
N∑

i=1

ϕ(xi, s), (4.6)

we find that ϕ(x, s) satisfies

0 = ∂ϕ

∂s
+ 1

2
‖∇xϕ‖2, (4.7a)

ϕ(x, 
t) = − log pk(x) − V (x). (4.7b)

This solution is unique (Section 3.4). Finally, inserting (4.6) into (4.2) gives

∂p

∂s
(x1, s) + ∇x1 · (p∇x1ϕ

)= 0. (4.8)

Therefore, we have obtained all the macroscopic compatibility conditions (3.7) as required (with
u = 0). We have shown that, if (p, ϕ) verify (4.7) and (4.8), then (P, �) given by (4.4) and (4.6)
satisfy (3.6) with u = 0.

4.2 Soft-sphere particles: Case N = 2

For N = 2, consider a decomposition of the two-particles flow of the form [18]

�2(x1, x2, s) = ϕ(x1, s) + ϕ(x2, s) + ϕ2(x1, x2, s). (4.9)

Then equation (4.2) reads

∂p

∂s
+ ∇x1 ·

[
p∇x1ϕ +

∫
�

P2(x1, x2, s)∇x1ϕ2(x1, x2, s) dx2

]
, (4.10)

The problem (3.6) for (P2, �2) reads

0 = ∂P2

∂s
+ ∇x1 · (P2∇x1�2

)+ ∇x2 · (P2∇x2�2
)

, in �2 × (0, 
t), (4.11a)

0 = ∂�2

∂s
+ 1

2
‖∇x1�2‖2 + 1

2
‖∇x2�2‖2, in �2 × (0, 
t), (4.11b)

0 = P2∇xi�2 · ni, on ∂�2 × (0, 
t), (4.11c)

P2 = P2,k−1(x1, x2), in �2 × {0}, (4.11d)

�2 = − log P2,k − V (x1) − V (x2) − u((x1 − x2)/ε), in �2 × {
t}, (4.11e)

where Pn,k denotes the nth marginal of Pk .

4.2.1 Matched asymptotic expansions

We seek a solution to (4.11) using the method of matched asymptotic expansions [41]. Suppose
that when two particles are far apart (‖x1 − x2‖ � ε), their Brownian motions are independent,
whereas when they are close to each other (‖x1 − x2‖ ∼ ε) they are correlated due to interactions.
We designate these two regions of the configuration space �2 the outer region and inner region,
respectively. The solution pairs in the outer and inner regions are denoted by (Pout, �out) and
(P̃, �̃), respectively. We look for a solution in each region in powers of ε,
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Pout = P(0)
out + εP(1)

out + ε2P(2)
out + · · · , �out = �

(0)
out + ε�

(1)
out + ε2�

(2)
out + · · · ,

P̃ = P̃(0) + εP̃(1) + ε2P̃(2) + · · · , �̃ = �̃(0) + ε�̃(1) + ε2�̃(2) + · · · .

Now we can be more precise about the Assumptions 2.4 for the initial data in Section 2.

Assumptions 4.1 (Refined Assumptions 2.4) We require the outer expansion of the initial data
to be of the form:

P(0)
out(x1, x2, 0) = q0(x1)q0(x2), P(l)

out(x1, x2, 0) = 0, l = 1, . . . d. (4.12)

Outer region

In the outer region, ‖x1 − x2‖ � ε and hence the interaction term in (4.11e) will be small.
Specifically, given the decay of u at infinity in Assumptions 2.1, the outer problem up to O(εd)
does not see the interaction term.1 Therefore, in the outer region (4.11) becomes, up to O(εd)

0 = ∂Pout

∂s
+ ∇x1 · (Pout∇x1�out

)+ ∇x2 · (Pout∇x2�out
)

, �2 × (0, 
t), (4.13a)

0 = ∂�out

∂s
+ 1

2
‖∇x1�out‖2 + 1

2
‖∇x2�out‖2, �2 × (0, 
t), (4.13b)

0 = Pout∇xi�out · ni, ∂�2 × (0, 
t), (4.13c)

Pout = Pout,k−1(x1, x2), �2 × {0}, (4.13d)

�out = − log Pout,k − V (x1) − V (x2), �2 × {
t}. (4.13e)

At leading order, using (4.12), problem (4.13) for k = 1 admits a separable solution, and hence
the same is true for all k > 1. Therefore, we have that

P(0)
out(x1, x2, s) = q(x1, s)q(x2, s), �

(0)
out(x1, x2, s) = ϕ(x1, s) + ϕ(x2, s), (4.14)

for some functions q and ϕ. We see that, at leading order, the outer solution has the form we found
for non-interacting particles in Section 4.1, namely that the density is a product of densities in
xi and the flow is a sum of flows in xi. In particular, this implies that the outer density q and the
outer flow ϕ satisfy the equations for independent particles (4.8) and (4.7a), respectively, found
in the previous subsection. That is,

0 = ∂q

∂s
+ ∇x(q∇xϕ), in � × (0, 
t), (4.15a)

0 = ∂ϕ

∂s
+ 1

2
‖∇xϕ‖2, in � × (0, 
t), (4.15b)

0 = q∇xϕ · n, on ∂� × (0, 
t), (4.15c)

1For a particular interaction potential, it could be the interaction term comes at an even higher order. For
example, with a Lennard–Jones potential u ∼ r−6 as r → ∞ so the outer problem up to O(ε5) is interaction
free. However, for an exponential potential u(r) = e−r, u = o(r−n) for any n as r → ∞ (so the outer will not
see the interaction at any order).
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q = qk−1(x), in � × {0}, (4.15d)

ϕ = − [log qk(x) + V (x)] , in � × {
t}, (4.15e)

The O(ε) of (4.13) is, using (4.14),

0 = ∂P(1)
out

∂s
+ ∇�x ·

(
P(1)

out∇�x�
(0)
out + q(x1)q(x2)∇�x�

(1)
out

)
, in �2 × (0, 
t), (4.16a)

0 = ∂�
(1)
out

∂s
+ ∇�x�

(0)
out · ∇�x�

(1)
out, in �2 × (0, 
t) (4.16b)

0 = P(1)
out∇xiϕ(s, xi) · n + q(x1)q(x2)∇xi�

(1)
out · n, on ∂�2 × (0, 
t), (4.16c)

P(1)
out = P(1)

out,k−1(�x), in �2 × {0}, (4.16d)

�
(1)
out = − P(1)

out,k(�x)

qk(x1)qk(x2)
, in �2 × {
t}, (4.16e)

where �x = (x1, x2). Assumptions 2.4 means that P(l)
out,0(�x) = 0 for all l ≥ 1. Given the scheme

to obtain the iterate P(1)
out,k for k ≥ 1, we find that the zero initial condition propagates and that

(P(1)
out, �

(1)
out) = (0, 0) solves the problem (4.16). This solution is unique using Theorem 3.1. It is

straightforward to see that the same is true for the higher-order terms (P(l)
out, �

(l)
out) up to l = d.

