SEMI-COMPACTNESS WITH RESPECT TO A EUCLIDEAN CONE

DANIEL H. WAGNER

1. Introduction. Our motivation for this note originates with consideration of a subset A of Euclidean *n*-space, \mathbb{R}^n , which contains only part of its boundary. The part contained is that part of the closure of A which cannot be "bettered" within A with respect to the preference associated with a fixed closed convex cone Γ . Here b is preferred to a if and only if $a - b \in \Gamma$; if, for instance, Γ is the non-negative orthant of \mathbb{R}^n , this preference is ordinary vector inequality. We will see in § 4 that obtaining these partially closed sets can often be a matter of relaxing continuity conditions to semi-continuity, and therefore we call them Γ semi-closed sets. We are further concerned with partial boundedness in the following sense: When the convex hull of $A \subset \mathbb{R}^n$ is unbounded at most in directions which are contained in the fixed cone Γ , we say A is Γ semi-bounded. These concepts are formalized in § 2.

The usefulness of these notions in asserting existence of constrained extrema is evident. For example, suppose we wish to choose q such that $(F_1(q), \ldots, F_{n-1}(q)) \in N \subset R_{n-1}$ and such that subject to this $F_n(q)$ is maximized. To assert existence of such a q it is relevant for the range of (F_1, \ldots, F_n) to contain the "upper" part of its boundary, not necessarily all of its boundary, and that this range be partially bounded, i.e., that this range be Γ semi-closed and Γ semi-bounded, where $\Gamma = R^n \cap \{(0, \ldots, 0, y) : y \leq 0\}$.

Applications of Γ semi-closedness and Γ semi-boundedness to existence of constrained extrema of F of the form $F(q) = \int_T f(t, q(t)) d\mu t \in \mathbb{R}^n$, with fixed T, μ and f, and related literature, are discussed for this half-line Γ in [5], and for more general Γ in [4].

To relate Γ semi-closedness to semi-continuity, we recall the criterion that a real-valued function g on a topological space is upper semi-continuous if and only if $\{t : g(t) \ge a\}$ is closed for each real a. Permitting g to be \mathbb{R}^n -valued, in § 4 we replace the inequality with the Γ preference cited above and require that $\{t : a - g(t) \in \Gamma\}$, i.e., $g^{-1}(a - \Gamma)$, be closed for each $a \in \mathbb{R}^n$. This condition generalizes ordinary semi-continuity, but does not reduce to continuity when $\Gamma = \{0\}$; we call it *weak* Γ *semi-continuity* of g. The condition may be strengthened to define Γ semi-continuity of g by requiring $g^{-1}(C - \Gamma)$ to be closed whenever $C \subset \mathbb{R}^n$ and $C - \Gamma$ is closed; then $\{0\}$ semi-continuity coincides with continuity.

In Theorem 2.16 of [4], it is shown that the range of a Γ semi-continuous function on a compact space is Γ semi-closed. The proof suggests the usefulness

Received April 8, 1975.

of weakening the Heine-Borel property to pertain only to open coverings by sets of the form $\mathbb{R}^n \setminus (\mathbb{C} - \Gamma)$. This condition we call Γ semi-compactness. The Heine-Borel theorem states that a closed bounded subset of \mathbb{R}^n is compact. Theorem 2.10 below, our main result, generalizes this statement in terms of the "semi" concepts, however semi-boundedness must be strengthened, as shown by Example 2.11. Theorem 2.1 generalizes the converse of the Heine-Borel theorem.

Our definition of semi-closedness originated with Olech [1; 2], who called it *lower-closedness*, and who has discussed its applications to control theory. Unfortunately [1] is not easily accessible; [2] reviews results without proof.

We are indebted to others for personally communicated proofs of some of our conjectures in this development. Mr. David H. Wagner proved Theorem 2.16 of [4] and did so in a way which suggested the concept of Γ semi-compactness and which is the essence of the proof of semi-closedness in Theorems 2.1 and 2.2 below. He also contributed the first example in 2.3. Professor Victor Klee proved Lemma 2.7 below, which is of independent interest. Our realization that \mathscr{T}_{Γ} (§ 2) is a topology arose from questions by Professor Harry W. McLaughlin.

