
CONVEX SETS OF NON-NEGATIVE MATRICES 

R. A. BRUALDI 

1. Introduction. In (8) M. V. Menon investigates the diagonal equiva
lence of a non-negative matrix A to one with prescribed row and column 
sums and shows that this equivalence holds provided there exists at least 
one non-negative matrix with these row and column sums and with zeros in 
exactly the same positions A has zeros. However, he leaves open the question 
of when such a matrix exists. W. B. Jurkat and H . J . Ryser in (7) study the 
convex set of all m X n non-negative matrices having given row and column 
sums. They compute the minimal term rank and permanent of the matrices 
in this convex set and also determine its extreme points. The latter then 
constitutes a generalization of BirkhofFs theorem for the convex set of doubly 
stochastic matrices. Here we show how the solution of the existence question 
above can be obtained from a feasibility theorem for network flows of A. J. 
Hoffman. This result can then be used to obtain a quicker proof of Jurkat 
and Ryser's formula for the minimal term rank of the class of m X n non-
negative matrices with given row and column sums. Another consequence is 
a result of A. Horn concerning the existence of a doubly stochastic matrix 
with a prescribed main diagonal. 

We also discuss the convex sets of non-negative matrices having prescribed 
row and column sums and prescribed positions for all the zeros. The extreme 
points for the closure of such convex sets can also be classified. 

2. The existence theorem. By a zero pattern tymyn or simply ty we shall 
mean an m X n matrix of O's and l's. We say that the m X n non-negative 
matrix A is compatible with the zero pattern ^ provided A has O's wherever 
^ does and positive elements wherever ^ has l's. If R = (rx, . . . , rm) and 
£ = (si, . . . , sn) are positive vectors, then the symbol ty(R, S) denotes the 
class of all m X n non-negative matrices which are compatible with s$ and 
have row sum vector R and column sum vector S. Thus the question we 
wish to investigate is: When is the class ty(R,S) non-empty? An obvious 
necessary condition for ty(R,S) to be non-empty is that 

m n 

H rt = X) sj. 
i=l .7=1 

Also since the vectors R and S have positive components, ty must have a 1 
in each row and column, and we implicitly assume this throughout. There is 
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NON-NEGATIVE MATRICES 145 

no loss of generality in assuming t h a t the zero pat tern ^ is indecomposable, 
t ha t is, the rows and columns of ^ cannot be permuted so t ha t it takes the 
form 

Lo $2J 
where $1 and $2 are non-vacuous 0, 1-matrices. For if $ can be permuted 
to the above form, then the non-emptiness question for ty{R, S) reduces to 
the non-emptiness question for two ''smaller" classes with zero pat terns $1 
and ^2 and appropriate row and column sum vectors. 

T H E O R E M 2.1. If $ is an indecomposable zero pattern and R = (Vi, . . . , rm) 
and S = (51, . . . , sn) are given positive vectors, then ty(R, S) is non-empty if 
and only if the following condition (*) is fulfilled: 

(*) Whenever the rows and columns of $ can be permuted to the form 

where ^ 1 is a non-vacuous 0, 1-matrix formed from rows i\, . . . , iv and columns 

i i i • • • ijq of $ and ^ 2 is non-vacuous, then 

(2.2) Sjl + . . . + sjq > rtl + . . . + rip. 

Proof.1 T h e necessity of condition (*) is immediate. For, if A £ ty(R,S), 
then summing columns ji, . . . , j q and rows iu . . . , ip and using the fact t ha t 
^21 does not consist of all 0's, we obtain the inequality in (2.2). 

Associate a network N with the zero pat tern ^ which has nodes 

{xi, . . . , xm, yu . . . , yn, s, t}. 

