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Projective metabelian nonfree groups

V.A. Artamonov

This paper is concerned with projective metabelian A=An -groups,
where A 1is the variety of all abelian groups, én - of all
abelian groups of exponent #n . Let P be a projective % -
group. Since AA DA the group P/P' is a free abelian group.

Define rank P = rank P/P' . It is shown that for all numbers
r,n>1l , except r =n =2, there exists a projective nonfree

AA —group of rank »r with » + 1 generators.

1. Introduction
This paper is concerned with projective metabelian AA -groups, where
A 1is the variety of all abelian groups, én - of all abelian groups of
exponent 7 . Let P be a projective AA -group. Since AA D A , the

group P/P' 1is a free abelian group. Define rank P = rank P/P' . We
show that if »r, n = 2 , except » =n =2 , then there exists a projective

nonfree AA -group of rank r with »r + 1 generators. On the other hand,

Mclsaac [4] has proved that projective -groups of rank 2 are free. It

28,

is not difficult to prove that projective AA -groups of rank 1 are free.

2. Preliminaries

Let Cr n be a direct product of »r cyclic groups {.'z:t} of the same
E]
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order n . Consider the group ring ZCr n* Let m be the augmentation

3

ideal of ZC, . For y €C,  define n(y) =1 +y+ ... + 0t

s NG

PROPOSITION 1. If N, = [ ye€lIC, , then
’ y€C ’
r,n
r
W, , = il.=| n(z;) .

r r
Proof, For all x., 1 =<j=<r, we have x, I I n(x) = | l n(x) .
J Ji=m1 Y gm0 F

r
a - - s s .
So 7,|'=1| n(:ct] aNr,n , a €1 , since only ZNr,n satisfies this

r
property. But al, an’ (mod m) = n(1) = n" and, hence, a=1 .
’ =1

Consider now the augmentation epimorphism

e:ZCr’n—>Z, efz;) =1, kere=m.

It induces an epimorphism

e+ Ic_ /(N )->Z/(nzj s

rn Vr.n
since N = nr (mod m) . In its turn €' induces a homomorphism of groups
of units
* = . * VY4,
(1) € €pon (Zcr,n/ (Nr,n)] -~ (2/(n"))

THEOREM 1. Let r, n= 2 except r=n=2 ., Then €n p 2 from

k]
(1), Zs not an epimorphism.
Proof. Suppose that for r - 1 the theorem is proved, and

K+ (nr-l) € (Z/nr_l) *\Im €, Then K + (nr) € (Z/n")* . Suppose

=1,n
k+ (7)) eme . Then X = f(z,, -..» x.) (mod{m, n")) , where
r,n r

f(:x:l, vees xr) € Zcr,n and, for some g(xl, cens :cr) € Zcr,n
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r
(2)  flegs ves z)gle, o) =1+ al, ,=1+a ljl-n(:c?’]

Put z,=1 in (2). We have

-1
f(xl, cees @y s 1)g(x1, cees T, s 1) =1 +na T—l—n[xt) =l+nall, -

=1
%
So f(x s eres Ty oo l) € (Zcr-l,n/Nz'-l,n) .
f(xl, TN Y 1) = flx,, ..., :cr] = X (mod{m, n"))
and X + (nr_l] €Ime, . . This contradiction shows that
=L>s

r
K+ () fm €pin *

This remark shows that we need only to prove that € and € »

3,2 2,n

n > 2 , are not epimorphisms.

LEMMA 1. ¢

3,2 18 not an epimorphism.

Proof. Let A = A(x, y, 2) , B = Blx, y, 2) € ZC3 o and

AB =1+ alN a € I . By Proposition 1, A(-l, y, z) is a unit in

3,2 °
e ey
2,2 c ZC3,2 . But all units in ZC2’2 are trivial {see [2], Theorem 6).

Since 63 2 maps trivial units into %1 we can assume that
£

ic

A(-1, y, ) = B(-1, y, 2) =1 . Then :x:2 =y“ =2"=1 implies
A=1+ (l+x)(a0+aly+a22) . So,

Alz, -1, g) = (l+a0-al) + ac(ao-al) +ayz +a,rz .

Again, by Higman's Theorem, two of the three numbers 1 + ag -a;

0~ % » a, equal zero. But 1+a0-al¢ao-al. Hence a2=0.

