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ABSTRACT

Theoretical methods applicable to the study of
line formation in steady-state extended atmospheres
are reviewed. The formal solution of the transfer
equation is considered, as well as numerical and
analytical methods of determining the source func-
tion. Topics discussed include: the local frequency
transformation, geometrical effects, and the case of
large velocity gradients. A new plane-parallel
approximation for spherically symmetric moving
atmospheres is given that takes account of transverse
velocity gradients.
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INTRODUCTION

Methods of handling line formation problems
have advanced markedly in recent years for atmo-
spheres that are static and for which the plane-
parallel approximation is reasonably valid. However,
two major difficulties may arise when extended
atmospheres are considered: first, the geometrical
extension may be so large that the plane-parallel
approximation is no longer valid; and second,
macroscopic velocity fields may need to be taken
into account. While only the first of these is
strictly implied by the term "extended atmosphere,"
the second is included because so many of the
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astronomical examples of extended atmospheres have
such macroscopic velocity fields.

In this paper the theoretical work relating
to these two difficulties will be reviewed. In
doing so primary consideration has been given to
work in the spirit of the modern approach (see, e.g
Jefferies, 1968) to line formation, in which the
equations of statistical equilibrium are solved in
conjunction with the transfer equations. Many of
the results of the early work that depend on the
assumption of coherent scattering, for example,
must be viewed with suspicion for the problem of
line formation. However, many of the methods and
techniques developed in these papers are relevant,
and it has been the intention here to extract such
useful information whenever possible.

After introducing the basic equations, the
formal solution of the transfer equation will be
discussed. Then analytical and numerical methods
of determining the source function will be consid-
ered, including Sobolev's theory of moving atmo-
spheres .

One new result presented here is a formulation
of the plane-parallel approximation for moving
atmospheres having spherical symmetry that takes
account of transverse velocity gradients.

BASIC EQUATIONS

The line formation problem is defined by the
simultaneous solution of the equations of statistical
equilibrium and the transfer equations for the atom
or ion under consideration. The assumption of
complete redistribution is usually made to account
for the noncoherent nature of the scattering. While
this assumption has proved of great utility in
static, plane-parallel atmospheres, there are reasons
to believe that it may not be as good when large
velocity gradients are present. This is because
the mechanism of trapping radiation, which usually
pr6duces isotropic, frequency independent intensities
in the line core, will not operate so effectively,
since radiation can escape more readily and because
of the anisotropy introduced by non-uniform expan-
sion. The only work relating to this point is
Magnan's (1968). He found only fairly small errors
due to the complete redistribution assumption in
an atmosphere with velocities of the same order as
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the Doppler velocity. However, the question deserves
further investigation under a variety of conditions
before any final conclusions can be drawn. In this
paper complete redistribution will be assumed,
and the modifications necessary to treat Doppler re-
distribution will merely be indicated.

The effect of extended geometry on the equations
of statistical equilibrium is simply to make all
quantities depend on a general spatial point r, in-
stead of the simple height or optical depth variable
of the plane-parallel case. The transfer equations
must be similarly modified by considering specific
intensities which are functions of position r,
frequency v, and direction defined by a unit vector
%s In geometries having certain symmetries, such as
spherical symmetry, the equations may depend on
fewer variables, of course, and in the limit of a
thin spherically symmetric shell, the plane-parallel
equations are recovered. With few exceptions (e.g.,
Bappu and Menzel, 1954) all of the work done on the
problem of extended geometries has assumed spherical
symmetry. In cases where Sobolev's theory of moving
atmospheres is applicable it is not strictly bound
by any particular assumption on the geometry, but
in the actual applications of this theory spherical
or plane-parallel geometry have been used.

The primary effect of velocity gradients is
the Doppler shift of the radiation field as seen in
a local frame of reference moving with the material
at any point. This manifests itself in those terms
in the equations accounting for the interaction be-
tween matter and radiation, namely, in the emission
and absorption coefficients. For complete redistri-
bution, where the source function is frequency in-
dependent, the modification to the usual equations
is simply to replace the absorption profile $(r,v)

v
by d)(r,&,v) = d>(r,v- — £-v(r)), where v is the

line center frequency, v(r) is the velocity of the
material at point j:, an3''c is the velocity of light.
This correctly describes the Doppler effect to lowest
order in y/c. For the radiation field this effect
is important because it can radically change optical
depth relations along a ray, as the absorption at
any point depends sensitively on any displacement
of the profile. Similarly the matter can be brought
to quite different states of excitation by motion
which causes it to absorb far more or far less in
any transition, as it absorbs in different parts of
the highly frequency-dependent radiation field.

89

https://doi.org/10.1017/S025292110015119X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110015119X


A secondary effect of velocity fields is to
add streaming terms to the statistical equilibrium
equations, which describe the changes to the popula-
tions from convective transport of material.
Although this might be an important effect in some
physical situations, it would not seem that it will
be so for any stars discussed here. This may be
seen by considering an extreme physical example
with velocities on the order of 103 km s"1 and a
characteristic length of 106 km, which are typical
for some Wolf-Rayet stars. This leads to an effec-
tive rate coefficient or order 10"3 s"1 which is
very small compared with other typical rate co-
efficients entering the statistical equilibrium
equations. Therefore this effect will be neglected
here.