Therefore, we have found that, up to O(εd),

Pout(x1, x2, s) = q(x1, s)q(x2, s), �out(x1, x2, s) = ϕ(x1, s) + ϕ(x2, s). (4.17)

Inner region

In the inner region, we set x1 = x̃1, x2 = x̃1 + εx̃, and define P̃(x̃1, x̃, s) = P2(x1, x2, s) and
�̃(x̃1, x̃, s) = �2(x1, x2, s). With this rescaling, (4.11) becomes

0 = ε2 ∂P̃

∂s
+ ∇x̃1 · (ε2P̃∇x̃1�̃ − εP̃∇x̃�̃) + ∇x̃ · (2P̃∇x̃�̃ − εP̃∇x̃1�̃), (4.18a)

0 = ε2 ∂�̃

∂s
+ ε2

2
‖∇x̃1�̃‖2 − ε∇x̃1�̃ · ∇x̃�̃ + ‖∇x̃�̃‖2, (4.18b)

P̃(s = 0) = P̃k−1(x̃1, x̃), (4.18c)

�̃(s = 
t) = − [
log P̃k(x̃1, x̃) + V (x̃1) + V (x̃1 + εx̃) + u(x̃)

]
, (4.18d)

where P̃k−1(x̃1, x̃) is the inner expansion of Pk−1(x1, x2). To this we need to add matching con-
ditions on P̃ and �̃ so that they tend to the outer solution as ‖x̃‖ → ∞. Expanding the outer
solution (4.17) in inner variables gives

P̃(x̃1, x̃, s) ∼ q2(x̃1, s) + εq(x̃1, s)x̃ · ∇x̃1 q(x̃1, s) + · · · , (4.18e)

�̃(x̃1, x̃, s) ∼ 2ϕ(x̃1, s) + εx̃ · ∇x̃1ϕ(x̃1, s) + · · · , (4.18f)

as ‖x̃‖ → ∞.
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We look for a solution of (4.18) of the form P̃ ∼ P̃(0) + εP̃(1) + · · · and �̃ ∼ �̃(0) +
ε�̃(1) + · · · . The leading-order inner problem is

0 = 2∇x̃ ·
(

P̃(0)∇x̃�̃
(0)
)

, (4.19a)

0 =
∥∥∥∇x̃�̃

(0)
∥∥∥2

, (4.19b)

�̃(0) = −
[
log P̃(0)

k (x̃1, x̃) + 2V (x̃1) + u(x̃)
]
, at s = 
t, (4.19c)

P̃(0) ∼ q2(x̃1, s), as ‖x̃‖ → ∞, (4.19d)

�̃(0) ∼ 2ϕ(x̃1, s), as ‖x̃‖ → ∞. (4.19e)

Equation (4.19b) implies that ∇x̃�̃
(0) = 0, which also satisfies (4.19a). If we assign to �̃(0) the

value required at infinity,

�̃(0)(x̃1, s) = 2ϕ(x̃1, s), (4.20)

where ϕ satisfies (4.15e), we have that

�̃(0)(x̃1, 
t) = 2ϕ(x̃1, 
t) = −2 [log qk(x̃1) + V (x̃1)] .

Comparing this with (4.19c), we arrive at

log P̃(0)
k (x̃1, x̃) = log q2

k(x̃1) − u(x̃),

which yields

P̃(0)
k = e−u(x̃)q2

k(x̃1). (4.21)

Note that this satisfies the matching condition at infinity (4.19d) since the potential decays at
infinity, limr→∞ u(r) = 0 (see Assumptions 2.1).

The O(ε) of (4.18) is using (4.20) and (4.21),

0 = ∇x̃ ·
[
P̃(0)

(
∇x̃�̃

(1) − ∇x̃1ϕ(x̃1, s)
)]

, (4.22a)

�̃(1) = − P̃(1)
k (x̃1, x̃)

e−u(x̃)q2
k(x̃1)

− x̃ · ∇x̃1 V (x̃1), at s = 
t, (4.22b)

P̃(1) ∼ q(x̃1, s)x̃ · ∇x̃1 q(x̃1, s), as ‖x̃‖ → ∞, (4.22c)

�̃(1) ∼ x̃ · ∇x̃1ϕ(x̃1, s), as ‖x̃‖ → ∞. (4.22d)

Note that the O(ε) of (4.18b) is automatically satisfied, so disappears in (4.22). Solving (4.22a)
together with the matching condition (4.22d), we find

�̃(1)(x̃1, x̃, s) = x̃ · ∇x̃1ϕ(x̃1, s). (4.23)

Combining (4.15e) and (4.23) into (4.22b), we find that

P̃(1)
k (x̃1, x̃) = e−u(x̃)qk(x̃1)(x̃ · ∇x̃1 qk(x̃1)).
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In sum, we find that the inner region solution is to O(ε),

P̃k(x̃1, x̃) ∼ e−u(x̃)
[
q2

k(x̃1) + εqk(x̃1)x̃ · ∇x̃1 qk(x̃1)
]
, (4.24a)

�̃(x̃1, x̃, s) ∼ 2ϕ(x̃1, s) + εx̃ · ∇x̃1ϕ(x̃1, s), (4.24b)

where qk and ϕ satisfy the outer problem (4.15). We note that the inner region equations deter-
mine completely the flow up to O(ε), but that we only obtain conditions for the density at the
final time (s = 
t) and at infinity (‖x̃‖ ∼ ∞). But since the problem is stationary up to O(ε)
(s appears only as a parameter in (4.19) and (4.22)), we can replace qk(x̃1) by q(s, x̃1) in (4.24a)
and write

P̃(x̃1, x̃, s) = e−u(x̃)
[
q2(x̃1, s) + εq(x̃1, s)x̃ · ∇x̃1 q(x̃1, s)

]+ B0(x̃1, x̃, s) + εB1(x̃1, x̃, s),

to O(ε), for any functions Bi (i = 0, 1) such that Bi = 0 at s = 
t and as ‖x̃‖ ∼ ∞, so we do not
obtain a unique solution for the density in the inner region. However, the subsequent analysis
shows that the value of the integral in (4.10) and the integrated compatibility conditions are
invariant to Bi and thus it what follows we can simply set them to zero:

P̃(x̃1, x̃, s) = e−u(x̃)
[
q2(x̃1, s) + εq(x̃1, s)x̃ · ∇x̃1 q(x̃1, s)

]+ O(ε2). (4.24c)

4.2.2 Integrated equations

We now go back to (4.10) and use the inner and outer solutions in order to obtain the optimization
conditions for the macroscopic problem (3.2). First, we need the following result.

