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1. Introduction. We call two measures equivalent if each is absolutely continuous with
respect to the other (cf. [1]). Let G be a locally compact topological group and let p be a non-
negative Baire measure on 0 (i.e. /x is denned on all Baire sets, finite on compact sets and posi-
tive on open sets). We say that ^ is stable if p(E) =0 implies p(tE) =0 for each teO. A. M.
Macbeath made the conjecture that every stable non-trivial Baire measure is equivalent to the
Haar measure. In this paper we prove the following slightly stronger result:

THEOREM. Every stable non-trivial measure defined on Baire sets and finite on some open
set is equivalent to the Haar measure.

It is obvious that not every stable measure on Baire sets is equivalent to the Haar
measure; a counter-example is provided by an invariant Hausdorff measure in Euclidean
space which is of lower dimension than the space itself.

Theorems B, C and Lemma 1 are due to A. M. Macbeath. He suggested to me the idea
of constructing a Haar measure by means of a " Jacobian function ". We have used a similar
method of proof in [2].

We assume now that p is a stable non-trivial measure on Baire sets such that JX{U) <oo
for some open set U. Let us observe that fi{V) > 0 for every open set V. For, if/x(F) = 0,
then p{tV) = 0 and, since every compact set C can be covered by a finite union of sets tV,
we have /* (C) = 0 and the measure vanishes contrary to definition. Replacing, if necessary,
V by an open bounded subset, we may assume in the sequel that U itself is bounded.

If X is a topological space, we denote by B (X) the class of all extended real-valued Baire
functions/(a;) defined on X (extended real numbers include + oo and - oo) and by B+ (X) the
subclass of non-negative functions. We denote by N a complete system of bounded neighbour-
hoods of the unity e of O. xE will t>e use (i t o denote the characteristic function of the set E
(i.e. xE vanishes outside E and is equal to 1 on E).

We have to show that if E is a Baire set such that fj.(E) = 0, then E has Haar measure
zero, and conversely. Since each Baire set E is contained in a a-compactf open subgroup O0 of
G (cf. [1], § 5, Theorem D, p. 24) and the Haar measure on G serves also as a Haar measure
on Go> and since moreover p is stable on Go, we may assume in the following that G itself is
<7-compact.

2. Preliminary results.

THEOREM A. The measure /x is equivalent to a Baire measure jl.

Proof. Consider a set T c G which is minimal with respect to the property

G = \J{tU:leT}

(so that the family {tU}, t e T, is a minimal covering of G by sets tU). We show that every
compact set G intersects only a finite number of sets tU,teT. Suppose the contrary. The
compact set CU-lU can be covered by a subfamily {tU}, t e T*, where T* is a finite subset of T.

t A tr-compact set is a countable union of compact sets.
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On the other hand, by assumption, we have that C ntU ^ 0 for infinitely many t e T. Hence
there is a t0 e T -T* such that C nt0U ^ 0. We observe that t0U a GU~XU and hence the
family {tU}, t e T -{*„}, covers G-CU'W. I t covers also CU'W because T* c T -{t0}.
This contradicts the minimal nature of T.

Since G is cr-compact, T is countable. We define

p(E) = 2 fait-i-EnU) : t e T } .
Since, for fixed t, fx (t~xE n U) is a Baire measure on the set E, we see that p is a Baire

measure on (?. Since E is covered by the family {tU}, t e T, we have that JX{E) = 0 is equiva-
lent to fi(E ntU) = 0 for each teT. This last condition is equivalent to p.{E) = 0, by the
stability of fx. Thus fx and p. are equivalent. I t is obvious that if E is compact, then
H (t^E n U) > 0 holds only for a finite number of t e T and thus p. (E) is finite. This completes
the proof of the theorem.

By Theorem A, it is enough to prove our main result for p. instead of for p. Equivalently,
we shall assume that ^ is a Baire measure.

DEFINITION. For given t e G, a function Jt (x) e B+ (G) is called a p-Jacobian if, for every
feB+(G),

= Jf{x)Jt(x)dp{x) (1)

THEOREM B. There exists, for every t, an everywhere positive /x-Jacobian Jt{x).

Proof. For a fixed t, define the measure \xt on G by fxt(E) = fx(tE). Since fx is stable,
ix (E) = 0 is equivalent to fxt (E) = 0 and thus the measures fx and p.t are equivalent. Applying
the Radon-Nikodym theorem to the totally ci-finite measures p, jxt (cf. [1], § 31, Theorem B,
p. 128), we see that there is an everywhere positive function Jt{x) e B(G) with the property
that

= jXE(x)Jt(x)dLc(x).

