DIMENSION OF A TOPOLOGICAL TRANSFORMATION GROUP

HSU-TUNG KU AND MEI-CHIN KU

Throughout this paper, the Alexander-Spanier cohomology with compact supports will be used. Suppose X is a compact connected topological *m*-manifold which admits an effective action of a compact connected Lie group G $(m \ge 19)$. It is known [3] that X is either homeomorphic to the complex projective k-space CP^k (m = 2k), or

 $\dim G \leq \langle \alpha \rangle + \langle m - \alpha \rangle,$

for all α such that $H^{\alpha}(X; Q) \neq 0$, where $\langle k \rangle$ denotes k(k + 1)/2 for a nonnegative integer k. In this paper, we prove the corresponding result for the actions of compact connected Lie groups on the locally compact topological spaces. In [5], it is proved that if a compact connected (Lie) group G acts effectively on a connected locally compact *m*-dimensional space X with wconjugacy classes of isotropy subgroups, $w \geq 2$, then dim $G \leq (w - 1)$ $\langle m - 1 \rangle$. We improve the bound on the dimension of G by proving the following result.

THEOREM. Let G be a compact connected Lie group acting effectively on a connected locally compact m-dimensional space X with w distinct conjugacy classes of isotropy subgroups, $w \ge 2$, $m \ge 20$. Suppose the fixed point set F of G is not empty, dim $F < \alpha \le m - 1$ for some α and $H^{\alpha}(X; Q) \ne 0$. Then precisely one of the following holds:

(1) There is exactly one type of orbits of the form $CP^k(m-1=2k)$ and dim $G \leq (w-2) \langle m-1 \rangle + \dim SU(k+1)$.

(2) dim $G \leq (w-2) \langle m-1 \rangle + \langle \beta \rangle + \langle m-\beta-1 \rangle$, where $\beta = \max(\alpha, m-\alpha)$.

Proof. Suppose

(3) dim $G > (w-2)\langle m-1 \rangle + \langle \beta \rangle + \langle m-\beta-1 \rangle$.

We proceed to show that we only have statement (1). Now

$$\langle \beta \rangle + \langle m - \beta - 1 \rangle \geq (m - 1)^2/4 + (m - 1)/2.$$

Hence

(4) dim
$$G > (w-2) \langle m-1 \rangle + (m-1)^2/4 + (m-1)/2$$
.

Received July 2, 1975.

594

Let X_i , $i = 1, \ldots, w$, be the point set union of the orbits corresponding to w conjugacy classes of isotropy subgroups, and let K_i be the normal subgroups of G acting trivially on X_i such that G/K_i acts effectively on X_i with all orbits of the same type. We may assume that $K_w = G$ and $X_w = F$. Obviously, $X = X_1 \cup \ldots \cup X_{w-1} \cup F$, and G/K_i acts effectively on every orbit in X_i , $1 \leq i \leq w - 1$, which is at most (m - 1)-dimensional [5]. Hence

(5) dim $G/K_i \leq \langle m-1 \rangle$, $i = 1, \ldots, w-1$.

The map

$$\boldsymbol{\phi}: G \to G/K_1 \times \ldots \times G/K_{\boldsymbol{w}-1}$$

defined by $\phi(g) = (gK_1, \ldots, gK_{w-1})$ for $g \in G$ is a monomorphism because the action of G on X is effective and $\bigcap_{i=1}^{w-1} K_i = \bigcap_{i=1}^{w} K_i$ is the identity of G. It follows from (4) that

(6)
$$\sum_{i=1}^{w-1} \dim G/K_i \ge \dim G > (w-2) \langle m-1 \rangle + (m-1)^2/4 + (m-1)/2.$$

Express the groups G and G/K_i , $1 \leq i \leq w - 1$, in the following forms:

(7)
$$G = \overline{G}/N = (S_1 \times \ldots \times S_v \times T^q)/N,$$

(8)
$$G/K_i = \overline{G}_i/N_i = (S_1^i \times \ldots \times S_{v_i}^i \times T^{q_i})/N_i$$

where T^q (respectively T^{q_i}) is a q-torus (q_i -torus), each S_j (respectively S_j^i) is a compact, connected, simply connected simple Lie group, or isomorphic to Spin (4) \cong Spin (3) \times Spin (3), and there is at most one Spin (3), and N(respectively N_i) is a finite normal subgroup of \overline{G} (respectively \overline{G}_i).