Lemma 1 (Relationship between p and q) The one-particle density p and the outer density q
are related by

p(x1, s) = q(x1, s)

[∫
�

q(x, s) dx − αuε
dq(x1, s)

]
+ o(εd), (4.25)

where

αu =
∫
Rd

(
1 − e−u(εx)

)
dx, (4.26)

and
∫
�

q(x, s) dx = 1 + εda + o(εd), where a is an order one constant. Therefore, p = q + O(εd).

Proof To keep the notation simple, in the following, we omit the time variable s as an argu-
ment of the densities. We begin by evaluating the integral in (4.3) by splitting the integration
volume � for x2 into the inner and outer regions and using the inner and outer solutions for
P2(x1, x2, s), respectively. Even though there is no sharp boundary between the inner and outer
regions, it is convenient to introduce an intermediate radius δ, with ε � δ � 1, which divides the
regions. Then the inner region is �in(x1) = {x2 ∈ � : ‖x2 − x1‖ < δ}, and the outer region is the
complimentary set �out(x1) = �\�in(x1). Then

p(x1) =
∫

�

P2(x1, x2) dx2 =
∫

�out

P2 dx2 +
∫

�in

P2 dx2. (4.27)
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The outer integral is, using (4.14),∫
�out

P2 dx2 =
∫

�out

Pout dx2 = q(x1)
∫

�out

q(x2) dx2 + O(εl)

= q(x1)

[∫
�

q(x2) dx2 − q(x1)δdVd(1)

]
+ O(εl, δd+1),

where l > d is the decay rate of u at infinity (Assumption 2.1) and Vd(1) denotes the volume of
the unit ball in R

d . The inner integral is, using the leading order of (4.24c),∫
�in

P2 dx2 = εd

∫
‖x̃‖�δ/ε

P̃ dx̃ = εdq2(x1)
∫

‖x̃‖�δ/ε

e−u(x̃)dx̃ + O(εδd).

Combining the two integrals and choosing δ such that δd+1 = εl with d < l < d + 1, we obtain

p(x1) = q(x1)

[∫
�

q(x2) dx2 − q(x1)

(
δdVd(1) − εd

∫
‖x̃‖�δ/ε

e−u(x̃)dx̃

)]
+ O(εl)

= q(x1)

[∫
�

q(x2) dx2 − εdq(x1)
∫

‖x̃‖�δ/ε

(
1 − e−u(x̃)

)
dx̃

]
+ O(εl),

using that δdVd(1) = εdVd(δ/ε). Since 1 − e−u(x̃) decays at infinity, we can extend the domain of
integration to the entire R

d introducing only exponentially small errors. Therefore, as required,

p(x1) = q(x1)

[∫
�

q(x2) dx2 − αuε
dq(x1)

]
+ O(εl),

where αu is given in (4.26). To obtain the asymptotic value of the mass of q, we integrate the
equation above to impose the normalisation condition on p:

1 =
∫

�

p dx =
(∫

�

q dx

)2

− αuε
d

∫
�

q2 dx + O(εl).

Rearranging, we find that∫
�

q(x) dx = 1 + 1

2
αuε

d
∫

�

q2(x) dx + O(εl) = 1 + aεd + O(εl),

as required. The constant is a = 1
2αu

∫
�

q2(x) dx.

Now we turn to the main contribution of this work.

Proof of Proposition 1 We consider now the integrated equation (4.2) with N = 2

∂p

∂s
+ ∇x1 ·

∫
�

P2∇x1�2 dx2 = 0, (4.28)

and �2 defined in (4.9). We introduce a macroscopic mobility m and a macroscopic flow φ such
that

m∇x1φ =
∫

�

P2∇x1�2 dx2 =: I(x1, s). (4.29)
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The integral I can be evaluated splitting it into inner and outer parts as in Lemma 1. Using (4.14),
the outer component∫

�out

P2∇x1�2 dx2 = q(x1)∇x1ϕ(x1)

[∫
�

q(x2) dx2 − q(x1)δdVd(1)

]
+ O(δd+1), (4.30)

where δ � 1 as before, whereas the inner region integral reads, using (4.24),∫
�in

P2∇x1�2 dx2 = εd−1
∫

‖x̃‖�δ/ε

P̃
(
ε∇x̃1 − ∇x̃

)
�̃dx̃

= εd−1
∫

‖x̃‖�δ/ε

[
− P̃(0)∇x̃�̃

(0)

+ ε
(
P̃(0)∇x̃1�̃

(0) − P̃(1)∇x̃�̃
(0) − P̃(0)∇x̃�̃

(1)
)+ O(ε2)

]
dx̃

= εdq2(x̃1)∇x̃1ϕ(x̃1)
∫

‖x̃‖�δ/ε

e−u(x̃)dx̃ + O(εδd).

(4.31)

Combining the two integrals (4.30)–(4.31) as in Lemma 1 and using (4.25), we obtain

I(x1) = q(x1)∇x1ϕ(x1)

[∫
�

q(x2) dx2 − αuε
dq(x1)

]
+ O(δd+1)

= p(x1)∇x1ϕ(x1) + O(εl),

choosing δ such that δd+1 = εl with d < l < d + 1 as in Lemma 1. Therefore, from (4.29) we have
that

m∇x1φ = p∇x1ϕ + O(εl), l > d. (4.32)

We use this expression and the condition at time 
t to determine the mobility m generally. Using
the condition (4.15e) on ϕ and (4.25), we have that, to O(εd),

m∇x1φ = −p∇x1 (log q + V ) = −p∇x1

[
log

p

1 + εd(a − αuq)
+ V

]

= −p∇x1

[
log

p

1 + εd(a − αup)
+ V

]
.

Expanding the mobility and the potential in powers of εd , m = m(0) + εdm(1) + · · · and φ =
φ(0) + εdφ(1) + · · · , this implies that, at leading order,

m(0)∇x1φ
(0) = −p∇x1 (log p + V ).

Since the leading order term coincides with case of non-interacting particle, we need to have
consistency with the Wasserstein metric (Assumption 2.5). This requires ∇x1φ

(0) = ∇x1ϕ(p),
where ϕ(q) = − log q − V and hence m(0)(p) = p. At the next order, we have that, expanding
the logarithm,

m(0)∇x1φ
(1) + m(1)∇x1φ

(0) = p∇x1 (a − αup) = −αup∇x1 p. (4.33)

Substituting for m(0) and ∇x1φ
(0), we obtain

p
∂φ(1)

∂p
∇x1 p + p

∂φ(1)

∂V
∇x1 V − M (1)(∇x1 p + p∇x1 V ) = −αup∇x1 p
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with M (1)p = m(1). Since this relation is to hold for all V and p, in particular their gradients being
linearly independent, we conclude

p

(
∂φ(1)

∂p
+ αu

)
− M (1) = 0,

∂φ(1)

∂V
− M (1) = 0.