There is an arc (xif y f) from xt to y j in N if and only if the (i, j) position of 
^ is a 1. There are also arcs (s, xt) from 5 (the source) to each xt and arcs 
(yjy t) from y j to t (the sink) for each y j . These are the only arcs of N. We 
pu t upper c(u, v) and lower l(u, v) bounds for the flows in the arcs (u, v) of 
N as follows: for the arcs (xt, y j) of N we pu t c{xuy3) = °°, l{xuyf) = e 
where e is (for the moment) an unspecified positive number; for the arcs 
(5, Xf) we pu t c(s, Xi) = l(s, Xt) = ru while for the arcs (yj, t) we pu t 

c(yjy 0 = l(yj> 0 = SJ- Applying the circulation theorem (3, p. 51) of A. J. 
Hoffman or ra ther its consequence for the existence of a flow / from a source 
5 to a sink t in a network with lower and upper bounds on arc flows, we see 
t h a t the relevant condition is 

(2.3) sh + . . . + sjq > rix + . . . + rip + n($21)e 

whenever ^ is permuted to the form (2.1) and where n($$2i) equals the 
number of l ' s in ^32i- B u t by (2.2) we can choose e small enough so t ha t 
(2.3) is always satisfied. If f(u, v) denotes the value of the f l o w / on the arc 

W e assume for this proof that the reader is familiar with network flows as given in (3). 
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(u, v) of TV, then the m X n matr ix A = [atj], where atj = f(xi} ys) if (xt, jj) 
is an arc of N and atj = 0 otherwise, is seen to be a member of $ ( i ? , S). This 
proves the theorem. 

Construction.2 In case the row sum vector R = (ru . . . , rm) and column 
sum vector 5 = (si, . . . , sn) have rational components , we give a method 
to construct a matr ix in ty(R,S) when condition (*) is satisfied. This con
struction can be considered as an al ternat ive proof of the sufficiency of con
dition (*) in Theorem 2.1. T h e construction is based on the labelling method 
(3, pp. 17-18) for constructing maximal flows in capacity-constrained net
works. We go through two such labelling processes. T h e first constructs a 
matr ix A = [atj] having row sum vector R and column sum vector S and O's 
in the positions where $ has O's b u t possibly also in other positions. T h e second 
labelling process then seeks to create positive elements in those positions of 
A which have O's where ^ has l ' s wi thout destroying the row sum vector R 
and column sum vector S. 

I. If (i,j) is a position where $ has a 0, we define atj = 0. Select a position 
(i,j) where $ has a 1 and define atj = mm{ru Sj}. If rt < sj} we define 
aik = 0 for all k ^ j] if rt > sj} we define atj = 0 for all I ^ i\ and if rt = sjt 

we define aiJc = 0 for all k ^ j and atj = 0 for all / ^ i. We then delete the 
ith row, j t h column or both according to which case occurs above, diminish 
row and column sums accordingly, and proceed inductively. Suppose we have 
not succeeded in construct ing a matr ix with row sum vector R and column 
sum vector S. Then the matr ix A constructed after permut ing its rows and 
columns, has the form 

where A i is a p X q non-negative matr ix. T h e first q columns of (2.4) have 
the desired column sum and the last m — p rows have the desired row sum, 
while the remaining rows and columns do not. Moreover, the zero pa t te rn ^ 
(permuted as A is) has O's in the positions occupied by 0. Le t r't be the it\\ 
row sum of (2.4) and sf j be the j t h column sum. Finally call the positions 
of A for which $ has a 1 admissible positions and all other positions inadmis
sible. We first label those rows of A for which rf

 t < rt. If row i is such a row, 
we assign it the label (-, e(i)) where e(i) = rt — r'i > 0. Such rows are now 
labelled and unscanned. In general select a n y labelled unscanned row or 
column, e.g. row /. Then scan row / of A for admissible positions in unlabelled 
columns. If column j contains an admissible position in row /, we assign column 
j the label (/+, e(j)) where e(j) = e(l) if Sj = s'j and e(J) = m'm{e(i), Sj — s't] 
if Sj > s'j. Row / is now labelled and scanned. If column j is a labelled, un
scanned column, we scan the column for positions of A which have positive 