The equations of statistical equilibrium are
statements that the populations n^(r) at a point
corresponding to the various relevant levels of
excitation energy E-j_ are independent of time

0 = I (n.r.. - n.T..) (1)
j D Di ii]'

Typically i ranges from 1 to N for N bound levels,
with the addition of values for adjacent stages of
ionization.

The rate coefficients F^j may be separated into
rate" coefficients due to radiation and to collision
with other particles (probably mainly electrons, but
perhaps high energy protons or alpha particles may
contribute)

r. . = R. . + C. . , (2)
ID ID i,D

For the radiative transitions between bound levels,

R. . = A. . + B. . J. . ,
ID ID ID ID

.> E.
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where the A's and B's are the Milne form of the
Einstein coefficients and

i r r H
H = j!r d v di 4>(r'v " -7P- ̂ 'v(r)) I Ar, I) .(4)
l j 0 ^ ' W C y^ Ac/ /,̂  V

Here I (r,j?,) is the specific intensity of radiation
at frequency v at point £ in direction ^. The nor-
malized profile function^is defined by

<|>(r,v) = k ^ (r)/k.(r) , (5)

(£)
where kv is the line opacity for the transition
i+j, in the rest frame of the material, and where
the integrated line opacity k. is

kp (r) = I k ^ (r) dv . (6)
36 I V

Thus
.00

(r,v) dv=l . (7)
0 ""

The line center frequency v.. is computed from

hv. . = E.-E. (8)
ID I D

h being Planck's constant.
The appearance of the velocity field in the

profile function in Eq. (4) is responsible for the
velocity effects associated with the equations of
statistical equilibrium. It should be noted that
the profile function cannot now be taken outside of
the angular integration, as in the static case.
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The equation of transfer for radiation in the
line transition i->j is

V. .

= k n ( r ) <f>(r,v " -^P- I- :<z» [- Vid' + s£>]
(9)

where
- 1

2hv. ? /g.n. Cr)

is the line source function and g^ is the statistical
weight of level i. The line opacity k« is given by

hv. . / \
k0 (r) = -7^- (n.B..-n.B..) . (11)

The boundary conditions are usually given by
specifying the incident intensities on all boundaries
of the region, or, in some cases, certain linear
relations (reflection conditions) relating incident
and emergent intensities.

In writing Eq. (9) continuum absorption has been
taken into account by means of the continuum source
function B c and the continuum opacity kc. Also,
complete redistribution has been assumed in this
equation. In order to account for Doppler redistri-
bution properly, the absorption and emission of a
number ni(r,w)dw of particles in level i in velocity
range dw would "have to be considered, rather than
simply'the total number in each level. This would
also necessitate writing a more complete equation
of statistical equilibrium for ni(r,w). Another way
to take Doppler redistribution into 'account is by
use of redistribution functions (Hummer, 1962, 1968)
although this method assumes that the velocity
distribution of the lower level is known to be
Maxwellian, and that stimulated emissions are
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negligible; these assumptions will certainly apply
to resonance lines of high excitation potential, but
perhaps not necessarily for other lines. The rela-
tionship between non-Maxwellian velocity distribu-
tions of the excited levels and Doppler redistribu-
tion has been emphasized by Oxenius (1965).

It is somewhat more convenient to worJc in terms
of a normalized frequency variable defined by

x =
v-v. .

ID.
A. .

where

(12)

v. .v.,
A. . = _iJ_th
ID c

(13)

and where vth i-s a typical Doppler velocity
characterizing the atmosphere, given by

vth

2kT, .kin
m

1/ 2
(14)

Here T̂ ..̂  is a typical kinetic temperature, which may
include contributions from "microturbulence." For
Doppler profiles the profile function then becomes

4>(r,x)=
F 6(r)

where

2/<52-x2/<52(r)

6(r) =
vth

and

te. • [
2kT, . (r)

kin \*>'
m (17)

is the Doppler velocity characterizing the profile at
the point r. A dimensionless variable u(r) is also
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defined in units of v., by

u(r) =
v(r)

(18)
V th

With these variables Eqs. (4) and (9) become

4TT

x

dx d% cf)(r,x - £-u(r)

(r)

r))I
z**-' X

(19)

,x-S,-u(r)) [-1 + sl

(20)

while in Eqs. (5), (6), and (7) the variable v is
replaced by x. Finally in Eq. (11) an additional

factor of A.. appears on the right-hand side. The

range of the variable x may be taken as - °° to + °°
with inconsequential error.

The advantage of these dimensionless variables
is that material velocities of the order of the
typical thermal velocity correspond to |u| ̂  1, and
it is in these cases that velocity effects begin to
be important.

THE FORMAL SOLUTION
r

Since the pioneering work of Beals (1931) many
investigators have assumed various structures for
extended atmospheres, including the specification
of the source function, and then have computed the
emergent flux using the formal solution of the
transfer equation. Such calculations avoid the
difficult problems of actually determining the
source function as a consistent result of the
specification of the fundamental atmospheric
parameters. Despite their possible inconsistencies,
however, the importance of these calculations for
the development of the subject should not be under-
estimated. It is probably fair to say that the
present-day conception of extended stellar atmo-
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spheres is largely based upon such calculations,
or upon intuition based upon knowledge of the
formal solution. It is not yet possible to solve
for the source function including all those effects
that are known or suspected to be important, so
the calculations based on the formal solution are
still likely to be important for some time. In any
case such calculations will be necessary as a final
step in a more detailed calculation and in some
cases the primary effects of velocity fields are to
be found in this step. For example, the redshift
found by Hummer and Rybicki (1968) for an expanding
atmosphere is, as pointed out by them, solely due
to the change in optical depth relations in various
parts of the line, and not to any substantial change
in the source function from the static case.