This implies the conservation law

p
∂

∂p

(
φ(1) + αup

)= ∂

∂V

(
φ(1) + αup

)
,

with solution

φ(1) = F(log p + V ) − αup, m(1) = pF′(log p + V )

for an arbitrary differentiable function F. A particular solution is given by F = 0, which leads to
φ(1) = −αup and m(1) = 0. With this choice, the macroscopic flow is, to O(εd),

φ = ϕ(p) − αuε
dp = − log p − V − αuε

dp. (4.34)

We now put everything together to show that the macroscopic pair (p, φ) satisfies the opti-
mality conditions (3.7). The Euler–Lagrange equation (3.7a) and the no-flux boundary condition
(3.7c) are satisfied using (4.28) and (4.29) with m(p) = p. The flow φ satisfies the Hamilton–
Jacobi equation (3.7b) up to O(εd) using (4.15b) together with (4.32). The final time condition
(3.7e) is exactly given by (4.34).

Let us mention that the proof indicates that the choice of φ is not unique, but our assertion is
only that the specific choice F = 0 yields a solution. The non-uniqueness is related to the fact
that also the Fokker–Planck equation (3.2a) can be written as (here for N = 2)

∂pε

∂t
= ∇x · {pε[1 + εdF′(log pε + V )]∇x

[
V + log pε + αuε

dpε − εdF(log pε + V )
]}

up to terms of order εd . For each F, we obtain a different gradient flow structure; but only the
structure for F constant, that is, mobility equal to p, has a mobility independent of V , which
seems a reasonable choice. Note the same ambiguity is apparent in the microscopic Fokker–
Planck equation for two particles, we could always rewrite it with a nonlinear mobility depending
on the potential, for F nonlinear it would lose the gradient flow structure however. If one accepts
the Wasserstein metric as the natural one for the Fokker–Planck equation, the ambiguity is
eliminated.

Finally, we point out that our Assumptions 2.1 about the interaction potential u could be refined
to potentials such that αu is defined.

4.3 Soft-sphere particles: General N

In this section, we outline the result in Corollary 2. For a general N , we consider a decomposition
of the microscopic flow of the form [18]

�(x1, . . . , xN , s) =
N∑

i=1

ϕ(xi, s) +
N∑

i=1

N∑
j>i

ϕ2(xi, xj, s) + · · · . (4.35)
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In (4.35), each new term in the series describes higher-order interactions. For example, for non-
interacting particles ϕn = 0 for all n ≥ 2. However, in the scaling we consider here, we find that
ϕn vanishes in the outer region for n ≥ 2 and is of at least of order ε2 for n ≥ 3 in the inner region.
We give more detailed arguments on the expansion of � in the N particle case in Appendix A.

For non-interacting particles, we have seen that the microscopic density P is the product of
N one-particle densities p, while the microscopic flow � is the sum of N one-particle flows φ.
For pairwise interacting particles, we can neglect the interactions at all orders higher than two in
(4.35) since they lead to higher-order terms. Specifically, starting from the integrated equation
(4.2), we write

∂p

∂s
+ ∇x1 · IN = 0, IN (x1, s) =

∫
�N−1

(
P∇x1�

)
dx2 . . . dxN , (4.36)

and, as in the N = 2 case, we define the macroscopic mobility and flux such that m(p)φ = IN .
This integral over configuration space can be split according to the number of particles from
x2, . . . , xN that are within an order ε distance to x1:

IN = IN ,out +
N∑

i=2

IN ,in(i) +
N∑

i2>i1≥2

I (2)
N ,in(i2,i2) + · · · ,

where Iout is the integral of the outer expansion over the whole domain �N−1, Iin(i) is the integral
correction over the region corresponding to ‖x1 − xi‖ = O(ε). Likewise, I (k)

in(i1,...,ik ) is the integral
correction (to the first k − 1 terms) over the region corresponding to xi1 , . . . xik being in the inner
region of x1. The corresponding values for the first two terms can be computed using the inner
expansion for the N-particle case in Appendix A and following the calculation of the proof of
Proposition 1 as

IN ,out =
∫ ∏

i

q(xi)∇ϕ(x1) dx2 . . . dxN = q(x1)∇ϕ(x1)

(∫
�

q(x2)dx2

)N−1

+ O(εd+1),

IN ,in(i) = εd

∫ (
eu(x̃i) − 1

) N∏
j=2,j �=i

q(x̃j)∇ϕ(x̃1) dx̃2 . . . dx̃N

= −εdαuq(x1)∇x1 q(x1)

(∫
�

q(x2)dx2

)N−2

+ O(εd+1).

For the other terms, we obtain to leading order

I (k)
in(i1,...,ik ) = εkd

∫ k∏
�=2

(
eu(x̃i� ) − 1

)
q(x̃1)k

∏
j

q(x̃j)∇ϕ(x̃1) dx̃2 . . . dx̃N = O(εkd),

where 2 � j � N such that j �= i�, � = 1, . . . , k and x̃j = xj. Thus, we see that, for some constant
C, the estimate ∣∣∣∣∣

∑
k

I (k)
in(i1,...,ik )

∣∣∣∣∣≤ C
N−1∑
k=2

(
N − 1

k

)
εkd = O(N2ε2d)

holds, where we have used the particle indistinguishability and the fact that there are
(N−1

k

)
tuples

(i1, . . . , ik).
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Using the above, IN in (4.36) simplifies to

IN = q(x1)∇x1ϕ(x1)

[(∫
�

q(x)dx

)N−1

− (N − 1)αuε
dq(x1)

]
+ O(Nεl),

with d < l < d + 1. Similarly, the result stated in Lemma (1) extends to N general as

p(x1, s) = q(x1, s)

[(∫
�

q(x, s) dx

)N−1

− (N − 1)αuε
dq(x1, s)

]
+ o(Nεd),

Combining the two lines above we arrive again at the same result relating ϕ to the macroscopic
flux φ as in the N = 2 case, (4.32). The remaining steps to arrive at the macroscopic compatibility
conditions (3.7) follow exactly the N = 2 case and will be omitted.