We now proceed with our formal development. The successive sections treat semi-compactness, semi-boundaries, and semi-continuity.

Throughout this paper, Γ is a closed convex subcone of \mathbb{R}^n . That Γ is a cone means $r\gamma \in \Gamma$ whenever $\gamma \in \Gamma$ and $0 \leq r \in \mathbb{R}$.

We denote the usual inner product in \mathbb{R}^n by $x \cdot y$, and the Euclidean norm by || ||. Suppose $A, B \subset \mathbb{R}^n$ and $a \in \mathbb{R}^n$. Then A + B, A - B, a + A, etc., refer to the obvious vector set sums. We denote the convex hull of A by co A, the closure of A by cl A, and the interior of $A(\mathbb{R}^n \text{ topclogy})$ by int A. By \overline{A} we mean $\mathbb{R}^n \setminus A$.

2. Γ semi-compactness. In this section we develop a generalization of the Heine-Borel theorem and its converse, Theorems 2.10 (our main result) and 2.1 respectively. We begin with the underlying definitions.

Suppose $A \subset \mathbb{R}^n$ is convex. The asymptotic cone of A (often called the characteristic cone of A), in symbols $\mathscr{A}(A)$, is defined by

$$\mathscr{A}(A) = \mathbb{R}^n \cap \{\gamma : A + \gamma \subset A\}, \text{ when } A \neq \emptyset.$$

We agree that $\mathscr{A}(\emptyset) = \{0\}$. Always $\mathscr{A}(A)$ is a convex cone and if A is closed, so is $\mathscr{A}(A)$. If $\mathscr{A}(\operatorname{cl} A) = \{0\}$, A is bounded. If $A \subset B \subset \mathbb{R}^n$, $\mathscr{A}(A) \subset \mathscr{A}(\operatorname{cl} \operatorname{co} B)$. These and other properties of asymptotic cones are given in Chapter 8 of [3] (where they are called *recession cones*) and in Lemma 2.2 of [4].

Suppose $A \subset \mathbb{R}^n$. We say A is Γ semi-closed if cl $A \subset A + \Gamma$ and Γ semibounded if \mathscr{A} (cl co A) $\subset \Gamma$. We say A is Γ semi-compact if every open covering of A by sets of the form $\overline{C - \Gamma}$ has a finite subcovering, i.e., whenever I is a set, $C_i \subset \mathbb{R}^n$ and $C_i - \Gamma$ is closed for $i \in I$, and $A \subset \bigcup_{i \in I} \overline{C_i - \Gamma}$, there exists a finite set $J \subset I$ such that $A \subset \bigcup_{i \in J} \overline{C_i - \Gamma}$. When $\Gamma = \{0\}$, these terms reduce to their usual meaning without the prefix "semi." We also say A is strongly Γ semi-bounded if $\mathscr{A}(\operatorname{cl} \operatorname{co} A) \subset \{0\} \cup \operatorname{int} \Gamma$ and weakly Γ semicompact if every open covering of A by sets of the form $\overline{a - \Gamma}, a \in \mathbb{R}^n$, has a finite subcovering. Examples will appear below.

An alternative approach to Γ semi-compactness is to define

$$\mathscr{T}_{\Gamma} = \{\overline{C - \Gamma} : C \subset \mathbb{R}^n \text{ and } C - \Gamma \text{ is closed}\}.$$

Then \mathscr{T}_{Γ} is a topology over \mathbb{R}^n . However, if $\Gamma \neq \{0\}, \mathscr{T}_{\Gamma}$ is not a very interesting topology, since it does not satisfy the T_1 separation axiom. If Γ does not contain a line, \mathscr{T}_{Γ} is a T_0 space, i.e., for $x, y \in \mathbb{R}^n$ with $x \neq y$, there exists $U \in \mathscr{T}_{\Gamma}$ such that $[x \in U \text{ and } y \notin U]$ or $[x \notin U \text{ and } y \in U]$. If Γ contains a line, \mathscr{T}_{Γ} is not even T_0 . In any event, Γ semi-compactness coincides with \mathscr{T}_{Γ} compactness. Accordingly, an infinite Γ semi-compact set has a \mathscr{T}_{Γ} accumulation point; when $\Gamma = \{0\}$, this reduces to the Bolzano-Weierstrass theorem. However, Γ semi-closedness and Γ semi-boundedness do not seem to relate directly to \mathscr{T}_{Γ} .

