DIMENSION OF A TOPOLOGICAL TRANSFORMATION GROUP

HSU-TUNG KU AND MEI-CHIN KU

Throughout this paper, the Alexander-Spanier cohomology with compact supports will be used. Suppose X is a compact connected topological m-manifold which admits an effective action of a compact connected Lie group G ($m \geqq 19$). It is known [3] that X is either homeomorphic to the complex projective k-space $C P^{k}(m=2 k)$, or

$$
\operatorname{dim} G \leqq\langle\alpha\rangle+\langle m-\alpha\rangle
$$

for all α such that $H^{\alpha}(X ; Q) \neq 0$, where $\langle k\rangle$ denotes $k(k+1) / 2$ for a nonnegative integer k. In this paper, we prove the corresponding result for the actions of compact connected Lie groups on the locally compact topological spaces. In [5], it is proved that if a compact connected (Lie) group G acts effectively on a connected locally compact m-dimensional space X with w conjugacy classes of isotropy subgroups, $w \geqq 2$, then $\operatorname{dim} G \leqq(w-1)$ $\langle m-1\rangle$. We improve the bound on the dimension of G by proving the following result.

Theorem. Let G be a compact connected Lie group acting effectively on a connected locally compact m-dimensional space X with w distinct conjugacy classes of isotropy subgroups, $w \geqq 2, m \geqq 20$. Suppose the fixed point set F of G is not empty, $\operatorname{dim} F<\alpha \leqq m-1$ for some α and $H^{\alpha}(X ; Q) \neq 0$. Then precisely one of the following holds:
(1) There is exactly one type of orbits of the form $C P^{k}(m-1=2 k)$ and $\operatorname{dim} G \leqq(w-2)\langle m-1\rangle+\operatorname{dim} S U(k+1)$.
(2) $\operatorname{dim} G \leqq(w-2)\langle m-1\rangle+\langle\beta\rangle+\langle m-\beta-1\rangle$, where $\beta=\max$ ($\alpha, m-\alpha$).

Proof. Suppose

$$
\begin{equation*}
\operatorname{dim} G>(w-2)\langle m-1\rangle+\langle\beta\rangle+\langle m-\beta-1\rangle . \tag{3}
\end{equation*}
$$

We proceed to show that we only have statement (1). Now

$$
\langle\beta\rangle+\langle m-\beta-1\rangle \geqq(m-1)^{2} / 4+(m-1) / 2 .
$$

Hence

$$
\begin{equation*}
\operatorname{dim} G>(w-2)\langle m-1\rangle+(m-1)^{2} / 4+(m-1) / 2 . \tag{4}
\end{equation*}
$$

Received July 2, 1975.

Let $X_{i}, i=1, \ldots, w$, be the point set union of the orbits corresponding to w conjugacy classes of isotropy subgroups, and let K_{i} be the normal subgroups of G acting trivially on X_{i} such that G / K_{i} acts effectively on X_{i} with all orbits of the same type. We may assume that $K_{w}=G$ and $X_{w}=F$. Obviously, $X=X_{1} \cup \ldots \cup X_{w-1} \cup F$, and G / K_{i} acts effectively on every orbit in X_{i}, $1 \leqq i \leqq w-1$, which is at most $(m-1)$-dimensional [5]. Hence

$$
\begin{equation*}
\operatorname{dim} G / K_{i} \leqq\langle m-1\rangle, \quad i=1, \ldots, w-1 . \tag{5}
\end{equation*}
$$

The map

$$
\phi: G \rightarrow G / K_{1} \times \ldots \times G / K_{w-1}
$$

defined by $\phi(g)=\left(g K_{1}, \ldots, g K_{w-1}\right)$ for $g \in G$ is a monomorphism because the action of G on X is effective and $\bigcap_{i=1}^{w-1} K_{i}=\bigcap_{i=1}^{w} K_{i}$ is the identity of G.
It follows from (4) that

$$
\begin{equation*}
\sum_{i=1}^{w-1} \operatorname{dim} G / K_{i} \geqslant \operatorname{dim} G>(w-2)\langle m-1\rangle+(m-1)^{2} / 4+(m-1) / 2 \tag{6}
\end{equation*}
$$