4.4 Hard-sphere particles

In this section, we outline the result in Corollary 1, extending the result of Proposition 1 to hard-
sphere particles. This corresponds to the interaction potential uHS(r/ε) with uHS(r) = +∞ for
r < 1 and 0 otherwise, so that particles cannot get closer to each other than their diameters ε.
In this case, it is convenient to move the interaction from the equation (both the SDE (1.5) and
the microscopic Fokker–Planck (3.1a)) to a reflective boundary condition at ‖x1 − x2‖ = ε, so
that the microscopic problem does not have any singular terms in the equation (see [16]). The
domain of definition is then given by �2

ε = �2 \ {(x1, x2) ∈ �2, ‖x1 − x2‖� ε}. The microscopic
compatibility conditions are obtained analogously to the soft particles case, to give

0 = ∂P2

∂s
+ ∇x1 · (P2∇x1�2

)+ ∇x2 · (P2∇x2�2
)
, in �2

ε × (0, 
t), (4.37a)

0 = ∂�2

∂s
+ 1

2
‖∇x1�2‖2 + 1

2
‖∇x2�2‖2, in �2

ε × (0, 
t), (4.37b)

0 = P2∇xi�2 · ni, xi ∈ ∂� × (0, 
t), (4.37c)

0 = P
(∇x2� − ∇x1�

) · n2, {‖x1 − x2‖ = ε} × (0, 
t), (4.37d)

P2 = P2,k−1(x1, x2), in �2
ε × {0}, (4.37e)

�2 = − log P2,k − V (x1) − V (x2), in �2
ε × {
t}. (4.37f)

Most of the steps in the derivation are analogous to the soft spheres case in Subsection 4.2.
Hence, here we only highlight the key differences arising when considering hard spheres, and
we leave the calculation to Appendix B:

• The microscopic model (4.37) is defined in a perforated domain, namely �2
ε = �2 \ {(x1, x2) ∈

�2, ‖x1 − x2‖� ε}.
• At the microscopic level, the interaction between particles appeared as the term u((x1 − x2)/ε)

in the final-time condition (4.11e) for soft spheres. Instead, here it enters in all the condi-
tions through the perforated domain �2

ε , and the additional boundary condition (4.37d) which
ensures conservation of mass.

• However, at the macroscopic level, we obtain the same structure for hard spheres than soft
spheres. The macroscopic compatibility conditions are the same as in Proposition 1 with
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αuHS = Vd(1) (2 for d = 1, π for d = 2 and 4π/3 for d = 3). This is consistent with the
macroscopic Fokker–Planck model obtained in [16].

• The initial condition P0(x1, x2) in the outer region cannot be separable at all orders as in
Assumption 4.1. However, the correction due to overlaps in the initial condition P0 scales
with the excluded volume, and therefore, up to l = d, (4.12) applies.

The connection between the cases of hard spheres and particles interacting with a short-range
potential u at the macroscopic level motivates the following definition of an effective hard-sphere
diameter.

Definition 4.2 (Effective hard-sphere diameter) Given a repulsive short-range potential u(r/ε)
with range ε � 1, we define its relative effective hard-sphere diameter εu such that αu = αHSε

d
u ,

or equivalently

εd
u = d

∫ ∞

0
[1 − exp(−u)] rd−1dr. (4.38)

This coincides with Rowlinson’s concept of an effective hard sphere diameter and can be
generalised to attractive–repulsive potentials [5, 24].

5 Numerical examples

In this section, we present several numerical examples of the macroscopic equation

∂pε

∂t
= ∇x · {[1 + αu(N − 1)εdpε

]∇xpε + ∇xV (x)pε
}

, x ∈ �, (5.1)

to illustrate the effect the nonlinear diffusion has on the behaviour of solutions and their con-
vergence to the steady states. Throughout this section, we use no-flux boundary conditions on
∂�, where � = [−1/2, 1/2]d . We will also compare the predictions of (5.1) with stochastic sim-
ulations of the corresponding microscopic model (soft or hard spheres depending on the choice
of αu).

Example 5.1 (Convergence rate) We first consider (5.1) in one dimension (d = 1) without exter-
nal potential (that is, V = 0). The corresponding unit-mass steady state is pε,∞ = 1, which is the
unique minimiser of the free energy

Eε
N (pε) =

∫
�

[
pε log pε + 1

2
αu(N − 1)εd(pε)2 + V (x)pε

]
dx. (5.2)

In the case without interactions (ε = 0), (5.1) is simply the diffusion equation, whose solutions
approach the steady state with an exponential convergence rate. However, it is not clear what
effect has the nonlinearity in the convergence rate.

We solve (5.1) numerically using the finite-volume method presented in [20], with the initial
condition pε(x, 0) = χ[0.2,0.4] and N = 100 hard rods of length ε = 0.0015. We also solve the
linear case, setting ε = 0 in (5.1). The decay of the free energy (5.2) for these two cases is
shown in Figure 1 as 
E(t) = Eε

N (pε(x, t)) − Eε
N (pε,∞(x)). We observe the expected exponential

convergence with rate r0 = 2λ1 = 2π2 in the linear case. In the nonlinear case, we also observe
an exponential convergence with rate rε > r0.
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FIGURE 1. Free-energy decay towards the equilibrium solution of (5.1) with d = 1, initial data pε(x, 0) =
χ[0.2,0.4] and no external potential (V = 0). Comparison of the linear case (without interactions, ε = 0, red
dashed line r0), the nonlinear case with N = 100 hard rods (α = 2, blue solid line, rε) of length ε = 0.0015
and the linearised equation around pε,∞ = 1 (green dot-dashed line, r̃ε). Slopes of linear fit are shown in the
legend.

In order to approximate the increased rate rε , we look at the linearised version of equa-
tion (5.1) around the equilibrium pε,∞ = 1, which corresponds to the linear diffusion equation
but with diffusion coefficient Deff = 1 + α(N − 1)εd, equal to 1.3 for our choice of parameters.
It can easily be shown that in this case the rate is r̃ε = Deffr0. We find that the free-energy decay
of the linearised equation agrees with this prediction, as well as with the free-energy decay of
the nonlinear equation (see Figure 1), indicating that the Solution is already very close to the
equilibrium and well approximated by the linearised equation.

In the next examples, we compare the behaviour of the solutions of (5.1) for different inter-
action types and external potentials, with the corresponding microscopic particle-level model.
For the particle-level simulations, we use the open-source C++ library Aboria [36]. The over-
damped Langevin equation (1.1) is integrated using the Euler–Maruyama method and a constant
timestep 
t.