Similarly, the consideration of A(x, y, -1) implies a, = 0 . Thus

a

A=1+ a0(1+x) . The same argument shows B =1 + bO(l+:c) . Hence
AB =1 + (a0+b0+2aobo)(1+:c) = 1 + a(1l+x)(1+y)(1+z) and this implies

ag +by+2abh =0. If ay=0 then by =0 and 4 =1, 53’2(;1)=1.
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Otherwise a, =b, =1 and 4 =-x, €, ,.(A) =-1 . So, in all cases,
0 0 3,2

Imey, , = {1, -1} # {1, 3, 5, -1} = (Z/8)* . This proves Lemma 1.

3,

Suppogse now r =2 , n >2 , n=ab . Then there is a natural
epimorphism f : ZC2,n > ZCz’b . It is clear that f(n(xt)) = a-b(xi) H
2,’1) =ua2 ob ° The epimorphism f induces & homomorphism
rings f' : Zce,n/N2,n -+ ZC2,b/N2,b and a homomorphism of groups

hence f(¥

% . * * ; i
F* . (ZCZ,n/NZ,n) > (ZCZ,b/NQ,b) . Let j be the natural homomorphism

izt~ i) =k + (7).
LEMA 2. 7The following diagram

€
(265, /Wy ) * 2, (2/2%)4
% J'i

(26, /8y ) * Cp (2/6%)*

18 commutative,
The proof is trivial, since all homomorphisms are induced by ring

homomorphisms and for ring generators z, we have

. 2
* = - %
J 82’ .’171: 1+ (& ) = 52 ,bf xi .

COROLLARY., If € ), i8 not epi, then ¢ % K=z2, i8 not epi

2,2
either.

The proof follows from Lemma 2, since j* is epi.
LEMMA 3. €4 ig not epi.
Proof. We shall show that 3 + (16) § Im €, + Let A= Az, y) ,
B = Blx, y) € ZCz’h , and AB=l+cIV2,h s ¢ €L ; put x=-1. Since
(142)|W, ) we bave in I, , ,
A(-1, y)B(-1, y) =1 .
By Theorem 6 from [2], ZCl’h contains only trivial units, so, without

loss of generality, we suppose A(-1, y) =1 ;
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that is, Az, y) =1 + (1+x)D(x, y) where D(z, y) = E(x) + (1+y)d(x, y) .
By Theorem 6 from [2], A(xz, -1) = 1 + (1+x)E(x) is a trivial unit,

Az, -1) = +z° . Thus Alz, y) = txt(1+(1+x)(1+y)J(x, ¥)) . Let

I(z, y) = I () + yJ,(x) + (l+y2)J3(x, y) - Then in Zlile, , ,

(21) + xh' Az, ) =1 + (1+x)[Jl(x)-J2(ac)) + 1Z(l+x)[Jl(x)+J2(x))

is a unit. But Q[i]Cl ) is isomorphic to the direct sum of four copies of
]
Q[Z] in which the generator of Cl " acts as a multiplication by
k]

1, *{ , So, since all units of Q[Z] have finite order, the same is true

by Theorem 5 from [2] for Z[i]C’l L e and by Theorem 3 (see [2])\8-11 units

of Z[i]Cl~, are of the form ixk, i’ixk . Hence, in (2'), Jl =J, =0,

and Az, y) = ixt[l+(1+x)(1+y)(~l+y2)J3(ac, y)] . Similarly,

J3(:z:, y) = (1+x2)Jh and thus A(x, y) = 2t (mod Nz,h) . ez’h(A) =] ,

Suppose now that n = pkd , k=21, p an odd prime, and we have
already proved that for all =2 € Im ¢

2,p

2
(3) 2P oy

Then 1 +pd+ (n°) ¢ me Indeed, if 1 +pd + (n2) € In €,

k]

241 n

then by Lemma 2, 1 + pd + (pz] € Im € » SO modp2 s

2,p

2
(14pa)2(P-1)" _

(1+2pd) -1 = 2pd 2 0
this contradicts (d, p) = (2, p) =1 . Thus, we need only prove (3).
Let H be the group of all automorphisms of