The formal solution of the transfer equation is
well-known (see, e.g., Chandrasekhar (1934). Write
Eq. (20) as

81
x [-1 +SU (21)9 £ x x

where £ measures path length along a ray from some
convenient point, and where

Q <j>U,x) SU) + k U) B
(5) = -2 °- °- (22)

k U) *Ux) + K

All quantities are expressed as functions of £ along
the ray. Then the formal solution is

IX(C) = Ix(0) e

+ I K (?•) x(C) e
 K x dC (23)

o
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The intensity at a given point is then expressed as a
quadrature involving the total opacity K , the total
source function £f , and a value of intensity at
another point on the ray Ix(0), which is known if
£ = 0 is a boundary point and Ix(0) is known incident
boundary condition. In some cases the zero point can
be taken so that the exponential factor multiplying.
Ix(0) is essentially zero, and the value of Ix(0) i

s

not needed.
For a given set of values for the function K X

andcTx
 t n e emergent intensity along any ray can be

computed. A convenient measure of the emergent flux
which would be received by a distant observer over
the area of a projected disk of the atmosphere. This
quantity might be called the specific luminosity of
the star in that direction and at the given fre-
quency; in cases where the star radiates isotropi-
cally it is simply the total luminosity per unit fre-
quency range divided by 4TT. The actual flux at the
point of observation is proportional to the specific
luminosity, the factor being the inverse square of
the observation distance. The observed shape of
the spectrum at any distance from the star is
correctly given by the specific luminosity as a fun-
ction of frequency.

The introduction of any symmetries, such as
spherical symmetry, will simplify the problem
considerably. In plane-parallel geometry the formal
solution is given by Eq. (23) except all quantities
depend on the depth variable z alone, so that £
becomes z and d£ becomes dz/y, and similarly for
the various primed variables. In spherically
symmetric geometry all quantities in Eq. (23) depend
on the radius r alone, but the relationship between
£ and r is much more complex. It is sometimes con-
venient in this case to use a new variable p which
represents the distance of closest approach of the
ray to the center of spherical symmetry, and to
express all quantities in terms of r and p rather
than r and y. This latter procedure was first in-
troduced by Chandrasekhar (1934). It is also
possible to use £ and p as the basic variables and
this has essentially been done by Castor and Van
Blerkom (1970). These two choices of variables
are7 useful because the transfer equation can be
written in terms of a single partial derivative,
rather than the two of the r,y representation.
This is already clear from Eq. (21).

Another kind of simplification arises for
stars with large velocity gradients. For each
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frequency the radiation in a spectral line originates
in relatively localized regions that lie very close
to the so-called surfaces of constant radial velocity
defined by x = ̂ juy= u& where u& is the component of
velocity along the line of sight. For any given
velocity field these surfaces can be determined;
then assuming that the continuum opacity is small,
the only region where any emission in the line can
take place at frequency x is very near the appro-
priate surface. The line source function S can be
assumed to be constant over this region and the
intensity along the ray is equal to

-T -T
I U) = I (0) e X + S(l-e X) , (24)

where T X is the optical thickness of the region along
the ray. The computation of T X will be postponed
until the following section when local frequency
variables are introduced. When more than one such
surface is cut by a single ray corresponding formulas
can be similarly derived. For example, when two
surfaces are involved,

-(T +xr)
I (-) = i (0) e X X

X S> X

-T ' -T -T '

+ S e x(l-e X) + S'CL-e X) . (25)

Here the ray starts at £ = 0, first cuts the surface
corresponding to the unprimed quantities, and then
cuts the surface with the primed quantities. For
further details of such calculations see Rublev
(1961, 1964), Lyong (1967), and Castor (1970).

ANALYTICAL METHODS FOR DETERMINING

THE SOURCE FUNCTION

While most methods for actually determining the
source function are numerical ones, there are some
topics of an analytical nature that are relevant to
the line formation problem beyond the simple consid-
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erations of the formal solution. Among these are
the local frequency transformation, special geome-
tries, the infinite medium with constant velocity
gradient, and Sobolev's theory of moving atmospheres.
These will be discussed in this section and the
numerical methods in the next.

a. Local Frequency Transformation

Milne (1930) introduced a transformation to
a new frequency variable x1 related to x by

x1 = x - u(r) •£ . (26)

Originally this transformation was formulated in the
plane-parallel case; Eq. (26) is the generalization
to arbitrary geometry. Clearly x1 is the frequency
seen in a frame of reference moving with the local
material at the point r when radiation travelling
in direction £ has frequency x in the stationary
frame. **"

If intensities and other variables are written
as functions of x1 instead of x then the transfer
equation becomes

91 , 51 ,x x& Q ( £ )

(27)

where Q is the following quadratic form in the
components of the vector £ :

" V I GZ^ (28)