THEOREM 2.1. If $A \subset \mathbb{R}^n$ is Γ semi-compact, then A is Γ semi-closed[†] and Γ semi-bounded.

Proof. To show A is Γ semi-closed, suppose $a \in \text{cl } A$ and $a \notin A + \Gamma$. For r > 0, let $C_r = \mathbb{R}^n \cap \{z : ||z - a|| \leq r\}$. Since Γ is closed,

$$\bigcap_{r>0} (C_r - \Gamma) = a - \Gamma.$$

Since $(a - \Gamma) \cap A = \emptyset$, we have

$$A \subset \overline{\bigcap_{r>0} (C_r - \overline{\Gamma})} = \bigcup_{r>0} \overline{C_r - \Gamma}.$$

Since A is Γ semi-compact and the covering is nested, there exists $r_0 > 0$ such that $A \subset \overline{C_{\tau_0} - \Gamma} \subset \overline{C_{\tau_0}}$, contrary to $a \in \text{cl } A$. Hence A is Γ semi-closed.

Suppose $\gamma \in \mathscr{A}$ (cl co A) and $\gamma \notin \Gamma$. Let $b \in A$. Since Γ is convex and closed we may choose a closed half-space H with 0 in its boundary such that $\gamma \notin H \supset \Gamma$. Take $w \in \mathbb{R}^n$ such that $H = \mathbb{R}^n \cap \{z : w \cdot z \leq 0\}$. Then $w \cdot \gamma > 0$. Define the closed sets

$$D_r = b + r\gamma - H$$
 for $r > 0$.

To see that

$$A\subset \bigcup_{r>0}\overline{D_r-\Gamma}=\bigcup_{r>0}\overline{D_r},$$

let $c \in A$ and choose $s > \max \{0, [w \cdot c - w \cdot b]/w \cdot \gamma\}$; then $w \cdot [b + s\gamma - c] > 0$, so $c \notin D_s$.

Since A is Γ semi-compact, there exists $r_1 > 0$ such that $A \subset \overline{D_{r_1}}$. Since

†For this much Γ could be an arbitrary closed set such that $0 \in \Gamma \subset \mathbb{R}^n$.

 $\gamma \in \mathscr{A}$ (cl co A), we have $b + 2r_1\gamma \in \text{cl co } A \subset \text{cl } \overline{D_{r_1}} = b + r_1\gamma + H$, contrary to $\gamma \notin H$. Therefore $\gamma \in \Gamma$.

THEOREM 2.2. If $A \subset \mathbb{R}^n$ is weakly Γ semi-compact and int $\Gamma \neq \emptyset$, then A is Γ semi-closed.

Proof. Let $\gamma \in \text{int } \Gamma$ and $a \in \text{cl } A$ and suppose $A \cap (a - \Gamma) = \emptyset$. For $b \in A$, letting s be the distance from b to $a - \Gamma$, we have s > 0 (since Γ is closed) and $b \notin a + [\frac{1}{2} s\gamma/||\gamma||] - \Gamma$. Thus $\{\overline{a + r\gamma - \Gamma} : r > 0\}$ is a nested open covering of A. Hence there exists $r_0 > 0$ such that $A \subset \overline{a + r_0\gamma - \Gamma}$. But $a \in \text{int } (a + r_0\gamma - \Gamma)$, so we have contradicted $a \in \text{cl } A$.