2This construction is along lines suggested to the writer by D. R. Fulkerson. 
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entries in unlabelled rows. If row k is such a row, we assign it the label (j~, e(k)) 
where e(k) = m'm{e(j), akj}. We repeat this general procedure until either 
some column p for which s'v < sv is labelled and unscanned, or until no more 
labels are possible and no such columns are labelled. We show tha t the la t ter 
caes is impossible ( tha t is, violates condition (*)). Suppose we have not 
succeeded in labelling some column p for which s'p < sp. Then permute rows 
and columns of A so t ha t the labelled rows are among the first row positions 
and the labelled columns are among the first column positions: 

lab. I" A\ Oi I 
unlab. [_ 02 Af

2 J 
lab. unlab. 

where A\ is formed from rows i±, . . . , iu and columns 7*1, . . . , j v of A. Since 
no more labels are possible, the positions of 0\ are all inadmissible and thus 
0\ consists of all O's. Also the positions of 02 may be admissible, bu t 0 2 mus t 
consist of all O's. Hence 

rn ~r • • • + riu
 = sji ~r • • • ~r Sjv 

and this contradicts condition (*). Thus the only possibility is t ha t we have 
succeeded in labelling a column whose sum is less than tha t specified. If such 
a column has a label (g+, e(p)), then we increase the (q, p) ent ry of A by 
e(q). If the qth row is labelled {hr, e(g)), then we decrease the (q, p) position 
of A by e(p) and so on until we arrive a t a row whose sum is less than t h a t 
specified. T h u s we have succeeded in increasing the sum of the entries of the 
matr ix A wi thout destroying these row or column sums which have already 
the specified value. We repeat the entire labelling procedure. Since the 
R = (f 1, . . . , rm) and S = (si, . . . , sn) have rational components and thus 
the constructed matrices have rational entries, after a finite number of appli
cations of the labelling process we construct a non-negative A having the 
desired row and column sum vectors and O's in a t least those positions where 
$ has O's. 

I I . Let A be a non-negative matrix with row sum vector R and column 
sum vector 5 and O's in a t least those positions where ^ has O's. Suppose 
there is an admissible position (i, j) of A which has an ent ry of 0. Label 
the row of this position with (j). Row i is now labelled bu t unscanned. In 
general select any labelled bu t unscanned row or column. If row k is labelled 
b u t unscanned, scan row k of A for positive entries in unlabelled columns 
and label such columns by (k). Row k is now labelled and scanned. If column 
/ is labelled b u t unscanned, scan column / of A for admissible positions in 
unlabelled rows and label such rows by (/). Column k is now labelled and 
scanned. Continue this labelling process until the column of the (i, j) position 
has been labelled or until no further labels are possible, and this column is 
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not labelled. We again show that the latter case violates condition (*). For, 
if the rows and columns of A are permuted so that A has the form 

lab. [ A"x Ox 1 
unlab. L °2 A'\ J 

lab. unlab. 

Now since no more labels are possible, all positions of 02 must be inadmissible 
positions, while all entries of 0\ must be O's. As before, this contradicts con
dition (*). Hence we must succeed in labelling the column of position (i, j). 
Let column j be labelled (ik), row ik labelled (jk), column 7* labelled (ih-i), • • . , 
column ji labelled (i), and consider the positions 

(i,j), (iji), (iiji), • •> (ik-i,j*), (ik,jt), (ik,j)> 

The first, third, etc., of these are admissible positions, while the second, fourth, 
etc., are positions in which A has a positive entry. Let C be the m X n matrix 
having + l's in positions (i, j), (ik, jk), > - - , (ii, ji), — l's in positions 
(i, jk), • • • » (̂ 2, Ji), (ii, j), and O's elsewhere. Then we may choose e sufficiently 
small (e.g. one half the minimum of the indicated positive entries) so that 
A + eC has row sum vector R, column sum vector S, and has at least one 
less admissible position having a 0 than A. We may repeat the argument 
until we construct a matrix in ty(R, S). 

COROLLARY TO THEOREM 2.1 (A. Horn 6). Let di, d2f. . . . ,dn be n numbers 
with 0 < d* < 1, i = 1, . . . , n. Then a necessary and sufficient condition that 
(di, dz, . . . , d„) be the main diagonal of an n X n non-negative doubly stochastic 
matrix is that 

n 

X} dk — 2 min dt < n — 2. 
*=1 l<i<n 

Proof. First observe that we can assume each dt < 1, for otherwise the 
problem reduces to that for a smaller-order matrix. The corollary then follows 
from Theorem 2.1 by observing that it is equivalent to finding a non-negative 
matrix having row and column sum vector (1 — di, . . . , 1 — dn) and O's on 
the main diagonal. (The matrix can be taken to have positive off-diagonal 
entries.) 

