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108.02 Fermat-like equations for fractional parts

Fermat's Last Theorem [1] states that the equation
 has no integral (or rational) solutions with . This

was proved by Andrew Wiles in 1994. In this Note we investigate the
equation

xn + yn = zn

(n ∈ �, n ≥ 3) xyz ≠ 0

{xn} + {yn} = {zn} ,  (n ∈ �, n ≥ 2) , (1)
where  denotes the fractional part of the real number . We only consider
solutions to (1) with  and . When , it is not
difficult to show that (1) has infinitely many solutions. Due to the identity

{r} r
x, y, z ∈ � x, y, z ∉ � n = 2

( 1
k + 1)2

+ (1
k )2

+ 1 = ( 1
k (k + 1)

+ 1)2

and the fact that if  such that  then , we haveu, v ∈ � u − v ∈ � {u} = {v)

{(1
k )2} + {( 1

k + 1)2} =
⎧
⎩
⎨( 1

k (k + 1)
+ 1)2⎫

⎭
⎬ .

Therefore, (1) has infinitely many solutions if .n = 2
However, when , it is not easy to find solutions to (1). In the

following, we treat the cases  and . When , we have
n ≥ 3

n = 3 n = 4 n = 3

Theorem 1: The equation

{x3} + {y3} = {z3} (2)
has infinitely many solutions.

Proof: First, we have

33 + 43 + 53 = 63 and  33 + 43 < 53.
Let , ,  with .
Since

x = 3
5 (1 + 125k) y = 4

5 (1 + 125k) z = 6
5 (1 + 125k) k ∈ �+

33 (1 + 125k)3 ≡ 33 (mod 53) ,
we have

{x3} = {33 (1 + 125k)3

53 } = {33

53} =
33

53.

Similarly,

{y3} = {43

53} =
43

53,

{z3} = {63

53} = {33 + 43 + 53

53 } = {33 + 43

53 } =
33 + 43

53 .

Therefore,
{x3} + {y3} = {z3} .

Since  can take infinitely many positive integer values, we have infinitely
many solutions to (2).

k
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When , we haven = 4
Theorem 2: The equation

{x4} + {y4} = {z4} (3)
has infinitely many solutions.

Proof: Let , , , .
Then

a = 2682440 b = 15365639 c = 18796760 d = 20615673

a4 + b4 + c4 = d4 and  a4 + b4 < c4.

Let , ,  with .

Since

x =
a
c

(1 + kc4) y =
b
c

(1 + kc4) d =
d
c

(1 + kc4) k ∈ �+

a4 (1 + kc4)4
≡ a4 (mod c4) ,

we have

{x4} =
⎧
⎩⎨

a4 (1 + kc4)4

c4

⎫
⎭⎬ = {a4

c4} =
a4

c4
.

Similarly,

{y4} = {b4

c4} =
b4

c4
.

{z4} = {d4

c4 } = {a4 + b4 + c4

c4 } = {a4 + b4

c4 } =
a4 + b4

c4
.

Therefore,

{x4} + {y4} = {z4} .
Since  can take infinitely many positive integer values, we have infinitely
many solutions to (3).

k

The proofs of Theorems 1 and 2 depend on the identities

33 + 43 + 53 = 63 (4)
and

26824404 + 153656394 + 187967604 = 206156734. (5)
The first identity is the property of Plato's number 216, see [2]. The second
identity was discovered by Noam Elkies [3] in 1988, giving a counter-
example to a long-standing conjecture due to Euler on the equation

A4 + B4 + C4 = D4.

To end this paper, we do not know if for a positive integer  the
equation (1) has solutions or not.

n > 4
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108.03 Remarks on perfect powers

A perfect power is a number of the form , where  and
are integers; and we say that  is a perfect -th power. Now, consider the
first few perfect powers:

kn k ≥ 1 n ≥ 2
kn n

1 4 8 9 16 25 27 32 36 49 64 81 100 …
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 22 23 32 24 = 42 52 33 25 62 72 26=43=82 34 = 92 102 …

Then we observe that seemingly between any two consecutive perfect
powers of the same exponent there exists at least one perfect power of lower
exponent; also there exist at least two squares between any two successive
cubes, and there exist at least two cubes between any two successive
quartics. The purpose of this note is to prove such simple observations as the
theorem below. Their proofs are completely elementary and straightforward
from the following two facts.
1. For any real  and  with  for some positive integer , there

exist at least  integers in the interval .
x y x − y ≥ k k
k [x, y]

2. Bernoulli's Inequality: If  and , then .x ≥ 0 r ≥ 1 (1 + x)r ≥ 1 + rx

Theorem
Let  and  be positive integers with .m n m < n

(i) There is at least one perfect -th power between any two perfect -th powers.m n
(ii) For , there exist at least two perfect -th powers between any

two perfect -th powers. But this does not always hold when .
n = 3,  4 m

n n > 4
(iii) Given a positive integer , then there exists an integer

such that for any integer , there exist at least  perfect -th
powers between  and .

k a0 = a0 (k, m, n)
a > a0 k m

an (a + 1)n
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