Here a and 3 are tensor indices ranging from 1 to
3, which label the components of the corresponding
vectors. Since the antisymmetric part of Ga£ does
not contribute to Q, it may be defined as
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G (r.\ — ••- 1 ~ 4. H. 1 — r» /y-\ ^9Q\
01 p -̂> ^

This may be recognized as the rate of strain tensor
of fluid dynamics. There are several special forms
for ji, Ga£, and Q corresponding to cases of various
symmetries:

1. Plane-parallel symmetry

Let a=3 be the index for the direction normal
to the planes of symmetry. Then

u =u =0 ; u =u(z)
1 2 3

G =u'(z) (30)
3 3

Q = y2u'(z)

2. Spherical symmetry

Let the indices take the values r, 6, and <J),
corresponding to the radial, polar, and azimuthal
directions at the given point. Then

U0=V° ? V u ( r )

ee = G<H = U ( r ) / r ? Grr = u' ( r ) (31)

Q = y2
u' (r) + (l-y2)u(r)/r ,

Note that here and in the preceding the values of
Gap> not given are zero, and that y is the usual
direction cosine of the ray.

There are two special cases that frequently
occur in the spherical case. When u(r) is constant
there results Q = (l-y2)u/r, and when u(r) is pro-
portional to r (uniform expansion) there results
Q = u1 .

One advantage of such a transformation is that
absorption and emission in the local frame are
usually close to being isotropic, so that the vari-
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ation of intensity with angle can be expected to be
smoother at fixed x1 than at fixed x. For example,
consider a rapidly moving region, [U|>>1. As the
direction of a ray is varied slightly the absorption
in the region can vary tremendously when the right
condition of line of sight velocity is met for the
particular frequency x. This leads to rapidly
varying functions of angle, which are hard to handle
numerically.

The local frequency transformation makes obvious
the fact that only velocity gradients affect the line
formation problem, since only gradients appear in Q.
This is also quite obvious on physical grounds, but
some of the implications are quite deep. If the
opacities and profile function are independent of
positioner;, and if Q(jo,V) is likewise independent of
r, then Eq. (27) is a' integro-differential equation
with spatial translational invariance. It is
therefore susceptible to a host of techniques of
solution more or less familiar in the static case,
but now referring to a constant velocity gradient.
This fact forms the basis of Sobolev's analytical
solution, to be discussed later in this section.

The problem left in the last section, that of
computing the value of xx in Eq. (25), will now
be completed. It is given by

T
x
= f k. (r) <j>(r,x-u(r))d£'

where r = ̂ (^') along the ray and where kc is assumed
negligible. Changing the variable of integration to
the local frequency variable gives

x Q(r^,£) [ i ̂ » -'

where the value r = ro, the position of the surface
of constant velocity^ has been inserted in those
functions that are slowly varying over the range
inTwhich the integrand is not negligible. These
functions have further been taken from under the
integral. The origin of the factor in the denom-
inator is the transformation of differentials,

d x'^ 1 , (32)
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and

dx-

noting that

3̂ = W ' (34)

The absolute value is to account for the correct
ordering of the limits of integration, making the
lower limit smaller than the upper limit. From
the normalization of <f> it follows that

Tx = |Q(r,*)| ' (35)

since the range of integration for large velocity
gradients is essentially over the entire line.

There are further uses of the local frequency
transformation, one of which will appear presently.
It will merely be pointed out here that, in such a
local frequency description, redistribution functions
can be used in their static form, rather than having
to take the macroscopic motions directly into account
in the redistribution functions themselves.

b. Special Geometries

The two special geometries of interest are the
plane-parallel (pp) and spherically symmetric (ss)
ones. The directional derivatives for these two
cases are

1 ' T55T = ^ 3 F 1 <PP) ( 3 6 )

and

dl 91
( 3 7 )

1 0 1
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in terms of the frequency x. In terms of the local
(1) frequency variable xf = x - yu(r) they are

3 1 3 1 , T 2 3 1 i
* u x + 1"^i x— u +

3r " y 9r r 3y

- [y2u« (r) + (l- y 2)^! (iss) . (39)

An interesting fact emerges from these expressions.
The plane-parallel equations are usually obtained
by dropping the term involving the partial derivative
with respect to y, as in Eqs. (36) and (37), the
argument being that this term is of order of the
ratio of a mean free path to the radius of curvature
of a layer. By the same argument the corresponding
term in Eq. (39) may be dropped, but this still
leaves an extra term involving u/r when compared to
Eq. (38). This term cannot be dropped on any
reasonable grounds since in extended atmospheres it
is on the same order as the term in u1(r), which is
clearly not negligible since it accounts for all the
velocity gradient effects. Thu,s a paradox has
appeared: Making the plane-parallel approximation
first and performing the local frequency transforma-
tion second does not give the same results as these
operations performed in the reverse order.