3. The class <$(R, S). Let $ be a zero pattern such that <$(R, S) is non
empty. Since R and S are positive vectors, there must be a 1 in every row 
and column of $. With the zero pattern $ we associate a (undirected, bi
partite) graph, which on occasion will also be denoted by $, as follows. Corre
sponding to row i we introduce a vertex xu i = 1, . . . , m, and corresponding 
to column j we introduce a vertex yjt j = 1, . . . , n. There is an edge {xu y j] 
joining xt and y3 if and only if the (i, j) entry of $ is a 1, and these are the 
only edges. (The connection between this graph and the directed network 
defined in § 2 should be noted.) I t is easily seen that the pattern ty is inde-
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composable if and only if the graph ^ is connected. If the graph $ is not 
connected, it splits up into disjoint connected components, say $1, . . . , $#, 
and thus the pattern $, upon permutation of its rows and columns, assumes 
the form 

% 0 . .. 0 
0 <p2 . .. 0 

0 0 . .. % 
where $i , . . . , tyk are non-vacuous indecomposable zero patterns corresponding 
to the connected components of the graph $. We call (3.1) the canonical form 
of 3̂ and ^ I , . . . , tyk the indecomposable components of ty. They are uniquely 
determined up to permutations of their rows and columns. 

It is clear that any cycle of this graph consists of an even number of edges. 
If 7 is a cycle of this graph, we associate with y two m X n matrices whose 
entries are 0 , 1 , —1 in the following way. If y consists of the edges {xtl, 3/^}, 
{xi2, yn], }xi2J yj2}, . . . , {xjk, yjk) with xtl, . . . , xik and yjx, . . . , yjk distinct, 
then one of these matrices has a 1 in the (ii,ji) position, a —1 in the (2*2,71) 
position, a 1 in the (12, J2) position, . . . , a —1 in the (ii,jk) position, and 0's 
elsewhere. The other is the negative of this matrix. If C is either of these 
matrices and 6 is any non-negative number, then obviously BC has all row 
and column sums equal to 0. Thus adding 6C to any matrix A does not alter 
the row or column sums of A. We shall refer to such matrices 6C as cycle 
matrices for the pattern ty. Finally, if A and B are any two matrices in ty(R, S), 
we write A ~ B provided there exists a cycle matrix dC such that B = A + 6C. 
Note that A ~ B if and only if B ~ A, and A ~ A. 

THEOREM 3.1. Let A and B be any two matrices in ^(R, S). Then there exist 
matrices A\ = A, A2, . . . , Ak = B, all in ^(R, S), such that 

A = Ai ~ A2 ~ . . . ~ Ak = B. 

Proof. Let A be different from B. Then there is some position in which A 
and B both have positive elements and disagree. Thus, for instance, aij>bij>0. 
Since A and B are both in ^ (R , S), there must be a k 9e i such that 0<a k j<b k j . 
Then there must be an I 9^ j such that akï > bki > 0. Continuing in this way, 
we must eventually return to a previous position. This will then give rise to 
a cycle {xil} y^}, {yh, xi2}, . . . of the graph $ such that 

ahji > biiji > 0, 0 < ai2jl < bi2jl, . . . . 

Let 

and C be the cycle matrix associated with the above cycle which has a — 1 
in the (ip, jp) position if the minimum 6 is assumed at aipjp — bipjp or, if not, 
a + 1 in position (iv,jq) if the minimum 6 is assumed at bipjq — aipjq > 0. 
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Then it is easily verified that A2 — A\ + OC £ ty(R, S) and A2 agrees with 
B in at least one more position than Ai = A did. Continuing this process 
proves the theorem. 

THEOREM 3.2. If ty is an arbitrary zero pattern, then ^(R, S) contains either 
no, precisely one, or infinitely many matrices. If ty(R, S) is non-empty, then it 
contains precisely one matrix if and only if the associated graph ^ contains no 
cycles, that is, the graph is a tree or a forest. 

Proof. By Theorem 3.1 if the graph ^ has no cycles, then there cannot be 
more than one matrix in ty(R,S). However, if the graph does have a cycle 
and C is one of the associated matrices, then A ± eC will be in ty(R, S) for 
A £ ty(R,S) and all suitable small positive numbers e. 

