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A STRONG EXCISION THEOREM FOR
GENERALISED TATE COHOMOLOGY

N. MRAMOR KOSTA

We consider the analogue of the fixed point theorem of A. Borel in the context of Tate
cohomology. We show that for general compact Lie groups G the Tate cohomology
of a G-CW complex X with coefficients in a field of characteristic 0 is in general
not isomorphic to the cohomology of the fixed point set, and thus the fixed point
theorem does not apply. Instead, the following excision theorem is valid: if X' is
the subcomplex of all G-cells of orbit type G/H where dim H > 0, and V is a ring
such that for every finite isotropy group H the order \H\ is invertible in V, then
H*G{X;V) = Hc{X';V). In the special cases G = T, the circle group, and G = U,
the group of unit quaternions, a more elementary geometric proof, using a cellular
model of H^ is given.

1. INTRODUCTION

The fixed point theorem of A. Borel states that for Abelian groups G and for suit-
able coefficients V the localised Borel equivariant cohomology 5 ~ 1 H Q ( X ; V) of a finite
G-CW complex is isomorphic to the tensor product H*{F\ V) <g> S~1H*{BG\V) of the
cohomology of the fixed point set F and the localised equivariant cohomology of a point
[7, Proposition 1]. Thus, in this case, the cohomology of the fixed point set H*{F) is
completely determined by the localised equivariant cohomology of X. For nonabelian
groups this is far from true since any finite complex K can be the fixed point set of a
compact finite-dimensional G-space X with trivial equivariant cohomology [7].

On infinite dimensional spaces it was shown by Goodwillie [5] that for G = T,
the circle group, the localised T-equivariant Borel cohomology does not satisfy the fixed
point theorem. Jones-Petrack [9], [10] and Cencelj [2] constructed a completed localised
T-equivariant cohomology which coincides with the classical Borel one on finite dimen-
sional spaces, and for which the fixed point theorem holds also for infinite dimensional
spaces and suitable coefficient rings. This cohomology essentially coincides with the spe-
cial case of G — T of the generalised Tate cohomology Hj of Greenlees and May [6] (with
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underlying Borel equivariant cohomology), which is defined generally, for any compact
Lie group G. In this note we study the fixed point theorem for this cohomology, which we
denote by HG. We show that, as in the case of localised Borel equivariant cohomology,
the fixed point theorem does not hold for infinite groups G, different from T. Instead,
we prove the following excision theorem:

THEOREM 1 . Let G be a compact Lie group, X a G-CW complex, and X' the
subcomplex containing all cells of type G/H, where dim H > 0. If V is a ring such
that for every finite isotropy group H the order \H\ is invertible in V, then HC(X; V)
^HG{X',V).

The proof depends on the fact that the cohomology HG(O; V) of any orbit O = G/H,
where H is finite and \H\ is invertible in V, is trivial. We first prove this for the circle
group G = T, and for the group G = U of unit quaternions (Proposition 1). These two
cases have an additional geometric side since, for a smooth manifold X, the cohomology
H'G(X; R) is expressible in terms of invariant differential forms on X. In addition, Tate
cohomology HG(X) of a G-CW complex X can be, in these two cases, computed from
a nonequivariant cellular decomposition of X by [6, 10.3, 14.9]. This follows from two
properties of these two groups. First, by [6, 14.1] and [3, Theorem 1], every G-CW
complex X has a G-homotopy equivalent CW complex Y with an action of G such that
the action map fi: G x Y ->• Y is cellular, which implies that GYn c Yn+d for all n, where
d = 1 in the case of T and d — 3 in the case of U. It is not known which compact Lie
groups have this property. Apart from finite groups and the groups T and U it has been
shown for all toral groups [4]. Second, in these two cases the classifying space EG has
a CW decomposition with cells only in dimensions apart by d, and therefore any G-CW
complex is calculable in the sense of [6, 10.1]. In Section 2 we use nonequivariant cellular
decompositions to compute the cohomology HG(O) of the orbits O = G/H, where G is
either T or U. In the case G = T this leads to a new proof of the fixed point theorem of
[2], and in the case G = U it follows that the fixed point theorem is not valid, and the
excision theorem 1 follows.

In Section 3 we prove that for any compact Lie group G and any finite subgroup
H such that the order \H\ is invertible in the coefficient ring V the Tate cohomology
HG(G/H; V) = 0. The proof follows from general properties of Tate cohomology. In
Section 4, the proof of the excision theorem is given.