We feel that the reason for this paradox is
that the derivative 3Ix/3y at constant x is not
small and cannot be dropped, while the derivative
3Ix«/3y at constant x

1 is small and can be dropped.
This point was discussed in the preceding subsection.
As a consequence Eq. (36) is probably not the best
formulation of the plane-parallel approximation
for moving spherically symmetric atmospheres. A
more correct formulation (c) in local frequency
variables would be
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[y2u'(r) + U-Vz) ^'l-gjr (clpp) (40)

rather than Eq. (38).
In order to understand why this new plane-

parallel approximation differs from the usual one,
it is useful to distinguish between two types of
spherical divergence effects: First, there is the
usual divergence of the rays, which may be neglected
for cases where the thickness of the layer in
question is much smaller than the mean free path.
Second, there is the divergence of the velocities,
which may be quite important because of the extreme
sensitivity of the absorption coefficient to slight
shifts in frequency. The terms corresponding to
divergence of the velocities have been retained in
this new formulation while the terms corresponding
to the divergence of the rays have been dropped.
It is interesting to note that precisely the same
arguments have been used by McCrea and Mitra (1936)
for including Doppler shifts in the moving atmo-
sphere equations while dropping aberration effects,
even though these are of the same order in j^/c

This idea may be illustrated by some examples
giving some further physical insight. Suppose
first of all that u(r) is proportional to r, the
velocity field for a uniformly expanding atmosphere.
The local velocity field as viewed from a local frame
of reference moving with the material at any point
is isotropic; in fact it appears to be a uniform
expansion away from that point. This simple fact
is correctly represented by Eq. (40) where the co-
efficient of 8Ix«/8x' is independent of y, while in
Eq. (38) it is proportional to u2, implying a strong
directional effect. Another case of interest is
that of constant outflow, u(r) = const; the term in
Eq. (38) now vanishes, which implies the absence of
any velocity effects. This is clearly not so, how-
ever, since there is a transverse velocity gradient
in this case, which, for example, makes it easier
for photons to escape the atmosphere along a tangent.
These examples show the superiority of Eq. (40) over
Eq. (38).
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It remains to write the corrected formula in
terms of the variable x,

31 31 , N 31

^ 1 ^ ^ ( 4 1 )

There would not seem to be any particular advantage
in using Eq. (41) over Eq. (40) since a derivative
with respect to frequency still appears. However,
this derivative can be eliminated by performing a
different sort of frequency transformation to a
frequency x" defined by

x" = x + i - y U HAEL dr , (42)i - -) I ̂
where any indefinite integral can be chosen. Then

9Ix 9 Ix"
1 1 = y "Sir (ppp) ' (43)

3F

which is exactly in plane-parallel form, but in terms
of the new frequency variable. This will be called
the pseudo-plane-parallel formulation (ppp), and may
be of particular use for methods, such as those using
integral equations, where frequency derivatives can-
not be easily handled.

It is interesting to write the (ppp) equation
in full for the case of a uniform expansion. Taking

± dr = u'r

for this case yields

or K>
J

+ k (r) f- I „ + B 1c I x" c- !„„ + B^ . (44)
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This would be precisely the usual plane-parallel
equation, except that in the argument of the profile
function u is divided, rather than multiplied by y.

o. Infinite Medium With Constant Velocity Gradient

Sobolev (1957) showed that in an infinite plane-
parallel medium with a constant velocity gradient
the solution for the source function of a two-level
atom with no continuum could be reduced to the
solution of the integral equation (in a notation
which differs from Sobolev1s)

S(T) = (1-e) K M T - T 1 |)S(T')dTI + EB(T) . (45)

Here e is a constant, the ratio of the collisional
de-excitation rate to the total de-excitation rate,
and the kernel function K is defined by

K(T) =

• i f" I (x) <J> (x + yyx)exp< -

The variable T is an equivalent integrated line
optical depth, defined for a medium at rest. The
velocity gradient is a constant and is defined by

Y - & • (47)

The factor A that appears in Sobolev's paper is to be
taken as unity here because of the use of integrated
line absorption to define the optical depth scale
rather than the line center absorption that Sobolev
uses. The function B(T) is the Planck function at
the local electron temperature and at the line fre-
quency.
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The translational invariance of the problem
is clear, since the kernel function of this integral

equation is a function of the difference |T - T' j
alone. Such integral equations have been extensively
studied, but usually in the static case. Much is
known about the solutions of such equations and how
they depend on e and on B(x).

A very useful physical picture is obtained by
regarding the quantity S(x) in this equation as the
probability of emission of a single photon, rather
than as the average number of such emissions. Then
eB(x) gives the probability density of creation of
a photon at the point x, K(x) gives the single-step
distribution function for the free propagation
distance of the photon before absorption, and e is
the probability that an absorption will be followed
by the destruction of the photon. A very useful
concept associated with this probabilistic viewpoint
is that of thermalization length, an average distance
traveled by the photon between its creation and
its destruction (see Rybicki and Hummer, 1969).
By use of the concept of thermalization length much
can be said about the solution S(x) without actually
solving the entire problem, and it is instructive
to do so in the present simple case of a moving
atmosphere.

There is a very important physical distinction
between the usual static case of thermalization
and the present one, however, which is due to a
change in the normalization of the kernel function.
Ordinarily the normalization would be

K(|x|)dx = 1 (static case) (48)

since any photon eventually is absorbed somewhere.
But in the present case this is to be replaced by

K( Ixl)dx = 1 - 3 (49)

with 0<3<l. This implies that a photon need not be
absorbed, but can escape the medium entirely with
escape probability 3« This is an entirely new
phenomenon which might be called intrinsic escape,

106

https://doi.org/10.1017/S025292110015119X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110015119X


since it does not depend on the presence of bounda-
ries, but rather on the rapidly decreasing opacity
seen by a photon as it becomes further and further
removed into the line wings by virtue of the Doppler
shift of the material. This opacity decreases
rapidly enough so that the optical thickness in
the direction of a velocity gradient is bounded no
matter how long the geometrical path length is.