Express the groups G and $G / K_{i}, 1 \leqq i \leqq w-1$, in the following forms:

$$
\begin{align*}
& G=\bar{G} / N=\left(S_{1} \times \ldots \times S_{v} \times T^{q}\right) / N \tag{7}\\
& G / K_{i}=\bar{G}_{i} / N_{i}=\left(S_{1}{ }^{i} \times \ldots \times{S_{v i}}^{i} \times T^{q_{i}}\right) / N_{i}, \tag{8}
\end{align*}
$$

where T^{q} (respectively $T^{q_{i}}$) is a q-torus (q_{i}-torus), each S_{j} (respectively $S_{j}{ }^{i}$) is a compact, connected, simply connected simple Lie group, or isomorphic to $\operatorname{Spin}(4) \cong \operatorname{Spin}(3) \times \operatorname{Spin}(3)$, and there is at most one Spin (3), and N (respectively N_{i}) is a finite normal subgroup of \bar{G} (respectively \bar{G}_{i}).
It is easily seen from (6) that

$$
\begin{equation*}
\operatorname{dim} G / K_{i}>(m-1)^{2} / 4+(m-1) / 2, \quad 1 \leqq i \leqq w-1 . \tag{9}
\end{equation*}
$$

Now for any fixed $x_{i} \in X_{i}$, let $M_{i}=\left(G / K_{i}\right)\left(x_{i}\right)$, the G / K_{i} orbit at x_{i}, $1 \leqq i \leqq w-1$. Then $\operatorname{dim} M_{i} \leqq m-1$. Since $m-1 \geqq 19$, and G / K_{i} satisfy (9), we may modify the proof of the Main Lemma in [3] to the actions of G / K_{i} on M_{i} to obtain the following. For each $i, 1 \leqq i \leqq w-1$, exactly one of the following holds:
$\left(\alpha_{i}\right) M_{i}$ is homeomorphic to $C P^{k}(m-1=2 k)$, and G / K_{i} is locally isomorphic to $S U(k+1)$.
$\left(\beta_{i}\right) M_{i}$ is homeomorphic to $C P^{k} \times S^{1}(m-2=2 k)$, and G / K_{i} is locally isomorphic to $U(k+1)$.
$\left(\gamma_{i}\right) M_{i}$ is a simple lens space finitely covered by $S^{2 k+1}(m-1=2 k+1)$, and G / K_{i} is locally isomorphic to $U(k+1)$.
$\left(\delta_{i}\right) G / K_{i}$ contains a normal factor $S_{1}{ }^{i} \cong \operatorname{Spin}\left(n_{i}\right)$ (see (8)), where
$\left(a_{i}\right) n_{i}>(m+1) / 2$,
$\left(b_{i}\right) S_{1}{ }^{i}$ acts almost effectively on the homogeneous space M_{i} with all orbits homeomorphic to either $S^{n_{i-1}}$ or $R P^{n_{i-1}}$.

Suppose there are $i_{1}, i_{2},\left(i_{1} \neq i_{2}\right)$ satisfying $\left(\alpha_{i}\right), i=i_{1}, i_{2}$. Then

$$
\begin{aligned}
& \operatorname{dim} G \leqq(w-3)\langle m-1\rangle+2 \operatorname{dim} S U(k+1) \\
& \quad<(w-2)\langle m-1\rangle+(m-1)^{2} / 4+(m-1) / 2
\end{aligned}
$$

This contradicts (4). If there is exactly one M_{i} satisfying $\left(\alpha_{i}\right)$, we have the statement (1). We will show that the remaining possibilities $\left(\beta_{i}\right),\left(\gamma_{i}\right)$ and $\left(\delta_{i}\right)$ cannot occur.

In the case that there is an M_{i} satisfying either $\left(\beta_{i}\right)$ or $\left(\gamma_{i}\right)$, we have

$$
\begin{aligned}
\operatorname{dim} G \leqslant \sum_{j \neq i} \operatorname{dim} G / K_{j}+ & \operatorname{dim} U(k+1) \\
& \leqslant(w-2)\langle m-1\rangle+\langle\beta\rangle+\langle m-\beta-1\rangle
\end{aligned}
$$

which contradicts (3). Hence the possibilities (δ_{i}) hold for all $i, i=1, \ldots$, $w-1$.