The author wishes to thank Matija Cencelj for his help in writing this paper.

2. TATE COHOMOLOGY OF ORBITS OF T AND U

Equivariant cohomology for the circle group T and the group of unit quaternions
U has several geometric properties which justify a special treatment. Throughout this
section, G will denote one of the groups T and U.
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It is known [6] tha t , up to minor differences, Hj(X) coincides with localised cyclic

cohomology of Jones [8], [9]. If X is a smooth T-manifold, then this cohomology with

coefficients in a field of characteristic 0 (for example C) is expressible in terms of invari-

ant differential forms on X. More precisely, Hj(X; C) is the cohomology of the complex

£lj(X) [[u, u"1]] of invariant differential forms on X and u is of degree 2 with the differ-

ential dj = d + uj, where d is the exterior derivative and j : Qj —¥ Qj+1 is integration of

differential forms along orbits of the action [9]. It was shown in [2] tha t this cohomology

satisfies the fixed point theorem. Similarly, # u ( X ; C ) where A" is a smooth U-manifold

coincides with the cohomologj' of the complex fl{j(X) [[u, u'1}] of U-invariant forms on

X, where u is of degree 4, the differential is dv — d + uj, and j : fijj —>• f2y+3 is again

integration along orbits of the action.

In both cases, G = T and G = U, Tate cohomology H'G{X) of a G-CW complex X

has a description in terms of a nonequivariant cellular decomposition of X. Let C(G) be

the standard cellular chain complex of G = Sr arising from the CW decomposition with

one 0-cell and one r-cell, where r — 1 in case G — T and r = 3 in case G = U, and let

z e Cr{G) correspond to the r-cell. The product IT : G x G —> G is a cellular map which,

on the chain level, maps z ® z to 0.

For every G-CW complex X there exists a G-homotopy equivalent CW complex Y

such tha t the action n:YxG-¥Y is a cellular map [6, Lemma 14.1], [3, Theorem 1]. As

in [6], let (C{Y), d) be the cellular chain complex of Y and let J : Cj(Y) -> Cj+r(Y) be

given by J(c) = (M,(Z<8>C). The operator J , which corresponds to the integration operator

j in the case of differential forms on X, has the properties: dJ = —Jd and J2 = 0 and so

gives rise to the bicomplex Z[u, u"1] ®C(Y), where the powers u~n represent generators

of the standard cellular complex of BG ( that is, u is of degree —(r + 1 ) ) with differential

d(w ®c) — uw ® J(c) +w® d(c).

By [6, Theoreml4.9], Tate cohomology HQ(X; V) coincides with the cohomology

H* (Hom(Z[tt, u"1] ® C(Y); V))

for any coefficient ring V.

Using this description we can compute the Tate cohomology of the orbits O = G/H,
where H < G is a closed subgroup.

All closed subgroups of T, different from T, are finite cyclic groups. The isomorphism
classes of closed subgroups of U consist of two 1-dimensional subgroups: the maximal
torus T and its normaliser, and the following O-dimensional subgroups: the cyclic groups
Z/n, the quaternionic groups (x,y \ xn = y2,y~1xy — x~l), the special linear group
5I/2(F3) (a lift of the tetrahedral subgroup of 50(3)), the special linear group SL,2(W5)
(a lift of the icosahedral subgroup of 50(3)), and the lift of the octahedral subgroup
of 5O(3) (an extension of the symmetric group 54) [12, p. 155], [11, p. 404]. Every
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isomorphism class contains precisely one conjugacy class (this is proved for example in

[3])-

PROPOSITION 1 . For every finite closed subgroup H < G, where G is either T
or V, and for every coefficient ring V such that m = \H\ is invertible in V,

H*G(G;V) = 0.

PROOF: In order to compute H^{O; V), we compute the cohomology of the bicom-
plex Zfu.u-1] ® C(0) .

Let us first consider the more complicated case G — U. If if < U is finite, the
orbit O = U/H has cells in dimension 0, 1, 2, and 3. A finite part of the bicomplex
Z[w, u"1] ® C(O) is on figure 1, where the vertical arrows are the differential d of C(O)
and the horizontal arrows are the operator J — u® J(-).