Example 2.3. We may not omit "int $\Gamma \neq \emptyset$ " in Theorem 2.2: Let n = 2, $A = \{(x, y) : x^2 + y^2 \leq 1 \text{ and } x > 0\}$ and $\Gamma = \{(0, y) : y \geq 0\}$ (due to David Wagner). Also we may not conclude in Theorem 2.2 that A is Γ semibounded: Let n = 2, $A = \{(x, y) : x = -y\}$ and $\Gamma = \{(x, y) : x \geq 0, y \geq 0\}$.

LEMMA 2.4. If $A \subset \mathbb{R}^n$ is bounded and Γ semi-closed, then A is Γ semicompact.

Proof. Suppose $C_i \subset \mathbb{R}^n$ and $\overline{C_i - \Gamma}$ is open for $i \in I$ and $A \subset \bigcup_{i \in I} \overline{C_i - \Gamma}$. Since cl $A \subset A + \Gamma$, it follows that cl $A \subset \bigcup_{i \in I} \overline{C_i - \Gamma}$. Since cl A is compact it has a finite subcovering, which also covers A.

LEMMA 2.5. If $A \subset \mathbb{R}^n$ is Γ semi-closed, $C \subset \mathbb{R}^n$, and $C - \Gamma$ is closed, then $A \cap (C - \Gamma)$ is Γ semi-closed.

Proof. We have

$$\operatorname{cl} \left[A \cap (C - \Gamma) \right] \subset \operatorname{cl} A \cap (C - \Gamma) \subset (A + \Gamma) \cap (C - \Gamma)$$
$$\subset \left[A \cap (C - \Gamma) \right] + \Gamma.$$

LEMMA 2.6. Suppose $a \in \mathbb{R}^n$ and Δ is a closed subcone of $\{0\} \cup$ int Γ . Then $(a + \Delta) \setminus \Gamma$ is bounded.

Proof. It suffices to show that there exists $r \ge 0$ such that

 $\{a + \beta : \beta \in \Delta \text{ and } ||\beta|| \geq r\} \subset \Gamma.$

Choose r_0 such that $0 < r_0 < 1$ and

(2.1) $[\delta \in \mathbb{R}^n, \gamma \in \Delta, ||\delta|| = ||\gamma|| = 1, \text{ and } ||\delta - \gamma|| \leq \sqrt{2} r_0]$

implies $\delta \in \Gamma$.

Let $r = ||a||/r_0$. Suppose $\beta \in \Delta$ and $||\beta|| \ge r$. We may assume $a \ne 0$. Let

$$\alpha = \frac{\beta}{\|\beta\|} + \frac{r_0 a}{\|a\|} \,.$$

Since $0 < r_0 < 1$, $\alpha \neq 0$. We have

It follows from (2.1) and (2.2) that $\alpha/||\alpha|| \in \Gamma$. Hence,

$$a + rac{r}{\|eta\|} eta = a + rac{\|a\|}{\|eta\| r_0} eta = rac{\|a\|}{r_0} lpha \in \Gamma.$$

Since $||\beta|| \ge r$, $\beta - [r\beta/||\beta||] \in \Delta \subset \Gamma$. Since Γ is a convex cone,

$$a + \beta = \left[a + \frac{r\beta}{\|\beta\|} + \beta - \frac{r\beta}{\|\beta\|}\right] \in \Gamma + \Gamma = \Gamma$$

LEMMA 2.7 (proved by Klee). Suppose $A \subset \mathbb{R}^n$ is strongly Γ semi-bounded, and $\gamma \in \text{int } \Gamma$. Then there exists $r \ge 0$ such that $A \subset -r\gamma + \Gamma$.