From Eq. (46) it follows that

3 = | Y | j - e x p I- •dy ( 5 0 )

For details of this reduction the reader is referred
to Sobolev (1957).

In spite of this normalization the equations can
again be brought to the form

S ( x ) = ( l - e ) K( T - T 1 ) S ( T ' ) d T ' + e B ( T ) ( 5 1 )

where the kernel K is now normalized,

0 0

K( T | ) d T = 1 ( 5 2 )

This is accomplished by the definitions

K ( T ) = 1 I g K ( T )

e = 1 -(1-3) (1-e) = e + 3 - e3

B ( T ) = | B ( T ) ( 5 3 )

Since Eq. (51) is now in the usual form, the
thermalization length may be discussed. First of
all, it should be noted that when 3̂ _>£ the value of
e is insensitive to e, and in fact e ̂  3. This
means that the mechanism of loss of photons by
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intrinsic escape dominates the loss by collisional
de-excitation, and therefore the thermalization
process will be determined by 3 rather than e when
J3>>£. Secondly, it should be noted that the kernel
K(T) is very much more sharply cut off for large
values of T than in the static case, at least for
Doppler profiles. This is because it is precisely
those photons which would have traveled a long
distance in the static case that now escape
and do not appear in the distribution K(x) at all.
The actual cutoff of the kernel can be roughly
estimated to be at distances of the order of
T ^ 1/y, since this is roughly the scale over which
the profile shifts through its own width, and photons
that travel to larger distances will escape com-
pletely.

Rybicki and Hummer (1969) have shown that when
the distribution of single flights is sharply cut
off, the thermalization length A is of the coherent
type, and is of the order of the width of the kernel
times (F)- 1 / 2, that is, A ^ y"1(F)-1 /2. When
properties vary slowly on the scale of the thermal-
ization length an approximate solution to Eq. (51)
may be obtained by removing S(x) from under the
integral. Then

S(T) = B(T) , (54)

or, when $>>£,

S(T) = ̂ (II . (55)

The source function is in this case simply determined
by the creation rate e B(T) and' the escape probabil-
ity 3.

It is important to note that for Eq. (55) to
be valid it is not necessary to have very large
gradients, y>>l. For example, a fairly small y can
still lead to a 3 satisfying &>>e, thus the sole
requirement is one concerning thermalization length
and the scale of variation of properties L. For
small y it follows_ that 3 ̂  y/3 (see Sobolev 1957),
and 3>>e implies e ^ 3/ so that the thermalization
length is A ^ y"3/2. The condition of validity is
simply A>>L, and if L is sufficiently large this
can be met for arbitrarily small y.

The reason that so much space has been given
here to the discussion of Eqs. (45) and (51) from
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the point of view of thermalization theory is that,
within the framework of the simplifying assumptions
made, it has been possible to derive solution (55),
which is identical with the one found in Sobolev's
theory of moving atmospheres. Furthermore (and
most importantly) it has been possible to fix
conditions of validity of this solution, which
relate the magnitude of the velocity gradient to
scales of variation of the physical parameters.
In particular, it has been pointed out that this
solution may be valid for "small" gradients,
whereas Sobolev's theory of moving atmospheres has
often been regarded only as a "large" gradient
theory. These considerations will be useful in
the following discussion.

Castor (1970) also discusses the validity
of Sobolev's theory by deriving diffusion-like
corrections and estimating their magnitude. This
is roughly analogous to the above procedure, since
the use of the coherent type of thermalization
length is essentially a diffusion theory result.
However, the criterion Castor obtains is that the
typical mean thermal velocities must be small in
comparison to typical macroscopic velocities.
By estimating the macroscopic velocity as the
gradient times a scale length we may put this
into the form L>>y""1, which is a less restrictive
condition than the one obtained here. This point
needs further investigation.

d. Sobolev 's Theory of Moving Atmospheres

In general, velocity gradients present great
difficulties i?i the problem of line formation.
However, the remarkable theory of moving atmospheres
developed by Sobolev (1947, 1957) demonstrates that
velocity gradients are actually a simplifying
feature when they are of sufficient magnitude. In
favorable cases an entire coupled multi-level
transfer problem, a formidable problem even in the
static case, can be reduced to a set of algebraic
equations for the populations at each point in the
atmosphere. A brief discussion of Sobolev's theory
will now be given to show how the concept of escape
probability can be extended to multi-level problems.
The continuum opacity kc will be assumed negligible
in the neighborhood of each line.
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The basic idea of the theory is as follows:
consider a region of the atmosphere in which the
properties are more or less homogeneous, and which
is sufficiently large in the sense to be discussed
below. In the static case the radiative transition
rate between any two levels, say i to j, is exactly
the same as the rate in the reverse transition, j to
i. This is because any transition leading to the
emission of a photon will in turn produce the reverse
transition when that photon is absorbed somewhere
else in the same region. The two transition rates
averaged over the region must then be equal, and
if the conditions are homogeneous the equality
applies also at a single point. The condition on
the size of the homogeneous region can be seen to be
that every photon emitted in the region must also be
absorbed there, to a good approximation.