It is easily seen from (6) that

(9) dim
$$G/K_i > (m-1)^2/4 + (m-1)/2$$
, $1 \le i \le w-1$.

Now for any fixed $x_i \in X_i$, let $M_i = (G/K_i)(x_i)$, the G/K_i orbit at x_i , $1 \leq i \leq w - 1$. Then dim $M_i \leq m - 1$. Since $m - 1 \geq 19$, and G/K_i satisfy (9), we may modify the proof of the Main Lemma in [3] to the actions of G/K_i on M_i to obtain the following. For each $i, 1 \leq i \leq w - 1$, exactly one of the following holds:

 (α_i) M_i is homeomorphic to $CP^k(m-1=2k)$, and G/K_i is locally isomorphic to SU(k+1).

 (β_i) M_i is homeomorphic to $CP^k \times S^1(m-2 = 2k)$, and G/K_i is locally isomorphic to U(k+1).

 (γ_i) M_i is a simple lens space finitely covered by $S^{2k+1}(m-1=2k+1)$, and G/K_i is locally isomorphic to U(k+1).

 $(\delta_i) G/K_i$ contains a normal factor $S_1^i \cong \text{Spin}(n_i)$ (see (8)), where

 $(a_i) n_i > (m+1)/2,$

 $(b_i) S_1^i$ acts almost effectively on the homogeneous space M_i with all orbits homeomorphic to either S^{n_i-1} or RP^{n_i-1} .

H. T. KU AND M. C. KU

Suppose there are $i_1, i_2, (i_1 \neq i_2)$ satisfying $(\alpha_i), i = i_1, i_2$. Then

$$\dim G \leq (w-3) \langle m-1 \rangle + 2 \dim SU(k+1) < (w-2) \langle m-1 \rangle + (m-1)^2/4 + (m-1)/2.$$

This contradicts (4). If there is exactly one M_i satisfying (α_i) , we have the statement (1). We will show that the remaining possibilities (β_i) , (γ_i) and (δ_i) cannot occur.

In the case that there is an M_i satisfying either (β_i) or (γ_i) , we have

$$\dim G \leq \sum_{j \neq i} \dim G/K_j + \dim U(k+1)$$
$$\leq (w-2) \langle m-1 \rangle + \langle \beta \rangle + \langle m-\beta-1 \rangle,$$

which contradicts (3). Hence the possibilities (δ_i) hold for all $i, i = 1, \ldots, w - 1$.

We may lift each S_1^i in \overline{G}_i to \overline{G} , and identify S_1^i as a subgroup of \overline{G} , $1 \leq i \leq w - 1$. The subgroups S_1^i of \overline{G} are all distinct, $1 \leq i \leq w - 1$. Otherwise, there exist $i, j, i \neq j$, and $S_1^i = S_1^j$. Let

 $\bar{\phi}: \bar{G} \to \bar{G}_1 \times \ldots \times \bar{G}_{w-1}$

be the homomorphism that covers ϕ . Define the homomorphism

$$\psi: \bar{G}_1 \times \ldots \times \bar{G}_{w-1} \to \bar{G}_1 \times \ldots \times \bar{G}_i / S_1^i \times \ldots \times \bar{G}_{w-1}$$

by $\psi(g_1, \ldots, g_i, \ldots, g_{w-1}) = (g_1, \ldots, g_{i-1}, g_i S_1^i, g_{i+1}, \ldots, g_{w-1})$. Then Ker $(\psi \bar{\phi})$ is a finite group. Hence

(10) dim
$$\overline{G}$$
 = dim $G \leqslant \sum_{\substack{k=1\\k\neq i}}^{w-1} \dim G/K_k + \dim G/K_i - \dim S_1^i$.