We may lift each $S_{1}{ }^{i}$ in \bar{G}_{i} to \bar{G}, and identify $S_{1}{ }^{i}$ as a subgroup of $\bar{G}, 1 \leqq i \leqq$ $w-1$. The subgroups $S_{1}{ }^{i}$ of \bar{G} are all distinct, $1 \leqq i \leqq w-1$. Otherwise, there exist $i, j, i \neq j$, and $S_{1}{ }^{i}=S_{1}{ }^{j}$. Let

$$
\bar{\phi}: \bar{G} \rightarrow \bar{G}_{1} \times \ldots \times \bar{G}_{w-1}
$$

be the homomorphism that covers ϕ. Define the homomorphism

$$
\psi: \bar{G}_{1} \times \ldots \times \bar{G}_{w-1} \rightarrow \bar{G}_{1} \times \ldots \times \bar{G}_{i} / S_{1}{ }^{i} \times \ldots \times \bar{G}_{w-1}
$$

by $\psi\left(g_{1}, \ldots, g_{i}, \ldots, g_{w-1}\right)=\left(g_{1}, \ldots, g_{i-1}, g_{i} S_{1}{ }^{i}, g_{i+1}, \ldots, g_{w-1}\right)$. Then $\operatorname{Ker}(\psi \bar{\phi})$ is a finite group. Hence
(10) $\operatorname{dim} \bar{G}=\operatorname{dim} G \leqslant \sum_{\substack{k=1 \\ k \neq 1}}^{w-1} \operatorname{dim} G / K_{k}+\operatorname{dim} G / K_{i}-\operatorname{dim} S_{1}{ }^{i}$.

Let $t_{c}{ }^{i}$ be the smallest integer such that $\operatorname{dim} S_{c}{ }^{i} \leqq\left\langle t_{c}{ }^{i}\right\rangle$. It follows from [2; 4] (applied to the action of G / K_{i} on M_{i}) that

$$
\begin{equation*}
\sum_{c=1}^{v_{i}} t_{c}{ }^{i}+q_{i} \leqslant \operatorname{dim} M_{i} \leqslant m-1 \tag{11}
\end{equation*}
$$

But $t_{1}{ }^{i}=n_{i}-1>(m-1) / 2$ by $\left(a_{i}\right)$, hence $\sum_{c=2}^{v_{i}} t_{c}{ }^{i}+q_{i}<(m-1) / 2$. From (8) we have

$$
\begin{aligned}
\operatorname{dim} G / K_{i}-\operatorname{dim} S_{1}{ }^{i} \leqslant \sum_{c \geq 2} & \left\langle t_{c}{ }^{i}\right\rangle+q_{i} \leqslant\left\langle\sum_{c \geq 2} t_{c}{ }^{i}+q_{i}\right\rangle \\
& \leqslant\langle[(m-1) / 2]\rangle\left\langle(m-1)^{2} / 4+(m-1) / 2 .\right.
\end{aligned}
$$

Hence

$$
\operatorname{dim} G<(w-2)\langle m-1\rangle+(m-1)^{2} / 4+(m-1) / 2
$$

by (10). This is a contradiction to (4).

Denote the subgroup $S_{1}{ }^{1} \times \ldots \times S_{1}{ }^{w-1}$ of \bar{G} by H. The group $S_{1}{ }^{1} \times \ldots$ $\times S_{1}{ }^{i-1} \times S_{1}{ }^{i+1} \times \ldots \times S_{1}{ }^{w-1}$ must act trivially on $X_{i}, 1 \leqq i \leqq w-1$. Otherwise the orbits of H will have dimension at least $\left(n_{i}-1\right)+\left(n_{j}-1\right)$ for some $j(1 \leqq j \leqq w-1, j \neq i)$, and $\left(n_{i}-1\right)+\left(n_{j}-1\right)>m-1$ by $\left(a_{i}\right)$ which contradicts the fact that $\operatorname{dim} M_{i} \leqq m-1$. It follows that $X_{i} / H=$ $X_{i} / S_{1}{ }^{i}$ and