This equality holds for every Baire set E and thus it holds also with any function / e B+ (G)
in place of xE-

THEOREM C. Jacobians satisfy, for every s, t,

Jst(x) = J.{tx)Jt(x)

for almost all x.

Proof. Let E be a Baire set. We have, by (1), fx(stE) = Jat(x) d(x{x). On the other
J E

hand, also by (1),

lx(stE) =

= f Ja{tx)Jt(x)dix{x).
J E

Since E is arbitrary, the result follows by comparing the integrals.
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THEOREM D. If p(E) = 0, then p(Et) = 0.
Proof. The result follows by the stability of/i. if we show that, if /x (E) > 0, then /* (E-1) > 0.

Then from p(E) = 0 we have ^.(E'1) = 0; hence fi.(t~lE~1) — 0 and thus p(Et) = 0.
Suppose that y.(E) > 0. Let us show that then

I = f ix(tE-x nE) dfj.it) > 0 (2)

We have

r r
(X)dp{t)

Applying (1) to the last integral, we have, by Theorem B, for each x,

0. ..(4)

So we have (2), by (3) and (4). Now, by (2), there is a t e G such that ^(tE-1) > 0 and thus
(j.{E~x) > 0. This completes our proof.

3. Proof of the main theorem.
LEMMA 1. Let m be the right invariant Hoar measure. There exists a Baire measure v on

OxO and a positive function J(t, x) e B(O x (?) such that, for any Baire sets D, E,

>(DxE) = f pi(tE)dm(t) = f d^x) f J(t,x)dm(t).
J D J E J D

.(5)

/ / D is bounded, then the measure pj){E) defined by PD{E) = v(DxE) is finite on compact
sets. If m (D) > 0, then p and PD are equivalent.

Proof. Consider the space OxO with the Baire measure mxfi. Define, for McOxO,

v{M) = jXM(t,t-ix)d(mxn)(t,x) (6)

Forilf = Dx#wehave,from(6),/XD(JE) = | p(tE)dm(t). Thus, ifX> is bounded, then,
J D

for compact E, BE is bounded and pD{E) < m(D)fi(DE) < oo. If m(D) > 0, then, by the
stability of p, po and /x are equivalent.

To define J (t, x), we show that v and m x p are equivalent. Since //. is stable, the functions

P{t) = I XM('> X) dp(x), Q(t) = XM^I i~lx) d\t(x) are, for each fixed t, both zero or both

positive. Therefore the measures (mxfi)(M) - P(t)dm(t), v(M) = I Q(t)dm(t) are both

zero or both positive.

Applying the Radon-Nikodym theorem to the measures v and m x p on O x O, we see that
there is a positive function J{t, x)e B(0x0) such that
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v(M) = [ J(t,x)d(mxij,)(t,x) (7)
J M

In particular, if M = D x E, we have (5), by (6) and (7). This completes our proof.
We shall use the phrase " for almost all " if the measure concerned is one of the equivalent

measures fi, fij). I t will be convenient to denote a //.£>-Jacobian Jt{x) by Jj)(t, x). Given a
function/(a;) and a set C c G, we shall say tha t / i s bounded away from zero and infinity on C
if there are finite positive constants cx and c2 such that c2 < f(x) < c2 holds for all x e C.

LEMMA 2. Let D e N. The formula

JD(r, X) = ID(T, x)IID(e, x),

where IZ>(T, X) = J{tr, x) dm(t), defines a fiD-Jacobian. For almost all xeG, the function
J D

JO(T, X), regarded as a function ofr, is bounded away from zero and infinity on every compact set.

Proof. We have, by (5),

U.D(TE) = f u.(tTJE)dm(t) = f u,UE)dm(t) =V(DTXE)
JD JBT

because m is right invariant. Thus, again by (5) and by the invariance of m,

liD{rE) = f d/*(x) f J(t,x)dm(t) = f ID(r,x)dlx(x) (8)
J E J Dr J E

From (8), for T = e, IXD(E) = Io(e> x) du(x). This can be written in the other form
J E

J X J W ^ D W = J XE(%)lD(e, x)dli.(x).