In order to compare the models at the density level, we perform R independent realisations
and output the positions of all NR particles at a set of output time points. A histogram of the
positions is calculated and then scaled to produce a discretised density function (pi(t) ≈ p(xi, t) in
1d, pij(t) ≈ p(xi, yj, t) in 2d,. . . ) that can be compared with the solution to (5.1). The macroscopic-
free energy (5.2) should approximate well the microscopic-free energy. For hard spheres this is

Eε
N (P) =

∫
�N

ε

[
P(�x, t) log P(�x, t) +

N∑
i=1

V (xi)P

]
d�x. (5.3)

Without the P log P term, this would be straightforward using a Monte Carlo integration; how-
ever, the entropic term make things more complicated. One approach would be to compute an
estimate P̂(�x, t) of the joint probability density P (using for example a Kernel Density Estimate)
and then obtaining an estimate of Eε

N either by a so-called re-substitution estimate (Monte Carlo
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FIGURE 2. Two-dimensional example with N = 1000 hard-core particles of diameter ε = 0.01 and a
quadratic external potential. Comparison between the stochastic simulations of (1.1) and the solution of
the PDE (5.1) with and without interactions (corresponding to αu = 0). (a) External potential V (x) = 5x2.
(b) Time evolution of the macroscopic density pε at times t = 0, 0.05, 0.1. (c) Steady-state pε,∞. (d) Relative
entropy 
E(t) = Eε

N (pε(x, t)) − Eε
N (pε,∞(x)). We use 
x = 0.005 and 
t = 10−3 to solve the PDE and

R = 200 realisations with 
t = 6.25 × 10−6 to generate the histograms.

integration using the same samples used to obtain P̂) or a splitting data estimate (generating new
samples for the Monte Carlo integration) [6]

Êε
N R(t) = 1

R

R∑
k=1

(
log P̂(Xk

1, . . . , Xk
N , t) +

N∑
i=1

V (Xk
i )

)
, (5.4)

where Xk
i is the position of the ith particles in the kth sample at the time of the free energy

estimate. A cheaper alternative approach is to use the discretised density function pi and compute
the approximation to the free energy using a discretised version of (5.2). The direct estimation of
the microscopic-free energy (5.3) using (5.4) is out of the scope of this paper, and we are going
to use the second approach.

Example 5.2 (Hard-core interacting particles) We consider a two-dimensional system (d = 2)
with N = 1000 hard-core disks of diameter ε = 0.01, and a quadratic external potential in the
horizontal direction, V (x) = 5x2 (see Figure 2(a)). In two dimensions, the hard-core potential
has α = π , and for our choice of parameters the coefficient of the nonlinear term in (5.1) is
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FIGURE 3. Two-dimensional example with N = 1000 particles with Yukawa interactions u(r) =
exp(−r)/r, ε = 0.01, and a ‘volcano-shaped’ external potential. Initial data are a sum of two Gaussians,
pε(0, x) = C[N(−0.25, 0.052) + N(0.25, 0.12)] (with C so that pε is normalised). (a) External potential
V (x) = −1.5e−x2/s2 − e−x2/2s2

(with s = 0.1). (b) Time evolution of the solution pε to (5.1) at times t =
0, 0.025, 0.05. (c) Steady states pε,∞ of (5.1) with and without interactions (corresponding to αu = 0).
(d) Relative entropy 
E(t) = Eε

N (pε(x, t)) − Eε
N (pε,∞(x)). We use 
x = 0.005 and 
t = 10−3 to solve the

PDE and R = 200 realisations with 
t = 2.25 × 10−6 (
t = 6.25 × 10−6) to generate the histograms for
interacting (point) particles.

α(N − 1)ε2 = 0.314. We choose initial data constant in the vertical direction so that the evolu-
tion of (5.1) is purely in the x-direction. Specifically, we take initial data p(x, 0) = χ[0.1,0.3](x). In
Figure 2(b), we plot the early-time evolution, and in Figure 2(c) the steady-state solutions. As
expected, we find an increased speed of convergence to equilibrium in the case of interactions
(see Figure 2(d)). We observe good agreement between the PDE solutions and the stochastic
simulations.

Example 5.3 (Yukawa interacting particles) In this example, we consider a two-dimensional
system (d = 2), with N = 1000 soft particles with a Yukawa interaction potential, u(r) =
exp(−r)/r and ε = 0.01, and a ‘volcano-shaped’ external potential in the horizontal direction
(see Figure 3(a)). In two dimensions, the Yukawa potential has αu = 3.926 (using (4.26)), and for
our choice of parameters the coefficient of the nonlinear term in (5.1) is αu(N − 1)ε2 = 0.392.
We choose initial data to be a sum of two Gaussians along the horizontal direction and constant
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FIGURE 4. Two-dimensional example with N = 1000 particles with a power-law interaction potential
u(r) = r−4, ε = 0.01, and a ‘volcano-shaped’ external potential. (a) External potential V (x) = −4.5e−2s‖x‖2 +
3.5e−s‖x‖2

(with s = 25). (b) Initial condition p0(r, θ ) = C(1 + 0.6 sin θ )e−(r−μ)2/2σ 2
, with x = r cos θ , y =

r sin θ , μ = 0.3, σ = 0.05 and C the normalisation constant. (c) Time evolution of the solution pε to (5.1)
along x = 0. Thin lines correspond to times t = 0, 0.0025, . . . , 0.0125; thick lines to the stationary solu-
tions. (d) Relative entropy 
E(t) = Eε

N (pε(x, t)) − Eε
N (pε,∞(x)). We use 
x = 0.005 and 
t = 10−3 to solve

the PDE and R = 200 realisations with 
t = 2.25 × 10−6 (
t = 6.25 × 10−6) to generate the histograms for
interacting (point) particles.

in the vertical direction so that the evolution of (5.1) is purely in the x-direction. We observe that
the density moves very quickly from the asymmetric initial condition to the centre of the domain,
where the minimum of the potential V is (see Figure 3(b)). This effect can also be observed
in the evolution of the relative entropy, which shows a steep change until around t = 0.01 and
then relaxes to the long-time convergence (see Figure 3(d)). Again we observe a marked dif-
ference in the speed of converge to the equilibrium solution between the interacting or point
particles simulations and that the difference in slopes is well captured by our PDE solutions (see
Figure 3(d)).

Example 5.4 (Power-law interacting particles) In this example, we consider a system with
d = 2, N = 1000 soft particles with a power-law interaction potential, u(r) = r−4 and ε = 0.01,
and a radially symmetric “volcano-shaped” external potential in the horizontal direction (see
Figure 4(a)). In two dimensions, this interaction potential has αu = 5.568 (using (4.26)), and for
our choice of parameters the coefficient of the nonlinear term in (5.1) is αu(N − 1)ε2 = 0.556.
This time we choose a radial initial condition whose amplitude depends on the angular variable
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(see Figure 4(b)) so that the evolution is in two dimensions and has two distinct timescales. In
particular, we observe a very fast evolution until about t = 0.01 by when the mass is almost
centred in the middle of the domain (Figure 4(c)). After that time the evolution is a lot slower, as
seen by the change in slope in relative entropy (Figure 4(d)).