$$
X / H=X_{1} / S_{1}{ }^{1} \cup \ldots \cup X_{w-1} / S_{1}^{w-1} \cup F
$$

Now the action of $S_{1}{ }^{i}$ on X_{i} has all orbits either $S^{n_{i}-1}$ or $R P^{n_{i-1}}$. This follows from $\left(\delta_{i}\right)$ and the fact that the action of $S_{1}{ }^{i}$ on any two G / K_{i} orbits in X_{i} are equivariant homeomorphic. Hence we have fibrations $X_{i} \rightarrow X_{i} / S_{1}{ }^{i}$ with fibre $S^{n_{i}-1}$ or $R P^{n_{i}-1}, 1 \leqq i \leqq w-1$. Let $n_{k}=\min \left\{n_{i}: i=1, \ldots, w-1\right\}$. Then

$$
\operatorname{dim} X_{i} / S_{1}{ }^{i} \leqq m-\left(n_{i}-1\right) \leqq m-n_{k}+1,
$$

and

$$
\begin{equation*}
\operatorname{dim} X / H \leqq \max \left\{m-n_{k}+1, \operatorname{dim} F\right\} \tag{12}
\end{equation*}
$$

We claim that $n_{k} \leqq \beta+1$. Suppose, on the contrary, that $n_{k} \geqq \beta+2$. Consider the projection $\pi: X \rightarrow X / H$. For each $\tilde{x} \in X / H, \pi^{-1}(\tilde{x})$ is $S^{n_{i-1}}$, $R P^{n_{i-1}}$, or a point, which is acyclic over Q up to $n_{k}-2$. It follows from the Vietoris-Begle mapping theorem that

$$
\pi^{*}: H^{j}(X / H ; Q) \cong H^{j}(X ; Q), \quad j \leqq n_{k}-2
$$

However, $H^{\alpha}(X / H ; Q) \neq 0$ since $\alpha \leqq \beta \leqq n_{k}-2$. But

$$
\operatorname{dim} X / H \leqq \max \{m-\beta-1, \operatorname{dim} F\}<\alpha
$$

from (12). This is, of course, impossible. Hence $n_{k} \leqq \beta+1$.
Now we consider the action of G / K_{k} on M_{k}. From (δ_{k}) and (11) we have

$$
\begin{equation*}
S_{1}{ }^{k} \cong \operatorname{Spin}\left(n_{k}\right), n_{k}>(m+1) / 2, \text { and } \tag{13}
\end{equation*}
$$

$$
\beta \geqq t_{1}{ }^{k}=n_{k}-1 \geqq t_{j}{ }^{k}, \quad 2 \leqq j \leqq v_{k} .
$$

Let $t_{1}{ }^{k}=\beta-u, u \geqq 0$. Then

$$
\operatorname{dim} G / K_{k}=\operatorname{dim} \bar{G}_{k} \leqslant\langle\beta-u\rangle+\sum_{=2}^{v_{k}}\left\langle t_{j}^{k}\right\rangle+q_{k},
$$

where

$$
\begin{equation*}
\sum_{j=2}^{v_{k}} t_{j}{ }^{k}+q_{k}-u \leqslant m-\beta-1 \tag{14}
\end{equation*}
$$

by (11). We consider two cases.
(i) $\sum_{j=2}^{v_{k}} t_{j}^{k}+q_{k} \leqq u$. Then

$$
\begin{aligned}
\operatorname{dim} G / K_{k} \leqslant\langle\beta-u\rangle & +\left\langle\sum_{j=2}^{v_{k}} t_{j}^{k}+q_{k}\right\rangle \\
& \leqslant\langle\beta-u\rangle+\langle u\rangle \leqslant\langle\beta\rangle \leqslant\langle\beta\rangle+\langle m-\beta-1\rangle
\end{aligned}
$$

(ii) $\sum_{j=2}^{v_{k}} t_{j}{ }^{k}+q_{k}>u$. By repeated use of Lemma 2(b) in [3],

$$
\langle\beta-u\rangle+\sum_{j=2}^{v_{k}}\left\langle t_{j}{ }^{k}\right\rangle+q_{k} \leqslant\langle\beta\rangle+\sum_{j=2}^{v_{k}}\left\langle\tilde{t}_{j}{ }^{k}\right\rangle+\tilde{q}_{k},
$$

where $0 \leqq \tilde{q}_{k} \leqq q_{k}, 0 \leqq \tilde{f}_{j}{ }^{k} \leqq t_{j}{ }^{k},\left(2 \leqq j \leqq v_{k}\right)$, and

$$
\sum_{j=2}^{v_{k}} \tilde{t}_{j}^{k}+\tilde{q}_{k}=\sum_{j=2}^{v k} t_{j}^{k}+q_{k}-u
$$