Since this equality holds for each Baire set E, we deduce easily that it remains valid if
we put any function feB+ {G) in place of xE- Let, in particular, f(x) = JD (T, X)XE {%), where
T, E are fixed. Then, since Ij)(e, x) > 0 (cf. Lemma 1),

JD{T, x)dpD(x) = ID(T, x)dix.{x).
J E J E

This, together with (8), implies that IXD(TE) = Jo(r,x) dnD(x). Hence JD i
J E

is &

To prove the second part of our lemma, observe that, for all compact sets Q, C, PQ (C) < oo
by Lemma 1 and hence, by (8) with T = e, D = Q, E = C, we have that IQ(6, X) is finite for
almost all x e C. Since G is a union of a countable increasing sequence 0 of compact sets,
almost every xeC has the property that IQ (e, x) is finite for each Q e 0 , and hence for every
compact set. Since G is arbitary, almost every x eG has this property.

Suppose that IQ{&, xa) < oo for each compact Q. Let C be compact and let Q be a com-
pact set containing DC. Then, for r eC,

ID(T, X0) = J{t, x0) dm(t) < J(t, x0) dm{t) = IQ(e, x0) < oo.
J Dr J Q
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Hence ID (T, X0) is bounded above on C. To prove that ID is bounded below by a positive
constant, consider a set F e N such that VV^V cz D. Let {Vtlt ..., Vtn} be a maximal dis-
joint family of sets of the form Vtr which are contained in DC (this family is finite since DC is
bounded). For every r eC, Dr contains at least one Vtt, i <;«. To see this we note that FT
cannot be disjoint to all Vt{, by the above maximality condition. So, for some i, Vr n Vt{ ¥= 0,
tf e F - 1 F T and Vt{ c Dr. Since J(t, x0) > 0, we have, for each reC,

= f J(t> xo) dm(t) > f J(t, x0) dm(t) = I( > 0
J Dr J Vti

for a certain i =sr n. Hence Io(r, x0) ^ minl/j, ...,/„} > 0. So we see that ID(T, X0) is
bounded away from zero and infinity on C and thus the same is true for Jz>(r, x0).

This completes the proof of Lemma 2.
We note that from Lemma 2 and Theorem C we have, for every s, t,

JD{st,x) = JD(s,tx)JD(t,x) (9)
for almost all x.

LEMMA 3. There is anxoe G such that JD (tx^1, x0), considered as a function of t, is bounded

away from zero and infinity on every com/pact set and moreover, for almost all s,

JD(stXoKxo) = JD(s,t)JD{tx^,x0) (10)

holds for almost all t.
Proof. A subset E of a measure space X will be called almost equal to X if X - E has

measure zero. Let X, Y be measure spaces and let X x 7 be the product space with the pro-
duct measure. For E c X x Y, E (x) denotes the section of E determined by x e X, i.e. the set
of all y e Y such that (x, y} e E. It follows from Fubini's theorem (cf. [1], § 36, Theorem A,
p. 147) that E is almost equal to X x Y if and only if, for almost all x e X, E (x) is almost equal
to Y.

Let McGx.Gx.Ghe the set of all triples <s, t, x) satisfying (9). Since, for every s, t,
(9) holds almost everywhere, M(s, t) is almost equal to G and thus M is almost equal to
G3 = GxGxG. Consequently, for almost every x, M(x) is almost equal to G2 = GxG.
Applying Lemma 2, we see that there is an x0 such that Jj) (t, x0) is bounded away from zero
and infinity on every compact set and moreover M(x0) is almost equal to C2. Using again
Fubini's theorem, we deduce that almost all s have the property that M(s, xQ) is almost equal
to G. But then, by Theorem D, M (s, xo)xo also is almost equal to G and we have, for almost all
t, te M(s, xo)xo, tx-1 e M(s, x0). This means that (9) holds, with x = x0 and tx$l in place of t.
Hence (10) follows and Lemma 3 is proved.

We are now in position to complete our proof. We define on G a measure 17 by

t)(E) = f Jtfi^
J E

We now prove that 17 is left invariant. We denote by Q the set of all s such that (10) holds
for almost all t. Thus /J.(G-Q) = 0 by Lemma 3. Let T, E be arbitrary. For all seQ,
since JJO is a Jacobian,

r,(sE)
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In particular, if E is replaced by rE, -q (STE) = 77 (rE) holds for all s eQ. From
ft.(G - Q) = 0 and Theorem D, ^(G - Qr-1) = 0. Hence Qr^Qr-1 ^ 0 and if 5 e Qr^Qr-1, then
we have TJ{STE) = 77{rE) and also, since ST e Q, -q(srE) = •>?(#). Thus r)(E) = T?(T.E).

Since J^ 1 ('*o 1> zo) is bounded away from zero and infinity on compact sets, 77 is equivalent
to nD and therefore to /x. We have also that 77 is finite on compact sets and thus it is a Haar
measure.

This completes the proof of the main theorem.
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