Suppose ty is a zero pattern such that ty(R,S) contains a unique matrix. 
The graph ^ then consists of, say, p disjoint trees. Since the number of vertices 
of the graph is m + n and the number N of edges is the number of l 's in $, 
then (1, p. 27) N = (m + n) —p. Since p > 1, we have N < m + n — 1 
with equality if and only if the associated graph ^ is a tree. 

4. The partially ordered set L(R,S). Let R = (rx, . . . , rm) and 
5 = (si, . . . , sn) again be positive vectors with r\ + . . . + rm = s± + . . . + sn. 
We denote by L(R, S) the collection of all m X n zero patterns ^ such that 
ty(R, S) is non-empty. The class L(R, S) is always non-empty for if 3 denotes 
the m X n zero pattern consisting of all l's, then ^s(R, S) is non-empty for 
(see 7 or 4, p. 19) the matrix A = [a^] with 

/
m 

J c = l 

is in $j(R,S). We define a partial order on L(R, S) as follows. If ty ^ O 
are in L(R,S), then ^ < O provided $ has a 0 in every position that O 
has a 0. We write $ < Q provided $ < O or $ = £}. With this definition 
L(R, S) becomes a partially ordered set. 

THEOREM 4.1. Let Xi, X2, . . . , Xk be those zero patterns such that Xi(R, S) 
contains a unique matrix i = 1, . . . , k. Then Xi, . . . , Xk are the minimal 
elements of the partially ordered set L(R,S). 

Proof. Let $ G L(R, S) and suppose $ ( ^ , 5 ) contains more than one 
matrix, so that the associated graph has a cycle 7. Let A £ $ (i£, £) and 
let 0 > 0 be the minimum of the entries of A in the positions corresponding 
to the edges of the cycle. Let C be the 0 ,1 , —1 matrix associated with 7 which 
has a —1 in a position where the minimum 6 is attained. Then A — 6C £ Q 
(R, S) with O < $. We may continue until we obtain a 3^- with Xj < $ . 

Conversely, consider the possibility of a Q 6 L(R, S) with Q < £;- for 
some j = 1, . . . , k. Since the graph of Xj is a forest and thus a disjoint col
lection of trees and since trees are minimally connected (removal of any edge 
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disconnects it), it follows that we may permute rows and columns of 2 and 
Q in the same way to obtain 

~V 0' 
_0 ¥'_ 

n = 

where 2 ' and G ' are non-vacuous e X f zero patterns with the graph of 2 ' 
a tree and with possible 2 " (and thus Q") being vacuous, and where Q ' is 
obtained from 2 ' by changing one or more l's of 2 ' to O's. It then follows 
that the rows and columns of 2 ' and G ' can be permuted in the same way 
to obtain 

^ 2 12 2 2_ 
, o' = " Q 7 ! 0 ~ 

_ 0 Q'2_ 

where 2 ' i and G' i are e' X / ' zero patterns and 2'12 does not consist of all 
O's. If ii, . . . , ie, and j i , . . . ,jf are the rows and columns corresponding to 
2 ' i and G'i , then since X(R, S) is non-empty, 

^ + . . . + su> > rix + . . . + rîV, 

and since G (R, S) is non-empty, 

Sji \ • • • ~r ŝ y ~ ^û i • • • ~r ? ie'' 

We obviously have a contradiction and thus 2 ; is a minimal element of 
L(R,S),j = 1, . . . , & . 

By definition of the partial order if ^ G L(R, S) then $ < 3 , so that 3 
is /fee maximal element of the partially ordered set L(R, S). From the pre
ceding theorem it follows that if we extend L(R, S) to L(R, S) by an addi
tional element <J and define a < 3̂ for all $ G L(R, S), then £(i£, 5) is a 
p.o. set with maximal element 3 and minimal element a. The atoms of the 
p.o. set are then 2i , . . . , 2*. As is usual for a p.o. set, 3̂ is said to cover G pro
vided G < 5R < $ implies 3̂ = 9? or G = 9?. The atoms of the p.o. set 
L(R, S) are then the elements that cover the minimal element a. The follow
ing theorem discusses the remaining possibility of an element of L (R, S) covering 
another element different from a. 