202 p = [z, y]/(xp-l, yp-l] leaving invariant the cyclic subgroups
9

{z}, ylcc . It is clear that for a« € # , g € IC
2,p 2,

p
efa(g)) = elg)

and |H] = (p-1)° . Note that the element N = N

is H-invariant;
2,p
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that is, for all o € H ,
a(N} =W .
LEMMA 4., et 4 € IC be H-invariant, B € IC . If
2,p 2,p
AB =1 (mod N) them B 1is H-invariant.
Proof. If AB=1+alN , a € Z , then
0 = a(l+al) - (1+aN) = A[a(B)-B] , a € H .
Since A 1is invertible mod ¥ ,
o(BYy =B+DbN, bel,
and, by induction, ak(B) = B + kbN . But for some k =1 we have
otk=l,so kbW = Q0 and b = 0.
LEMMA 5. Let C ¢ ZC2,p and C be H-invariant. Then

C=c.+ clp(:c) + cgp(y) + c3p(z)p(y) where c, €1 .

0
p-1 i q
Proof. Let C= J a; & yJ . For each 7 , 1 =1 =p-1, ve have
i,4=0 */
an automorphism B € # such that B(x) =z , B(y) =y . Since C is
invariant, aij = alj » 1 =% =p-1 . The same is true for J . This

proves Lemma 5.

2
LEMA 6. If 2 ¢Ime, , then 217

Proof. Since for all 4 € IC, pr @ €H, e(a(4)) = e(4) ana

|H| = (p—l)2 , ve need only prove that for H-invariant A4 , invertible
mod N ,

ez’p(A+(N)) = #1

By Lemma 4, for H-invariant B ¢ 202 p
3

AB=1+aVN , a€l.

By Lemma 5 we can assume 4 = aj+ a;p(x) +ayply) ,

B = b0 + blp(:c) + b2p(y) . Note that p(x)2 = pep(x) ; so in ZCZ,p R
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4B = aob0 + (aobl+albo+palbl)p(:c) + p(y)(a0b2+a2b0+pa2b2) +

+ p(x)p(y)(alb2+a b.) =1+ ap(x)ply) ,

271

[}
—

< . s = + + =

which implies aobl + albo + palbl aob2 azbo pong2 o, aobo
= = % = + +

Hence a, b0 ], bl _al(_l+pbl] , and

|b

v

oz dpbit] 2 plp | -1 2 2lp 1

a, = 0 . Similarly a, = b2 =0 . Hence,

finally, A = %1 . This completes the proof of Theorem 1.

since p =2 3 . Thus bl

THEOREM 2. Let the nwmbers r, n be as in Theorem 1. Then there

exists a projective nonfree ZCr n-module T of rank r with epimorphism
>

1:7~>m (the augmentation ideal of Zcr n } such that

(1) for some projective ideal J < ZCP n the module M =J ®T
. 3
i8 free of rank »r + 1 ,

(i) if 1 e trivially extended to M, so that 1(J) = 0 ,
and 1f p 1is a projection of M onto T , then for some
basis w., cees W, of M,

0
p(wo) €mr, z(wo) =0,
pw;) = w; (mod mr) , tw) ==z, -1, 1sisr

Proof. Let k €Z and k+ (v") € (Z/n")\Ime_ . Then
?
(k, n) =1 and for some k', m € Z ,

(%) kk' =1 + md”

i

By results from [6] the ideals I = (k, N) , J = (k', N) , where

N = Nr n ® 8re projective nonfree ZCr n—modules of rank 1 . There exists
E] L

an isomorphism

2
f: (Zcr,n) ~J@I,

F(1, 0) = (ku'-m', w) , f(0, 1) = (mu'-mk'v", k'u-m) ,
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where u'=k', v'=N€J, u=k, v=N€I . Take in (Zcrn)2 a
’ /

/
/

new basis e, = k(1, 0) - (0, 1} , e = (1, 0) . Then by (L),
(&) fo = f(eo) =, m), f = f[el) = (ku'-mv', u) .
In [6] Swan noticed that I = (k, N) is given by generators u, v

and relations

(L") Nu=%kv, a2v=v, for all xGCrn.

]
Thus, if 72 : I *m is any homomorphism, then kZL(v) = ¥l(u) = 0 by
Proposition 1, since Z(u) =} ai(xi—l) . So, by (4"), all homomorphisms
1 : I>m are uniquely determinded by Z(u), and since 2C_ _u ~ IC
r,m r,n

there is no restriction on Z(u) .

Now take T =I®1C, f,@...01IL, f .