Let $t_c{}^i$ be the smallest integer such that dim $S_c{}^i \leq \langle t_c{}^i \rangle$. It follows from [2; 4] (applied to the action of G/K_i on M_i) that

(11)
$$\sum_{c=1}^{v_i} t_c^{i} + q_i \leq \dim M_i \leq m-1.$$

But $t_1^i = n_i - 1 > (m - 1)/2$ by (a_i) , hence $\sum_{c=2}^{v_i} t_c^i + q_i < (m - 1)/2$. From (8) we have

$$\dim G/K_i - \dim S_1^i \leqslant \sum_{c \ge 2} \langle t_c^i \rangle + q_i \leqslant \left\langle \sum_{c \ge 2} t_c^i + q_i \right\rangle$$
$$\leqslant \langle [(m-1)/2] \rangle \langle (m-1)^2/4 + (m-1)/2.$$

Hence

dim
$$G < (w - 2) \langle m - 1 \rangle + (m - 1)^2 / 4 + (m - 1) / 2$$
,

by (10). This is a contradiction to (4).

https://doi.org/10.4153/CJM-1976-058-2 Published online by Cambridge University Press

596

Denote the subgroup $S_1^1 \times \ldots \times S_1^{w-1}$ of \overline{G} by H. The group $S_1^1 \times \ldots \times S_1^{i-1} \times S_1^{i+1} \times \ldots \times S_1^{w-1}$ must act trivially on X_i , $1 \leq i \leq w-1$. Otherwise the orbits of H will have dimension at least $(n_i - 1) + (n_j - 1)$ for some j $(1 \leq j \leq w - 1, j \neq i)$, and $(n_i - 1) + (n_j - 1) > m - 1$ by (a_i) which contradicts the fact that dim $M_i \leq m - 1$. It follows that $X_i/H = X_i/S_1^i$ and

$$X/H = X_1/S_1^1 \cup \ldots \cup X_{w-1}/S_1^{w-1} \cup F.$$

Now the action of S_1^i on X_i has all orbits either S^{n_i-1} or RP^{n_i-1} . This follows from (δ_i) and the fact that the action of S_1^i on any two G/K_i orbits in X_i are equivariant homeomorphic. Hence we have fibrations $X_i \to X_i/S_1^i$ with fibre S^{n_i-1} or RP^{n_i-1} , $1 \leq i \leq w - 1$. Let $n_k = \min \{n_i : i = 1, \ldots, w - 1\}$. Then

$$\dim X_i / S_1^i \le m - (n_i - 1) \le m - n_k + 1,$$

and

(12) dim $X/H \leq \max \{m - n_k + 1, \dim F\}$.

We claim that $n_k \leq \beta + 1$. Suppose, on the contrary, that $n_k \geq \beta + 2$. Consider the projection $\pi: X \to X/H$. For each $\tilde{x} \in X/H$, $\pi^{-1}(\tilde{x})$ is S^{n_i-1} , RP^{n_i-1} , or a point, which is acyclic over Q up to $n_k - 2$. It follows from the Vietoris-Begle mapping theorem that

$$\pi^*: H^j(X/H; Q) \cong H^j(X; Q), \quad j \leq n_k - 2.$$

However, $H^{\alpha}(X/H; Q) \neq 0$ since $\alpha \leq \beta \leq n_k - 2$. But

 $\dim X/H \leq \max \{m - \beta - 1, \dim F\} < \alpha$

from (12). This is, of course, impossible. Hence $n_k \leq \beta + 1$.

Now we consider the action of G/K_k on M_k . From (δ_k) and (11) we have

(13)
$$S_1^k \cong \text{Spin}(n_k), n_k > (m+1)/2, \text{ and}$$

 $\beta \ge t_1^k = n_k - 1 \ge t_j^k, \quad 2 \le j \le v_k.$

Let $t_1^k = \beta - u, u \ge 0$. Then

$$\dim G/K_k = \dim \bar{G}_k \leqslant \langle \beta - u \rangle + \sum_{k=2}^{v_k} \langle t_j^k \rangle + q_k,$$

where

(14)
$$\sum_{j=2}^{n_k} t_j^k + q_k - u \leq m - \beta - 1,$$

by (11). We consider two cases. (i) $\sum_{i=2}^{v_k} t_i^k + q_k \leq u$. Then

$$\dim G/K_k \leqslant \langle \beta - u \rangle + \langle \sum_{j=2}^{n_k} t_j^k + q_k \rangle \leqslant \langle \beta - u \rangle + \langle u \rangle \leqslant \langle \beta \rangle \leqslant \langle \beta \rangle + \langle m - \beta - 1 \rangle.$$