THEOREM 4.2. Let G G L(R,S). Then a zero pattern 3̂ covers G if and 
only if one of the following is true: 

(1) ty is obtained from G by changing a 0 in an indecomposable component 
of G to a 1. 

(2) If the canonical form of G is 

roi o ... o i 
\ o G2 ... o 

0 0 . . . O* 
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then ty is obtained from © by changing at most one 0 of each of the off-diagonal 
zero blocks 0 to al in such a way that the directed graph with vertices Q i , . . . , ©fc 

and with a directed arc from ©z- to ©;-, i 9e j , if and only if the {i, j)-zero block 
has been changed consists of precisely one directed cycle along with isolated 
vertices: 

Proof. Let ^ and © satisfy (1). Then since £l(R, S) is non-empty, the 
zero pattern satisfies the condition (*) of Theorem 2.1. But it is easy to 
verify that if © satisfies (*) so does $. Hence $ G L(R, S) and clearly $ 
covers ©. 

Suppose ^ and © satisfy (2). Then after simultaneous permutations of the 
blocks of © and after relabelling, we may assume ^ has the form 

Ox Ol2 . 
Q 2 . 

: : . 

On 
©z-U 

Q*+i • 

o* 
where each of ©12, . . . , ©z-1,1, © a has precisely one 1 and everything 
unspecified consists of all O's. Since © Ç L(R, S), © satisfies condition (*) 
of Theorem 2.1. I t is again easy to verify that then $ must also satisfy (*) 
and hence ^ G L(R, S). Suppose one or more (but not all) of these new 
l's of 3̂ were changed back to O's. Then using the fact that © satisfies (*) 
we see that this new zero pattern cannot satisfy (*). Hence $ covers ©. 

Conversely, suppose $ 6 L(R, S) and $ covers ©. If $ has a 1 where 
some indecomposable component of © has a 0, then the pattern 1)3 ' which 
differs from © only in this respect is in L(R, S) by the above. Hence 1)3 = 1)3'. 
Hence suppose 1)3 agrees with © in the positions of the indecomposable com
ponents of ©. Consider the directed graph D with nodes ©1, . . . , ©# such 
that there is a directed arc from ©z- to ©^, i 5̂  j , if and only if 1)3 has a 1 in 
one or more positions of the (i,j)-zero block of ©. Suppose D did not have a 
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directed cycle. Then the strong components (5, pp. 53-57) of D are precisely 
the vertices of D. But now it is seen that since Q (R, S) is non-empty ty 
cannot satisfy condition (*). Hence D must have at least one directed cycle. 
But then since $ covers Q, D must consist of precisely one directed cycle 
apart from isolated vertices. This completes the proof. 

5. The class ty(R,S). Consider the non-empty class ty(R,S), topologized 
with the Euclidean topology. Then, in general, ty(R, S) is not a closed set. 
In fact ty(R,S) is closed if and only if ty(R,S) contains a unique matrix, 
that is, if and only if 3̂ is an atom of the p.o. set L(R, S). The following 
theorem determines its closure ty(R,S). 

THEOREM 5.1. If f Ç L(R,S), then 

%(R,S) = U £i(R,S) 

where the union is taken over all zero patterns O in L(R, S) with 0 < Q < $. 

Proof. First it is clear that 

W(R,S)C U £L(R,S). 

To prove the opposite containment it is enough to prove that if $ covers 
Q , then 

0(R,S) CW(R,S). 

Thus let A G >Ci(R, S) with $ covering Q. Hence 3̂ and Q satisfy conditions 
(1) or (2) of Theorem 4.2. First assume that Ĵ is obtained from Q by re
placing a 0 in an indecomposable component of Q by a 1. There is no loss 
of generality in assuming that Q itself is indecomposable. Let the position 
in which $ and Q disagree be the (i,j) position. Consider the graph of Q 
to be embedded in the graph of ty, whose vertices 
Then since the graph of O is connected, we may find a path from x{ to y} 

and hence a cycle in the graph of *$ containing the edge {x(, jj\ joining xf 

to yj. Let C be the 0, —1,1 matrix corresponding to this cycle which has a 
1 in the (i,j) position. Then for all sufficiently small positive t, 

A + eC£^{R,S). 
Hence A € f(R,S). 