When there is a velocity gradient a photon can
escape the atmosphere entirely, and in this case
the downward radiative transition rate will exceed
the upward rate. The difference in these two rates
is simply n^AiBji/ where 3ji is the probability of
escape of the photon due to the Doppler shift of
the profile.

The escape probability 3jj_ can be easily found
by assuming a constant velocity gradient over the
region of interest. Suppose a photon is emitted
at frequency x and direction £ at a certain point.
It is convenient to use a frame of reference such
that this point is at rest at the origin. The
velocity field is then

du
ua(£> = I a77 r

6
 (56)

p p

The total optical thickness of the medium from the
origin in the direction I at frequency x is

T U) = k. . <J>(x-u(W-a) d£ (57)

Setting x1 = x - u(££)-£ = x - £Q(&), there results

4>(x')dx' (58)
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The integrated line opacity for the transition i to
j is denoted by ki j.

The probability of escape in a frequency range
dx about x and in an angular range dfi about I is

dx exp [-TxU)j . (59)

The net probability of escape is thus

[ f r
Changing the variable of integration from x to

•x
t = I 0 (xf)dx'

yields the final result

. (60)

The escape probability is therefore independent
of the profile function under the assumption of com-
plete redistribution. The restriction to rectangular
profiles in the original work of Sobolev (1947) is
unnecessary, as pointed out by Sobolev (1957).

The expression (60) is the generalization of the
escape probability formula for arbitrary velocity
gradients. Substituting in the appropriate Q for
plane-parallel geometry, namely Eq. (30), the
expression (50) is again obtained, since u'(z)/k =
9U/9T = y. Similarly Eq. (31) for spherical geometry

111

https://doi.org/10.1017/S025292110015119X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110015119X


leads to the formula

1

3-i(r) = -^— f |y
2uf (r) + (l-y2)u(r)/r

13 ' o

-k. .
1 - exp dy . (61)

An equivalent formula was derived by Castor (1970).
For the special case of uniform expansion, u1 = u/r
= const., and the corresponding formula is

3 . . = TT~ 1 - expV- -Z*)\ • (62)
Di kij L

The determination of the escape probability
for each transition depends on local parameters
in the atmosphere, namely the integrated line
opacity and the velocity gradient. The equations
of statistical equilibrium can be written in terms
of net radiative rates, which are simply related to
the escape probabilities, as shown above. It follows
that an entire multi-level problem can be reduced to
an algebraic set of equations, which can be solved
locally at each point in the atmosphere, without
regard for conditions at other points. This un-
coupling of the various parts of the atmosphere is
due to the Doppler shift between material at sepa-
rated points, which causes them ;to absorb and emit
in quite different parts of the spectrum.

As an example of such a formulation of a multir
level problem, consider the case of an atom in the
dilute radiation field pic of a star. The statis-
tical equilibrium equations are

n.| ) A.. 3, • + B. p.'* L lk ki IC ICicj =

+
= J. +

 nkAkigik + ne n Ci(Te> ' C63)
k=i+i
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where all collisional processes except recombination
have been neglected. The local physical parameters
fix all the constants in this equation, which may
then be solved for the ni. For details see Sobolev
(1947) .

A more recent and more sophisticated example
of the formulation and solution of multi-level
problems using Sobolev's method is given by Castor
and Van Blerkom (1970), who solve a 30-level He atom
in spherical geometry. Collision processes are in-
cluded and the effects of continuous absorption are
taken into account approximately.

An important area for future investigation is
the determination of criteria for the validity of
Sobolev's theory. The crucial question seems to be,
as in the simplified two-level case, how small a
scale of variation of the physical parameters is
allowable while still maintaining the local homo-
geneity that is necessary for the use of the escape
probability concept. Possible approaches are to
extend the two-level thermalization arguments or
Castor's diffusion correction terms to the multi-
level case.

NUMERICAL METHODS

Most numerical calculations have treated the
effects of velocity gradients for two-level atoms
in plane-parallel geometries. These calculations
have been exploratory in nature, to discover effects
rather than to obtain accurate solutions to a
physical problem. This seems to be appropriate at
the present stage of development of the subject.

Kulander (1964, 1968) assumed an atmosphere
which consisted of several layers in which all
physical properties were constant. This allowed
a semi-analytic approach to be taken, since the
solution for the discrete ordinate intensities in
each layer was a linear combination of elementary-
exponential functions. Boundary conditions at
the interface between two layers were simply that
all intensity components must be continuous. In
this way Kulander was able to solve for the source
function and the emergent intensities for many
different cases. This work showed that the source
function was generally discontinuous across the
boundary between layers and sometimes large in-
creases in source function near the surface could
be obtained in this way. These increases simply

113

https://doi.org/10.1017/S025292110015119X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110015119X


mean that the radiation field near the boundary
is quite weak in the line core for material at
rest, but as the material moves it can absorb the
more intense radiation in the line wings. Examples
were shown where emission features could actually
result from these increases in source function.
In general, line profiles are now much more complex
and, of course, asymmetrical.