It follows that

$$
\begin{aligned}
& \operatorname{dim} G / K_{k}=\operatorname{dim} \bar{G}_{k} \leqslant\langle\beta\rangle+\sum_{j=2}^{v_{k}}\left\langle\tilde{t}_{j}{ }^{k}\right\rangle+\tilde{q}_{k} \\
& \leqslant\langle\beta\rangle+\left\langle\sum_{j=2}^{v_{k}} \tilde{t}_{j}{ }^{k}+\tilde{q}_{k}\right\rangle \\
& =\langle\beta\rangle+\left\langle\sum_{j=2}^{v_{k}} t_{j}^{k}+q_{k}-u\right\rangle \\
& \\
& \leqslant\langle\beta\rangle+\langle m-\beta-1\rangle(\text { From }(14))
\end{aligned}
$$

Hence

$$
\operatorname{dim} G \leqq(w-2)\langle m-1\rangle+\langle\beta\rangle+\langle m-\beta-1\rangle,
$$

a contradiction. This completes the proof of the theorem.
Remarks 1. The theorem is best possible. Let Y be the disjoint union of ($w-2$) copies of the ($m-1$)-sphere S^{m-1} and $S^{\alpha-1} \times S^{m-\alpha}(m-\alpha \geqq \alpha)$. Take X to be the suspension of Y. Let

$$
G=S O(m) \times \ldots \times S O(m) \times S O(\alpha) \times S O(m-\alpha+1)
$$

with (w-2) copies of $S O(m)$. Now let each copy of $S O(m)$ in G act nontrivially and orthogonally on exactly one copy of S^{m-1}, and $S O(\alpha) \times$ $S O(m-\alpha+1)$ acts transitively and non-trivially just on $S^{\alpha-1} \times S^{m-\alpha}$ in Y. Extend the action of G to X leaving the two vertices of X fixed. Then there are w conjugacy classes of isotropy subgroups, $H^{\alpha}(X ; Q) \neq 0$ and

$$
\operatorname{dim} G=(w-2)\langle m-1\rangle+\langle m-\alpha\rangle+\langle\alpha-1\rangle .
$$

For an example that satisfies statement (1) and

$$
\operatorname{dim} G=(w-2)\langle m-1\rangle+\operatorname{dim} S U(k+1),
$$

we simply replace $S^{\alpha-1} \times S^{m-\alpha}$ and the factor $S O(\alpha) \times S O(m-\alpha+1)$ in the above example by $C P^{k}(2 k=m-1)$ and $S U(k+1)$ respectively with $S U(k+1)$ acting transitively on $C P^{k}$.
2. From the proof of the theorem, it is not difficult to see that if $w=1$, we have the following result: Let G be a compact connected Lie group acting effectively on a connected locally compact m-dimensional space X with
exactly one type of orbits, $m \geqq 19$. Then X is either homeomorphic to $C P^{k}$ ($2 k=m$), or
$\operatorname{dim} G \leqq\langle\alpha\rangle+\langle m-\alpha\rangle$
for all α such that $H^{\alpha}(X ; Q) \neq 0$.
3. The same proof also shows that the theorem is true when the fixed point set F is empty.

References

1. A. Borel, Seminar on transformation groups, Annals of Math. Studies, 46 (Princeton Univ. Press, Princeton, New Jersey 1960).
2. K. Jänich, Differenzierbare G-Magnigfaltigkeiten, Lecture Notes in Math. 59 (SpringerVerlag, Berlin and New York, 1968).
3. H. T. Ku, L. N. Mann, J. L. Sicks, and J. C. Su, Degree of symmetry of a product manifold, Trans. Amer. Math. Soc. 146 (1969), 133-149.
4. L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532-546.
5. Dimensions of compact transformation groups, Michigan Math. J. 14 (1967), 433-444.
6. D. Montgomery and L. Zippin, Topological transformation groups (Wiley Interscience, New York, 1955).

University of Massachusetts, Amherst, Massachusetts