LEMA 7. T is a projective nonfree ZCr n-module of rank r .

Proof. If T o (ZC )r , then since Krull-dim ZC 1 (see [1],
r.m r.n

*

. _ 2
p. 600) by the 'cancellation' theorem ([1], p. 184), I @ Zcr,n = (ZCr,n) .

But GL(2, ZCr n) acts transitively on the set of all unimodular vectors
s

in ZCr n+ SO I e ZCr ” (see [3], p. 2686). This contradicts
I 4 ¢, , -
LEMMA 8. rLet
Ay = i n(z) + kk'x + (y-1) ,
A = k'rrmr_ln(x) - k'mi’z - k'(y-1) ,
A3 =x -1,
Then

(i) Ay =1 (mod m) , Ay, Ay €m,

(it) [mn"AO+kAl)(m-l) + Az(y-—l) =0,
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(4i1) the ideal L = (4, A, 4,) = Zcr’n .

Proof. Since Ai = Ai(l’ 1) (mod m) , (4) implies

A1, 1) = mt o+ kK =1, A(1, 1) = kK'mi® - k'm® =0 , Ay(1,1) =0 .
Thus (7) is proved.
Now n(x)(x-1) = 0 , so
[mnrA0+kAl](x-1) + Az(y-l) =
=0.

= [mn" (kK '@+ (y-1) ) +k (& 'mi"z-k ' (y-1))] (z-1) + (z-1)(y-1)

Since L 3 x-1 by (1), AoEl+(y-l)EY(modL) and 1 €L .

LEMMA 9. There exists A € GL(3, c, .» m) such that the first row
of A 1is Ags Al’ Ae .
Proof. Since Krull-dim ZCr , =1 by results of Chapter 5 of [11,
1]

there exists C € GL(3, Zcr,n) with the first row e =4, , ¢y =4,

= A2 . But A, =1 (mod m) , 80, applying elementary transformations

®02 0

to (C , we can sBuppose 20’ %50 €m. Now mod m,

1 0 O a b
c=cy=|0 a b, € GL(2, 2) ,
d
0 e d ¢

-1
and we can take A to be 4 = CO ¢ € cL(3, Zcr,n’ m) .

Note that

k' m®
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{ W .
: 1 k o 0
A 0 o o 1:
I P A | EERTP PR 1 € oL(r+1, Zcr,n) ,
0 0 .
1

1

where A is from Lemma 9. Put Wi = B_lfi s, =0, ..., r , and define
Z(Wb) =0, Z(Wi) =z, -1, i=1,...,r . Weneed to prove that
I(J) = 0 and WO, cees Wr‘ satisfy (iZi) from Theorem 2.

LEMMA 10. I(J) =0 .

Proof, Since 1(J) = ZCP nl(u') , we need to prove, by (4'), that

1{fy) =0 . But fy =Dy Wy + by + bW,
Z(fo) = [Ao’mpﬁllk](&‘—l) + A2(y-l) =0 by (Zi) from Lemma 8.

LEMMA 11. If p <s a projection p : M~> T , then p[Wo) €mT ,

p[Wi) = Wi (mod mM) , £ =1, .o., 7 .

Proof. since 4 € GL(3, Zc, m) ana W.=f; = o(f;) (moa m4) ,

>
R i

2 =17 =pr , without loss of generality we suppose 4 =1, r =2 . Then

’ k-t 1
] : O
-1 1ok :
B = leeceeceon 1 .
0 .
\ 1

Wy = Kkfy -m'fy o W o= -fg+k'f . By (W), (&),
p[WO) = ko - mfu = m(IV-nr)u €mu ,

W - o(W) = (—u'y wm) + k'(ku'sm', u) + (0, m) - k'(0, u) =

= m((@-n")u', 0) €ms .
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This completes the proof of Theorem 2.

3. Projective AA -groups

Let P be a projective AA -group. As we have already noticed in the
introduction, rank P = rank P/P' .

THEOREM 3. Let r,n =2 except r =n =2 . Then there exist
projective nonfree AA -groups of rank r with r + 1 generators.

Proof. Let ZCr = Z[x s eees xIJ/[xZ-l, T =1, v, r] with

o

L ~ n .
augmentation ideal m , ZCr+l,n = Z[xo, vy xp]/[xi—l, £=0, ..., r]

with augmentation ideal My and T, L, J, Wi from Theorem 2. Let

S = ZCHl,nWO ®... & Zcr+l,nwr .