Kulander (1967) also developed a numerical
method of solution using differential equations,
which is directly applicable to media with continuous
variation of properties. However, it would seem
that this method must be unstable for large optical
thicknesses for reasons given by Hummer and Rybicki
(1967) in their discussion of the fundamental matrix
method. The method of slabs, on the other hand, can
be used for arbitrarily thick atmospheres, including
semi-infinite ones, if not too many slabs are taken.
When large numbers of slabs are taken in order to
model a continuous distribution of properties then
the choice of a stable method of solving the relevant
equations becomes important. The number of frequency
and angular components that can be treated poses
another limitation of the method. Kulander used a
single-point angle quadrature, which is roughly
equivalent to the Eddington approximation. Numerical
problems would probably limit the total number of
frequency components to perhaps 100. Up to 13
components were used by Kulander (1967),

It should perhaps be mentioned here that the
methods used by Abyankhar (1964a,b; 1965) are closely
related to the above slab method, but they have been
formulated in terms of coherent scattering so that
the details are not directly relevant here.

Hummer and Rybicki (1968) have used a differen-
tial equation method based on an extension of the
Riccati method (Rybicki and Huitfmer, 1967), which is
applicable to continuous variation of properties.
Using this method they show how a uniformly expanding
atmosphere can produce a red-shifted emission line.
The reason for this shift is simply an optical depth
effect, the actual change in the source function due
toTthe motion being irrelevant. The emission and
absorption of the material closest to the observer
is shifted to the violet and therefore optical depth
unity on the violet side of the line occurs much
closer to the surface, where the excitation is
smaller. This reduces the intensity of the violet
emission, and the line appears red-shifted.

The small step size which must be used in the
numerical integration to avoid multiscale instabil-
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ities limits the use of the Riccati method to atmo-
spheres having optical depths perhaps of a few
hundred (Rybicki and Hummer, 1967). There is a way
of treating semi-infinite atmospheres if variation
of properties is confined to a layer near the sur-
face, again of no more than a few hundred optical
depths in thickness. The Riccati method is also
limited by the number of discrete ordinates in angle
and frequency that can be reasonably handled, no
more than perhaps 60 components in one hemisphere.

Another method which no doubt can be employed
to advantage in this problem is that of Feautrier
(1964) which should avoid the difficulties of the
Riccati method as far as the multiscale instability
is concerned.

One modification of the method is necessary
if the usual form of the equations in the method is
not to be changed, namely, the quantities J and F
must now be defined by

J(x,y,x) = 2" [I(x,y,x) + I(x,-y,-x)]

F(x,y,x) = \ [I(x,y,x) - I(x,-y,-x)] . (64)

Changing the sign of x, as well as that of y, takes
advantage of the symmetry of the profile function
<J>(T,y,x) under the joint interchanges y -»• -y and
x -> -x.

The methods employing integral equations that
have been used in the static case can be modified
to include velocity gradients, as Kalkofen (1970)
has shown. One advantage of this method is that
a much larger number of angle and frequency points
can be taken than in the above methods, since
the computation time increases linearly rather
than quadratically or cubically with the number of
components chosen. This advantage may be very
important for cases of large velocity gradients. \

Calculations of line formation have been \
performed by Mathis (1968) and Magnan (1968) in \
spherical geometries. Mathis used an iteration
scheme to solve for the source function and emergent
intensities for a uniformly expanding, spherically
symmetric atmosphere.and he found a red-shifted
emission line of the same type as the plane-parallel
calculation of Hummer and Rybicki (196 8) . Since
his method appears to be equivalent to A - iteration

115

https://doi.org/10.1017/S025292110015119X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110015119X


in the plane-parallel case, its rate of convergence
will be slow when the mean number of scatterings is
large.

Magnan (1968) used a Monte Carlo method for a
spherically symmetric atmosphere with a constant
velocity of outflow. This macroscopic velocity
was the same order of magnitude as the thermal
velocity. He treated several cases, which included
effects of dipole scattering and of various boundary
conditions. A very interesting and important com-
parison is that between the calculations made with
and without the assumption of complete redistribu-
tion. The difference between the emergent profiles
for these two cases is that the complete redistribu-
tion profile seems more smoothed-out than the exact
calculation, but the differences are quite small.
It would be unwise, however, to generalize about the
adequacy of the assumption of complete redistribution
from this calculation, since the physical case
is not a severe one, the macroscopic velocity not
being very large in comparison to thermal velocities.

An outstanding advantage of the Monte Carlo
method is the ease of formulation in complex situa-
tions, which derives from the functional matching
of a probabilistic numerical method to a basically
probabilistic physical process. However, as is well
known, there is a heavy penalty in that the accuracy
of the calculation grows as the square root of the
computation time so that the method is only useful
when the time to calculate one "event" is very small.
This requires that the mean number of scatterings
be small. In a calculation such as Magnan's the
advantages are clear, since the case is not severe
and the aims are limited. The range of problems for
which the method is useful has yet to be determined.

It might be pointed out that the effects found
by Magnan are entirely due to the transverse
velocity gradient, which no plane-parallel calcula-
tion, as presently formulated, accounts for properly.
Therefore, there is no plane-parallel calculation
that can be compared with this one in order to
determine the effect of spherical geometry. By use
of the improved plane-parallel approximation given
in this paper such a comparison would be possible.
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DISCUSSION

The manuscript of Rybicki arrived very late
and consequently it was not possible to prepare
a condensed version of the lively discussion
following this paper. One aspect of the problem
of methods was discussed by C. Magnan who has
submitted the following summary of his remarks.
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