(ii) $\sum_{j=2}^{v_k} t_j^k + q_k > u$. By repeated use of Lemma 2(b) in [3],

$$\langle \beta - u \rangle + \sum_{j=2}^{v_k} \langle t_j^k \rangle + q_k \leqslant \langle \beta \rangle + \sum_{j=2}^{v_k} \langle \tilde{t}_j^k \rangle + \tilde{q}_k,$$

$$\geq 0 \leq \tilde{a} \leq q, \quad 0 \leq \tilde{t}^k \leq t^k, \quad (2 \leq i \leq v_k) \text{ and}$$

where $0 \leq \tilde{q}_k \leq q_k$, $0 \leq \tilde{t}_j^k \leq t_j^k$, $(2 \leq j \leq v_k)$, and

$$\sum_{j=2}^{v_k} \tilde{t}_j^k + \tilde{q}_k = \sum_{j=2}^{v_k} t_j^k + q_k - u.$$

It follows that

$$\dim G/K_{k} = \dim \bar{G}_{k} \leqslant \langle \beta \rangle + \sum_{j=2}^{\nu_{k}} \langle \tilde{t}_{j}^{k} \rangle + \tilde{q}_{k}$$
$$\leqslant \langle \beta \rangle + \left\langle \sum_{j=2}^{\nu_{k}} \tilde{t}_{j}^{k} + \tilde{q}_{k} \right\rangle$$
$$= \langle \beta \rangle + \left\langle \sum_{j=2}^{\nu_{k}} t_{j}^{k} + q_{k} - u \right\rangle$$

 $\leq \langle \beta \rangle + \langle m - \beta - 1 \rangle$ (From (14)).

Hence

$$\dim G \leq (w-2) \langle m-1 \rangle + \langle \beta \rangle + \langle m-\beta-1 \rangle,$$

a contradiction. This completes the proof of the theorem.

Remarks 1. The theorem is best possible. Let Y be the disjoint union of (w-2) copies of the (m-1)-sphere S^{m-1} and $S^{\alpha-1} \times S^{m-\alpha}$ $(m-\alpha \ge \alpha)$. Take X to be the suspension of Y. Let

 $G = SO(m) \times \ldots \times SO(m) \times SO(\alpha) \times SO(m - \alpha + 1),$

with (w-2) copies of SO(m). Now let each copy of SO(m) in G act nontrivially and orthogonally on exactly one copy of S^{m-1} , and $SO(\alpha) \times SO(m - \alpha + 1)$ acts transitively and non-trivially just on $S^{\alpha-1} \times S^{m-\alpha}$ in Y. Extend the action of G to X leaving the two vertices of X fixed. Then there are w conjugacy classes of isotropy subgroups, $H^{\alpha}(X; Q) \neq 0$ and

dim $G = (w - 2) \langle m - 1 \rangle + \langle m - \alpha \rangle + \langle \alpha - 1 \rangle$.

For an example that satisfies statement (1) and

 $\dim G = (w-2) \langle m-1 \rangle + \dim SU(k+1),$

we simply replace $S^{\alpha-1} \times S^{m-\alpha}$ and the factor $SO(\alpha) \times SO(m-\alpha+1)$ in the above example by CP^k (2k = m-1) and SU(k+1) respectively with SU(k+1) acting transitively on CP^k .

2. From the proof of the theorem, it is not difficult to see that if w = 1, we have the following result: Let G be a compact connected Lie group acting effectively on a connected locally compact *m*-dimensional space X with

598

exactly one type of orbits, $m \ge 19$. Then X is either homeomorphic to CP^k (2k = m), or

 $\dim G \leq \langle \alpha \rangle + \langle m - \alpha \rangle$

for all α such that $H^{\alpha}(X; Q) \neq 0$.

3. The same proof also shows that the theorem is true when the fixed point set F is empty.

References

- 1. A. Borel, Seminar on transformation groups, Annals of Math. Studies, 46 (Princeton Univ. Press, Princeton, New Jersey 1960).
- 2. K. Jänich, Differenzierbare G-Magnigfaltigkeiten, Lecture Notes in Math. 59 (Springer-Verlag, Berlin and New York, 1968).
- 3. H. T. Ku, L. N. Mann, J. L. Sicks, and J. C. Su, Degree of symmetry of a product manifold, Trans. Amer. Math. Soc. 146 (1969), 133-149.
- 4. L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532-546.

5. — Dimensions of compact transformation groups, Michigan Math. J. 14 (1967), 433-444.

6. D. Montgomery and L. Zippin, *Topological transformation groups* (Wiley Interscience, New York, 1955).

University of Massachusetts, Amherst, Massachusetts