I I
0 1®C3{O) - u-tQCo

\

o -— i®c2(e>) - — o

I
0 -— l®Ci(O) 0

I I
0 — u®Cz{O) - 1<8>CO(0) 0

1
0 — u®C2{O) -— 0

I
Figure 1: A part of the bicomplex Z[u, u"1] ® C(V/H), H finite. The vertical arrows are
d and the horizontal arrows are J = u ® «/(_).

It follows that on cohomology

(1) H°{O;V)^H°(O;V)/lmr, H*(O; V) 9* ker J* < H3{O; V).

Clearly J = 0 on elements of dimension 1,2, and 3. Since the projection p : U —> O

= U/H is a m-fold covering projection, where m = \H\, the operator J maps an element
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a € CQ(O) representing the generator of HQ{O) to

J(a) = fi,(z <g> a) = p,(z) = mb,

where b € C3{O) represents the fundamental class [O] € H3(O). So J* : C3(O) -> C°(0)
induces multiplication by m on cohomology, and is an isomorphism since m is invertible
in V. By (1),

H%(O;V) = H*(O;V)=0.

In dimensions 1 and 2 we have

H&O; V) = ffl(0; V), H*(O; V) = #2(0; V).

Since U = S3 is the universal cover of O, Hi(O;Z) = Ab{H) is a torsion group, and
the order, which divides m, is invertible in V so, by the universal coefficients theorem
H^O; V) = 0 and Hl{O; V) = 0. By Poincare duality also H2(O; V) = 0.

If G = T, then O = Sl has a cell in dimensions 0 and 1. The bicomplex Z[u, u"1] ®
C(e>) is on figure 2. By the same arguments as above, J* : Cl{O) -> C°(O) is an
isomorphism, and

I I
- u-l®C0{O) — 0

1 I
0 — u ® C i ( O ) - 1®CO(C>) 0

Figure 2: A part of the bicomplex I\u,u~l) ® C(T/H), H < T.

The vertical arrows are d and the horizontal arrows are J = u ® •/(-)• D

PROPOSITION 2 . For every closed subgroup H < U where dimH > 0 and any
coefficient ring V

H{,(O;Z) r/i 0.

PROOF: Since closed subgroups of U are of dimension either 0 or 1, H is 1-
dimensional, and the orbit O has cells in dimensions 0, 1, and 2. A finite part of the
bicomplex Z[u, u"1] ® C(O) in on figure 3.

Clearly J = 0, so H{,(0; k) £ H*(X; Z)[«, u"1] is nonzero in dimensions 0 and 2. D
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0 - — 1

1
0 - 1

I
0 1

I
u®C2{O) -—

N. Mramor

0 -—

1
®G2(0) —

1
®Ci(0) —

1
®C0{O) —

1
0

Kosta

I
u-l®CQ{O)

1
— 0

1
— 0

1
— 0

Figure 3: A part of the bicomplex Zfu.u"1] ® C(U/H), dimH > 0. The vertical arrows
are d and the horizontal arrows are J = u <g> J(-).

It follows from proposition 2 that the fixed point theorem for G = U is not valid. An
orbit O = U/if where d i m / / = 1 is a U-CW complex with nontrivial Tate cohomology
at least in dimension 0 for any coefficient ring. The fixed point set F of the action is
empty, though, so clearly H{,(O; V) ± H^(F; V).

3. TATE COHOMOLOGY OF ORBITS OF GENERAL COMPACT L I E GROUPS

It remains to prove the theorem for general compact Lie groups. In order to do this,
we shall show that proposition 1 is in fact valid for any compact Lie group G, that is, an
orbit of type G/H where H is finite has trivial Tate cohomology with coefficients in any
ring V such that the order \H\ is invertible in V.

For a general compact Lie group G, the ordinary reduced G-equivariant Tate coho-
mology HQ(X\ V) of a G space X with coefficients in a 7r0(G)-module V is obtained by
splicing the homology and cohomology of the Borel construction EGxGX. Formally it is
defined in [6] in the following way. Let M be a Mackey functor, that is, an additive con-
travariant functor from the full subcategory of G-spectra containing as objects suspension
spectra of orbits G/H+, such that M(G/e) = V, and let HM be the Eilenberg-MacLane
G-spectrum of M, that is, the G-spectrum, unique up to homotopy, such that for each

https://doi.org/10.1017/S0004972700034821 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034821


[7] Generalised Tate cohomology 13

H <G,

irn{HMH) = [Sn, HM)H = [G/H+ A S", HM]G = 0, n > 0,

iro{HM") = [5°, HM]H = [G/H+ A 5° , HM)G = M{G/H).