Proof. Suppose the conclusion fails. Then there exist, for $i = 1, 2, ..., r_i \ge 0$ and $a_i \in A$ such that

(2.3)
$$a_i + r_i \gamma \notin \Gamma$$

and such that $r_i \to \infty$. We may assume without loss of generality that either $a_i \to a \in \mathbb{R}^n$ or $||a_i|| \to \infty$ and $a_i/||a_i|| \to u \in \mathbb{R}^n$. In the first case $a_i/r_i \to 0$ and since $\gamma \in \text{int } \Gamma$ we have for all sufficiently large *i*,

$$a_i/r_i + \gamma \in \Gamma$$
,

whence $a_i + r_i \gamma \in r_i \Gamma \subset \Gamma$, contrary to (2.3). In the second case, $u \in \mathscr{A}(\operatorname{cl} \operatorname{co} A) \setminus \{0\} \subset \operatorname{int} \Gamma$, whence for all sufficiently large *i* we have $a_i/||a_i|| \in \Gamma$ and

$$\frac{a_{i}}{\|a_{i}\|}+\frac{r_{i}}{\|a_{i}\|}\gamma \in \Gamma+\Gamma=\Gamma,$$

so that $a_i + r_i \gamma \in ||a_i|| \Gamma \subset \Gamma$, and again (2.3) is contradicted.

Example 2.8. We may not omit "strongly" in Lemma 2.7, even if we require int $\Gamma \neq \emptyset$ and we weaken the conclusion to assert that $A \subset b + \Gamma$ for some $b \in \mathbb{R}^n$: Let n = 2, $A = \{(x, y) : x = y^2 \text{ or } y = x^2\}$, and $\Gamma = \mathscr{A}(\operatorname{co} A)$ $(= \{(x, y) : x \ge 0, y \ge 0\}).$

LEMMA 2.9. Suppose A, $C \subset \mathbb{R}^n$, A is strongly Γ semi-bounded, and $A \cap (C - \Gamma)$ is unbounded. Then $A \subset C - \Gamma$.

DANIEL H. WAGNER

Proof. We may choose a closed convex subcone Δ of \mathbb{R}^n such that

$$\mathscr{A}(\mathrm{cl} \ \mathrm{co} \ [A \cap (C - \Gamma)]) \subset \mathscr{A}(\mathrm{cl} \ \mathrm{co} \ A) \subset \{0\} \cup \mathrm{int} \ \Delta \subset \Delta \\ \subset \{0\} \cup \mathrm{int} \ \Gamma.$$

Suppose $a \in A$. Since $A \cap (C - \Gamma)$ is unbounded, int $\Delta \neq \emptyset$ and we may apply Lemma 2.7 to choose $b \in \mathbb{R}^n$ such that $A \cap (C - \Gamma) \subset b + \Delta$. By Lemma 2.6, $(b - a + \Delta) \setminus \Gamma$ is bounded, hence so is $(b + \Delta) \setminus (a + \Gamma)$, and hence so is $[A \cap (C - \Gamma)] \setminus (a + \Gamma)$. Since $A \cap (C - \Gamma)$ is unbounded,

$$[A \cap (C - \Gamma)] \cap (a + \Gamma) \neq \emptyset.$$

Thus, $(a + \Gamma) \cap (C - \Gamma) \neq \phi$, so $a \in C - \Gamma$.

THEOREM 2.10. Suppose $A \subset \mathbb{R}^n$ is Γ semi-closed and strongly Γ semi-bounded. Then A is Γ semi-compact.

Proof. Suppose $C_i \subset \mathbb{R}^n$ and $C_i - \Gamma$ is closed for $i \in I$ and $A \subset \bigcup_{i \in I} \overline{C_i - \Gamma}$. For $i \in I$, by Lemma 2.9, $A \cap \overline{C_i - \Gamma} = \emptyset$ if $A \cap (C_i - \Gamma)$ is unbounded. Hence for some $j \in I$, $A \cap (C_j - \Gamma)$ is bounded. By Lemmas 2.5 and 2.4, $A \cap (C_j - \Gamma)$ is Γ semi-compact, so for some finite subset J of $I \setminus \{j\}$,

$$A \cap (C_j - \Gamma) \subset \bigcup_{i \in J} \overline{C_i - \Gamma},$$

whence $A \subset \bigcup_{i \in J \cup \{j\}} \overline{C_i - \Gamma}$.