Now assume that *§ is obtained from Q as indicated in (2). There is no 
loss of generality in assuming that Q has the form 

0 
0 
o2 

0 
0 

0 0 Q * 
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where the O f are indecomposable and $ is obtained from Q by replacing 
one 0 by a 1 in the zero blocks in positions (1, 2,), . . . , (k — 1, &), (fe, 1). Le t 
the positions of these O's be (ih i2), . . . , (H-iijk), Hyji)- Then in the associ
ated graph of O i we may find a path from xtl to yjl} . . . , in the associated 
graph of Oft we may find a pa th from xik to 3/^. Hence in the associated 
graph of 3̂ (assuming the previous graphs are embedded in this) we m a y 
find a cycle containing the edges {x^y^}, . . . , {xik_ltyjk}j {xik1yh}. Le t C 
be the 0, — 1 , 1 matr ix associated with this cycle which has a 1 in the posi
tions (ii, 72), . . • , (ik-ujk)i (ikiji) (this is possible since each of the above 
pa ths consists of an odd number of edges). Then for all sufficiently small 
positive e, A + eC G ty(R, S) and hence A = ty(R,S). This completes the 
proof of the theorem. 

Let us extend a previous definition and define for A, B G s$ (R, S) A ~ B 
provided A = B + dC where 6 > 0 and C is a 0, —1,1 matr ix corresponding 
to a cycle of the graph 1)3. T h e proof of the preceding theorem then shows 
t ha t if % covers Q , then there is a matr ix A G ty(R, S) and a matr ix 
B G 0(R, S) C ty(R,S) such t h a t ^ ~ B. Combining this with Theorem 
3.1 we obtain the following theorem. 

T H E O R E M 5.2. Let % Q G L(i? , 5) and s«££<we 5̂ a w ^ Q . Let A £ ^(R, S) 

and B G QL(R, S). Then there exist matrices 

A1 = A,A2, . . • ,Ai,Ai+i, ...,Aj = B 

with Alf . . . ,At £ ty(R,S) and Ai+1, . . . , A5 G £l(R, S) such that 

A = Ai~ A2~ . . . ~ At~ Ai+1~ . . . ~ Aj = B. 

COROLLARY 1. Let $ £ L(R, S), A £ y$(R, S), and B G y(R,S). Then 
there exist matrices A± = A, A2} . . . , Ak = B, all in ^(R, S), such that 

A = Ax~ A2~ . . . ~ Ak = B. 

That is y y$(R,S) can be generated by finite sequences of u ^ " operations from 
any matrix A G 1)3 (R, S). 

Regarded as a subset of Euclidean mn-space, ty(R,S) is a convex set. 
Likewise its closure ty(R,S) is convex. In (7) J u r k a t and Ryser and in (4) 
Fulkerson determine the extreme points of the convex set 3 (Ri S) (in the 
notat ion of (7), this is tyi(R, S)). T h e following theorem characterizes the 
extreme points for ^(R, S). 

T H E O R E M 5.3. If 1)3 G L(R,S), then the extreme points of the convex set 
ty(R,S) consist of the unique matrices in the classes X(R, S) where X ranges 
over all atoms of the p.o. set L(R, S) with X < 1)3. 

Proof. Suppose A G ty{R, S). Then by Theorem 5.1, A G £l(R, S) for some 
G G L(R, S) with G < 1)3. If G is no t an a tom of the p.o. set L(R, S), then 
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the associated graph of O has a cycle. But then for all sufficiently small 
positive e, A ± eC G d(R, S) C tyiR, S) where eC are cycle matrices corre
sponding to a cycle of the graph. But then 

A = $(A + eC) + \{A - eC) 

is a proper convex decomposition of A and hence A is not an extreme point 

of Was). 
Conversely, suppose A is the unique matrix in a class X(R, S) where Ï 

is an atom and X < $. Consider the possibility of a convex decomposition 
of A: 

A = OLAX + (1 - a)A2, 0 < a < 1, 

where Au A2 € %(R,S). But if Ax Ç £i(R, S) with G < $, then clearly 
O < £. Since £ is an atom, Q = Ï . Thus ^4i £ X(R, S) and similarly 
^2 G X(R,S). But then Ax = A2 = A. Hence 4̂ is an extreme point of 
$(i?, 5) . This completes the proof of the theorem. 