Define ZO : S-*rno by ZO(Wi) =z, -1.

In [5] it is shown that the group F of matrices

a O

s a(Cr+l’n, be€sS, a-1=1b),

b 1

is a free AA -group with r + 1 free generators

x. O
1
2, = .
V. 1
7
.
a. 0
7
Note that for ti = €EF,
b. 1
%
-1
ala2 0 4 al ]
t. t = t = R
172 1
a.b +b, 1 -1
271 72 - bl 1
t a 0 1 0
2 n _
(5) t° = st =
ab -(al-l)b2 1 n[al)bl 1
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Let ¢ ©be an endomorphism of F ,

a. 0
1
t
o(z;) = N E @ =olzy, ... z) €Ma’len, 0, )
1
LEMMA 12. If
a(xo, cees ) 0
z =
Zbi(xo, ey xr)Wi 1
then
a[ao, ooy ar) 0
(6) o(z) = .

Zbi(ao, cees ar)éwi 1

The proof is trivial, since (6) is valid for = z, , and if (6)

0t
. . . . . -1
is valid for tl, t2 , then, by (5), it is valid for tlt2’ tl
LEMMA 13. Let ¢ be an endomorphism of F such that
1 0 x., O
i
(p(zo) = s w(zi] = , =1, e, T
: 175 1 W, 1
0
Then
1 0
U= €F | b, € (z-1)}aF
1bW, 1

and U C ker ¢ .

Proof. By (5), U< F and by (6), UCker ¢ , since ay =1,

by(1, 2 ceesx) =1

Now we can prove the theorem. We have M C S . Let p be the

projection p : M>T , p = (pij) . By (iZ) from Theorem 2,

r
= Z a..(:c.-l) . Define

p
j=l 1d J

10

https://doi.org/10.1017/5000497270002428X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270002428X

Projective metabelian nonfree groups I3

Pio s d=0,
(1) (biJ =
P~ [xo A1), d=z1
Then
(") @5 = Py (mod(zy-1)) , e = (q’ij) .
Put
1! 01
» =0 ’
o 1]
(1) o(s;) =
z., 0
1
, 121
W, 1)

1068 = L tgsles) = T agsle ) g + L (ogytogleg)) o)

- z 0o (E5L) = 2(6(7g)) = 2(3y) =

since I(ker p) = I(J) = 0 . Similarly for < =1,

1o@0) = 1 8 (1) - z o3 (1) + z Loy ;(2g2)] ;1)

J=0

o

- T oy lam) = 1) = 20 =z, -1

,7-1 1§ d
Thus ¢ € end F .

LEMMA 15. [et 1T=q)2,' then T =1 .

Proof. We have
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1 0 :ci 0

ofz;) = o)+ s, 1)y 2 .

o(z,) =

p(WO]+[:cO-1)yO 1
vhere Y, € Mc S . Then by (6), (7'), (5), and 92 = p we have

2 =
¢ (Z,L) = <P(37;) (mod U) where U is a normal subgroup from Lemma 13.

Hence m(z;) = (PQ(Zi) =ofz;Ju; , u; €UC ker ¢ ana

2(z,) = 0*te;) = 03(5) = 02 (e,) = 3(z;) = (z;) -

Put P=Imnm . Then P 1is a projective -group with r + 1

AA
==rl
generators.

LEMMA 16. rank P =r .

Proof, ILet

1 O
{7 5
1
Then, by (5) and (6), G 1is a verbal subgroup of F corresponding to the
variety A . By (7T"), P/PnG is a free Z/(n)-module of rank » . But
r = rank P/PnG = rank P/P' = rank P .
Suppose that P is a free &n—group. Since every automorphism of

P/P' can be lifted to an automorphism of P (see [5]) we can choose in

P free generators tl’ cees tr such that in F ,

t, = ’g,l:es'

Let g, =g} + (xo-l)gz , where g; €M , g7 €5 . Since w(t;) = ts s

(6), (7"), (7T") imply gl', cens g;, €T, and, by (5), the submodule

generated by g/, ..., g, coincides with T . So the projective ZC'I,,n-

module T of rank »r has r generators. Then T is free. This

contradiction shows that T 1is not free.
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