Let JBG be a universal space for G, that is, a contractible space with a free action of G,
and EG the unreduced suspension of EG. Then

HG(X; V) = t(HM)n(X) = [X A 5 - , *(#M)]O,

where, for a G-spectrum &G,

t(Jfcc) = F{EG+, ka) A EG,

and F(X, kG) is the G-spectrum of pointed maps with the conjugate action of G.

PROPOSITI ON 3 . For any compact Lie group G and any finite closed subgroup

H < G, such that m = \H\ is invertible in V, the Tate cohomology HG(G/H+: V) is

trivial.

PROOF: Since [G/H+,X]G = [S°, X]H, it follows directly from the definition of Tate
cohomology that

(2) HG(G/H+;V) = Hn
H(S°;V).

Since EG is a model for EH, the G-spectrum kG, viewed as an //-spectrum is equivalent
to kfi [6, Proposition 3.7]. For every orbit G/H, the Borel construction (G/H+ xG EG)
is. over H, equivalent to

(S° xHEH) = (S°xBH),

so the reduced Tate cohomology is

(3) i °

If H is finite, this is equal to ordinary unreduced Tate cohomology H* (H, V) of the finite
group H. It is a classical result that this is 0 if the order of H is invertible in V. This can
be proved using transfer in the following way. Tate cohomology of finite groups is obtained
by splicing homology and cohomology ([1, p. 134]). If i : {e} -> H is inclusion of the
trivial subgroup and tr is the transfer, then the composition (tr o i) induces multiplication
by \H\ on homology and on cohomology. Since \H\ is invertible in V, these are both
isomorphisms, which factorise through / / . ({e}, V) = 0 and //*({e}, V) = 0 respectively.
It follows that H*(H, V) = 0 for all n / —1,0. In dimensions n = - 1 , 0 it follows from
the exact sequence

0 — H-1 {H, V) — H0{H, V) — H°(H, V) —• H°(H, V) — 0
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that H°(H, V) = H~l{H, V)=Q since the norm map

W : H0{H, V)^VH-+ H°(H, V) Si VH

is clearly an isomorphism in this case [1]. 0

If dim// = d > 0, then the Tate cohomology of an orbit G/H is expressed in terms

of ordinary homology and cohomology of the classifying space BH in the following way:

{ Hn(BH;V) i f O ^ n
0 if - d < 71 < 0 ,

Hn(BH;V) i f n < - d - l
which is nonzero for many choices of V.

4. PROOF OF THE EXCISION THEOREM

The proof of the excision theorem now follows directly from the following lemma
which is proved by standard homological arguments.

LEMMA 1 . Let G be a compact Lie group, let X be a G-CW complex and X' a
subcomplex. Assume that X is obtained from X' by attaching G-cells such that for any
subgroup H < G appearing as isotropy type of an attached cell, HG{G/Hi\ V) = 0. Then
H'C{X-V) = H'G{X';V).

PROOF: The proof goes by induction on the dimension of the G-cells. Assume that
X" < X is obtained by attaching all cells w9

{ of types G/H of X and of dimension
q ^ (n — 1) to X'. Let \J w% be the disjoint union of all cells of dimension n in X which
are not in X'. In the exact sequence of the couple [X" U UiuJJ, X")

• • • -> H% (X" U ] J < > X") -> Hq
G(X" U U < ) -> H<G(X") -> • • •

the left term is
HG(X" U ] j wn

a, X") a ©Qi%(<- d<)-

For each a,
HG{wn

a,dwn
a) ̂ {OxDm,Ox S"1"1),

where O is the orbit G/H. Since HG(O) = 0, it follows by induction on m that also
H£(0 x Dm, O x S™'1) = 0, and therefore Ha (X" U U w^, X") in the exact sequence is
trivial so HG(X" U wn) S HG{X"). D

In the special case G = T, all proper close subgroups are finite and the excision
theorem for G = T is reduced to the following reformulation of the fixed point theorem
of [2].
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COROLLARY 1 . For any T-CW complex X and for any coefficient ring V such

that the order of each isotropy group H of X is invertible in V

where F C X is the set of fixed points of the action, and u is of degree 2.
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