As already mentioned, Jurkat and Ryser determine the extreme points of 
$j(R,S) and do so by a construction process. They then go on to derive 
characterizing properties of these matrices. They, for instance, show that 
the extreme points of 3 (R, S) are uniquely determined by the positions of 
their positive elements. Our approach, besides being more general, relates 
the extreme points of the convex set ^(R, S) with the atoms (which might 
be regarded as extreme) of the p.o. set L(R, S). Everything we have done 
ultimately rests on the existence theorem of § 2. 

To conclude this section we want to show how Theorem 2.1 may be used 
to give a simpler proof of Jurkat and Ryser's formula for the minimal term 
rank of the matrices in 3(i£, S). The term rank p(A) of a non-negative matrix 
A is defined as the maximal number of positive elements of A with no two 
on a line (row or column). According to the Kônig-Egervary theorem the 
term rank of A is also equal to the minimum number of lines of A that con
tain all the positive elements of A. Since the term rank of A is invariant 
under arbitrary permutations of rows and columns, there is no loss of generality 
in assuming that in R = (ri, . . . , rm) and S = ($i, . . . , sn) we have ri < . . . 
< rm and S\ > . . . > sn. 

THEOREM 5.4 (Jurkat and Ryser). If the components of R = (ru . . . , rm) 
and S = (si, . . . , sn) are assumed in non-decreasing order and non-increasing 
order respectively, then the minimal term rank p of the matrices in $(R,S) is 
given by 

(5.1) p = min{m — e + /} 

where the minimum is taken over all pairs (e,f) with 0 < e < m , 0 < / < w , 
and 

(5.2) Si + . . . + sf > rx + • • • + re. 
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Proof. Consider such an e and / satisfying (5.2). Then the m X n zero 
pattern 

<P = 

where 3 i and 3̂ 2 consist of all l's, 3 i being e X / , and where X is either all 
l's or all O's depending on whether inequality or equality occurs in (5.2) for 
this e a n d / , satisfies condition (*) of Theorem 2.1 and thus $(i?, S) is non
empty. But if A G ty(R, S)j then the term rank of A is less than or equal to 
m — e + / by the Konig-Egervary theorem. Hence p < min {w — e + / } . 
Conversely, let 4̂ G 3>CR, 5) and let rows ih . . . , im_e and columns ji, . . . ,jf 

contain all the positive elements of A with m — e + / equal to the term 
rank of A. Then permuting rows and columns of A so that rows i\, . . . , im-e 

are among the last m — e rows and columns j h . . . , jf are among the first 
/ columns, we obtain 

"Ai 0~ 
.A 2i A2 

where Ai is an e X / matrix. But then 

+ ... + %> rfl + + rt 

But by the assumed monotonicities, Si + . . . + sf > s^ + . . 
^u + . . . + ru > f! + . . . + re. Hence s± + . . . + sf > rx + . 

+ s and 
and 

p = min {m — e + / } , 
and this proves (5.1). 

We remark that our expression for p, although a little different in appear
ance, is entirely equivalent to that obtained in (7). 

As remarked in (7) the maximal term rank p of matrices in $(R,S) is 
always given by jô = min {m, n\ and, of course, is attained for all matrices 
in 3(JR, S). Let p be an integer with p *C p *C p. Then there exists a matrix 
in S (R, S) whose term rank is equal to p. For if e and / are integers for which 

. . . + sf > ri + . . . + re we 
Hence by Theorem 2.1, the 

the minimum occurs in (5.1), then from Si + 
conclude that s± + . . . + sf > r1 + . . . + re_i. 
zero pattern 

O = 3 i 0 
32. X 

where 3 i a n d ^2 consist of all l's, 3 i being (e — 1) X / is such that >&(R, S) 
is non-empty. If A £ £l(R, S), then p(A) =m — e+l+f = p+l. Note 
that if e = 0, then p = p and there is nothing to prove. By repeating the 
above argument the desired result follows. 
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