6 Discussion

In this paper, we have obtained a framework to derive higher-order expansions of gradient flows
for many particle systems, which automatically preserves the gradient flow structure and thus
gives a first answer to the questions raised in [14], due to the observation that higher-order expan-
sions only at the level of the PDEs can lead to a loss of the gradient flow structure. It obviously
motivates further research, e.g. about the cross-diffusion system from [15], where this loss of a
gradient structure happens this way [14] and we expect to restore the correct gradient structure
by our approach.

Let us finally put our asymptotic regime defined in Assumption 2.2 in context within the rel-
evant literature on different scaling limits. Oelschläger [34] considered the model of interacting
particles evolving according to (1.5) with V = 0 in the limit of N → ∞. Bodnar and Velazquez
[9] also consider the same model for d = 1. The interaction is rescaled in the following way as a
function of N :

u(x) = 1

N
uN (x) = 1

N
χd

N u1(χN x), χN = Nβ/d ,

where β ∈ [0, 1] is a parameter that models the strength and range of the interaction. The potential
then becomes

u(x) = Nβ−1u1(x/lβ), (6.1)

where we have introduced l = N−1/d (this corresponds to the average distance between uniformly
distributed particles in a domain of unit volume). Therefore, the range of the interaction is given
by lβ . In this form, it is easier to extract different cases:

• β = 0: here u scales like 1/N and its range is order one. This corresponds to weakly interacting
particles (mean field limit), where each particle interacts on average with all the other N parti-
cles and the potential is long range. In the limit of N → ∞ one obtains an integro-differential
equation.

• β ∈ (0, β∗): in this case each particle interacts with an order N1−β neighbours but each inter-
action is stronger (of order Nβ−1). This limit is termed ‘moderately interacting particles’ in
[34]. In contrast to the mean-field case, as N → ∞ the interactions get more and more local
and the limit dynamics satisfy a nonlinear diffusion equation of the form (3.2a) but with a
nonlinear coefficient of the form

∫
u1(x)dx (see (28) in [9] or (15) in [17]). In [34] they have

β∗ = d/(d + 2); in [9], assuming that particles are near the equilibrium (distributed according
to the Gibbs measure), they manage to reach β∗ = 1 (d = 1 only).

• β ≥ β∗: in contrast to the other two cases, the random fluctuations in the interaction term∑N
j>i u(xi − xj) does not vanish as N → ∞. This corresponds to strongly interacting particles

or the hydrodynamic limit. In the case of β = 1, the strength of u is independent of the number
of particles, but the range is short so that on average only interact with on neighbour.
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What the three limits above have in common is the order of the total excluded volume η.
This is given by N times the volume of the range of the potential, multiplied by the strength of
the repulsion (this can be thought of as αu). For an interaction potential of the form (6.1), we
have η = NNβ−1(lβ)d = Nβ(N−1/d)βd = 1, independent of β. In contrast to [9, 34], here we do
not take N → ∞, the volume fraction tends to a non-zero small constant, in which we do the
asymptotic expansion. In particular, the strength of the potential is order one, its range is ε and
the total excluded volume is Nεd = η. The assumption η � 1 implies that a particle at a given
time only interacts with another particle on average, and that we can use the N = 2 case to obtain
the leading-order correction term. This means that in our work we treat a regime in between the
moderately and strongly interacting particles, in that we arrive at a nonlinear diffusion equation
for the population density as for β < β∗ but the strength of the interaction is order one.

Finally, another interesting issue is to study the N-particle problem by finding the BBGKY
hierarchy equivalent for the (P, �) problem in the sense of [18] and to provide a justification
of truncation in the limit of low volume fraction in this sense alternative to the one provided in
Appendix A and Subsection 4.3.
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Appendix A. The N-particle problem

In the following we briefly discuss the asymptotics in the case of an arbitrary number of N
particles (in the soft sphere case), where we have to consider all cases of k particles at distances
of order ε. We only sketch the arguments, since the detailed computations actually follow closely
the case N = 2.

We fix x1 and consecutively go through the regions of k − 1 particles being at distance order ε

to x1; due to indistinguishability we can consider xi, i = 2, . . . , k. The inner region for k particles
is determined by a change of variables

x̃1 = x1, x̃i = xi − x1

ε
, i = 2, . . . , k, x̃i = xi, i = k + 1, . . . , N .

Similar to (4.19), the leading order in the Hamilton–Jacobi equation yields ∇x̃i�̃
(0) = 0 for j =

2, . . . , k, that is, �̃0 is independent of the relative distances x̃i of particles in the inner region. At
the next order, similar to (4.22a)

0 =
k∑

i=2

∇x̃i

[
P̃(0)∇x̃i�̃

(1) − P̃(0)∇x̃1 ϕ̃
]

The outer region for k particles is determined by one of the ‖x̃i‖ tending to infinity, that is, only
k − 2 particles at close distance. Matching the previously obtained solutions for these problems
with the inner region is consistent with

P̃(0) = e−∑k
i=2 u(x̃i)q(x̃1, s)k

N∏
j=k+1

q(x̃j, s), P̃(1) = P̃(0)

q(x̃1, s)

k∑
i=2

x̃i · ∇x̃1 q(x̃1, s),

�̃(0) = kϕ(x̃1, s) +
N∑

j=k+1

ϕ(x̃j, s), �̃(1) =
k∑

i=2

x̃i · ∇x̃1ϕ(x̃1, s),

again with ϕ and q solving (4.15).
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Thus, we see that the two leading orders in � depend on particle pairs only, consistent with
the leading orders in the two-particle problem. Hence, when going to the integrated equations
the leading order come from the integrals of

P̃(0)∇x�̃
(0) = e−∑k

i=2 u(x̃i)q(x̃1, s)k
N∏

j=k+1

q(x̃j, s)∇(kϕ(x̃1, s) +
N∑

j=k+1

ϕ(x̃j, s)).

Since the integral of these leading-order terms (related to the effective volume in configuration
space used for the inner expansions) obtained in the case of k ≥ 3 particles gives a correction of
negligible order ε2dN2, the additional terms we obtain in the integration of (4.36) are of higher
order than ε2dN2 and can thus be neglected.

Appendix B. Derivation for hard spheres

B.1 Matched asymptotic expansions

We proceed to solve (4.37) using matched asymptotic expansions.
In the outer region we obtain the same solution as for soft spheres, as expected since we are

outside the interaction region:

Pout(s, x1, x2) = q(s, x1)q(s, x2),

�out(s, x1, x2) = ϕ(s, x1) + ϕ(s, x2),
(B.1)

where q and ϕ satisfy (4.15). This is valid up to O(εd) by the same argument as in the soft spheres
case and the remark that the initial density is chosen separable up to that order (as discussed in
Subsection 4.4).

The inner problem reads

0 = ε2 ∂P̃

∂s
+ ∇x̃1 · (ε2P̃∇x̃1�̃ − εP̃∇x̃�̃) + ∇x̃ · (2P̃∇x̃�̃ − εP̃∇x̃1�̃), (B.2a)

0 = ε2 ∂�̃

∂s
+ ε2

2
‖∇x̃1�̃‖2 − ε∇x̃1�̃ · ∇x̃�̃ + ‖∇x̃�̃‖2, (B.2b)

P̃(s = 0) = P̃k−1(x̃1, x̃), (B.2c)

�̃(s = 
t) = − [
log P̃k(x̃1, x̃) + V (x̃1) + V (x̃1 + εx̃)

]
, (B.2d)

together with the boundary condition when two particles are in contact,

2P̃ x̃ · ∇x̃�̃ = εP̃ x̃ · ∇x̃1�̃, on ‖x̃‖ = 1. (B.2e)

and the matching condition with the outer solution (B.1), with coincides with the soft-sphere
condition (4.18e)–(4.18f).

Expanding P̃ and �̃ in powers of ε, P̃ ∼ P̃(0) + εP̃(1) + · · · and �̃ ∼ �̃(0) + ε�̃(1) + · · · , the
leading order of (B.2) gives
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2∇x̃ ·
(

P̃(0)∇x̃�̃
(0)
)

= 0, (B.3a)

∥∥∥∇x̃�̃
(0)
∥∥∥2 = 0, (B.3b)

�̃(0)(s = 
t) = −
[
log P̃(0)

k (x̃1, x̃) + 2V (x̃1)
]
, (B.3c)

2P̃(0) x̃ · ∇x̃�̃ = 0, on ‖x̃‖ = 1, (B.3d)

P̃(0) ∼ q2(x̃1, s), as ‖x̃‖ → ∞, (B.3e)

�̃(0) ∼ 2ϕ(x̃1, s), as ‖x̃‖ → ∞. (B.3f)

We find that the behaviour at infinity satisfies in fact all the other constraints. Thus, the leading
order is independent of s̃ and x̃:

P̃(0) = q2(x̃1, s), �̃(0) = 2ϕ(x̃1, s). (B.4)

The O(ε) of (B.2) is, using (B.4),

0 = 2q2(x̃1)∇2
x̃ �̃(1), (B.5a)

�̃(1)(s = 
t) = − P̃(1)
k (x̃1, x̃)

q2
k(x̃1)

− x̃ · ∇x̃1 V (x̃1), (B.5b)

x̃ · ∇x̃�̃
(1) = x̃ · ∇x̃1ϕ(x̃1), on ‖x̃‖ = 1, (B.5c)

P̃(1) ∼ q(x̃1)x̃ · ∇x̃1 q(x̃1), as ‖x̃‖ → ∞, (B.5d)

�̃(1) ∼ x̃ · ∇x̃1ϕ(x̃1), as ‖x̃‖ → ∞. (B.5e)

From this we see that �̃(1) = x̃ · ∇x̃1ϕ(x̃1) satisfies (B.5a), (B.5c) and (B.5e). Now imposing
(B.5b) and recalling that ϕ(
t, x) = − log qk − V (x) gives

P̃(1)
k (x̃1, x̃) = qk(x̃1)x̃ · ∇x̃1 qk(x̃1).

Since this satisfies the matching condition (B.5d) at 
t, and as in the soft-spheres case, the inner
problem is stationary up to order ε, we can write

P̃(1)(x̃1, x̃, s) = q(x̃1, s)x̃ · ∇x̃1 q(s, x̃1),

plus any additional function that vanishes at s = 
t and as x̃ ∼ ∞ (but that we can ignore since
it does not affect the final integrated result). In summary, the solution in the inner region is, to
O(εd)

P̃(x̃1, x̃, s) = q2(x̃1, s) + εq(x̃1, s)x̃ · ∇x̃1 q(x̃1, s), (B.6a)

�̃(x̃1, x̃, s) = 2ϕ(x̃1, s) + εx̃ · ∇x̃1ϕ(x̃1). (B.6b)
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B.2 Integrated equations

The procedure is analogous to the soft spheres case, except that now the domain of integration
for x2 depends on the position of the first particle x1. This will result in some surface integrals.
Fixing the first particle at x1, we integrate (4.37) over the region available to the second particle,
namely �ε(x1) := � \ Bε(x1). We ignore any intersections that the ball Bε(x1) may have with
∂� (for some positions x1 close to the boundaries), since this gives a higher-order correction.
We find

∂p

∂s
+
∫

�(x1)
∇x1 · (P∇x1�

)
dx2 +

∫
∂Bε (x1)

P∇x2� · n2 dSx2 = 0, (B.7)

where

p(x1, s) =
∫

�ε (x1)
P(x1, x2, s) dx2.

Here dSx2 denotes the surface element with respect to variables x2. In the last term of (B.7)
we have used the divergence theorem and the no-flux boundary condition (4.37c). Using the
Reynolds transport theorem in the second term of (B.7) and the no-flux boundary condition
(4.37d) gives

∂p

∂s
+ ∇x1 ·

∫
�(x1)

P∇x1� dx2 = 0.

As in the soft-particles case, we introduce a macroscopic mobility m and a macroscopic flow
φ such that

m∇x1φ =
∫

�(x1)
P∇x1� dx2 =: I(x1, s).

We again compute I breaking it into inner and outer regions:

I(x1, s) =
∫

�out(x1)
P∇x1� dx2 +

∫
�in(x1)

P∇x1� dx2.

The outer part is, using the outer expansion (B.1)∫
�out(x1)

P∇x1� dx2 = q(x1)∇x1ϕ(x1)

[∫
�

q(x2) dx2 − q(x1)δdVd(1) + O(δd+1)

]
,

where Vd(1) denotes the volume of the unit ball in R
d . The inner region integral, using the inner

solution (B.6), becomes∫
�in(x1)

P∇x1� dx2 = (δd − εd)Vd(1)q2(x̃1)∇x1ϕ(x1) + O(εd+1).

Combining the two integrals we obtain

I ∼ q(x1)∇x1ϕ(x1)

[∫
�

q(x2) dx2 − αuq(x1)εd

]
,

using that αu = Vd(1) for hard spheres. Similarly, we can use Lemma 1 to find p ∼
q(x1)

[∫
�

q(x2) dx2 − αuε
dq(x1)

]
, which implies that m = p and φ = ϕ(q) up to O(εd+1) as

expected.
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