Example 2.11. We may not omit "strongly" in Theorem 2.10 even when int $\Gamma \neq \emptyset$: Let

$$n = 2, \quad A = \{ (x, y) : y \ge x^2 \}, \\ \Gamma = \{ (x, y) : x \ge 0 \text{ and } y \ge 0 \},$$

and

$$C_r = \{ (x, y) : y \in R, x \leq r \} \text{ for } r \in R.$$

3. Γ semi-boundaries. We now formalize the concept of Γ semi-boundary and, as foretold in § 1, relate it to Γ semi-closedness.

For $A \subset \mathbb{R}^n$ we define the Γ semi-boundary of A to be

 $R^n \cap \{a : (a - \Gamma) \cap \operatorname{cl} A = \{a\}\},\$

unless $\Gamma = \{0\}$ in which case it is defined as the boundary of A. In § 2 of [4], this concept is compared with Yu's [6] set of "cone extreme" points.

Theorems 3.1 and 3.2 hold without assuming that Γ is closed (see [4]), although then the proof of Theorem 3.2 (i) is somewhat harder.

THEOREM 3.1. If $A \subset \mathbb{R}^n$ is Γ semi-closed, A contains its Γ semi-boundary.

THEOREM 3.2. Suppose $A \subset \mathbb{R}^n$, Γ does not contain a line, and $(-\Gamma) \cap \mathscr{A}(\operatorname{cl} \operatorname{co} A) = \{0\}$. Then

(i) if $\Gamma \neq \{0\}$ and $a \in cl A$, there is a b in the Γ semi-boundary of A such that $a - b \in \Gamma$;

(ii) if A contains its Γ semi-boundary, A is Γ semi-closed;

(iii) if $C_i \subset \mathbb{R}^n$ for $i \in I$ and $\bigcup_{i \in I} \overline{C_i - \Gamma}$ contains the Γ semi-boundary of A, it also contains cl A;

(iv) if A is Γ semi-compact, so is the Γ semi-boundary of A.

Proof. Conclusions (i) and (ii) are given as Lemmas 2.8, 2.9, and 2.10 in [4] ((ii) follows from (i)), (iii) follows from (i), and (iv) follows from (iii).

4. Γ **semi-continuity.** We conclude by defining Γ semi-continuous functions in such a way that it is obvious that they map compact sets onto Γ semicompact sets. Theorems 2.1 and 2.2 make Theorem 4.1 meaningful.

If f maps a topological space into \mathbb{R}^n , we say f is Γ semi-continuous if $f^{-1}(A - \Gamma)$ is closed whenever $A \subset \mathbb{R}^n$ and $A - \Gamma$ is closed, i.e., if f is \mathscr{T}_{Γ} continuous. We say f is weakly Γ semi-continuous if $f^{-1}(a - \Gamma)$ is closed for each $a \in \mathbb{R}^n$.

THEOREM 4.1. Suppose T is a compact space and $f: T \to \mathbb{R}^n$ is (weakly) Γ semi-continuous. Then f(T) is (weakly) Γ semi-compact.

Proof. The unbracketed statement holds since f is \mathscr{T}_{Γ} continuous. Proof of the bracketed statement is similar to the well-known proof for continuous maps.

THEOREM 4.2. Suppose T is a topological space, $f: T \to \mathbb{R}^n$, and $\gamma \cdot f$ is upper semi-continuous for each $\gamma \in \Gamma^p$, where Γ^p is $\{\delta : \delta \cdot \delta' \leq 0 \text{ for } \delta' \in \Gamma\}$, the polar cone of Γ . Then f is weakly Γ semi-continuous.

Proof. By Theorem 14.1 of [3], $\Gamma^{pp} = \Gamma$, so for $a \in \mathbb{R}^n$ we have

$$f^{-1}(a - \Gamma) = \{t : \gamma \cdot f(t) \ge \gamma \cdot a \text{ for } \gamma \in \Gamma^p\} = \bigcap_{\gamma \in \Gamma^p} \{t : \gamma \cdot f(t) \ge \gamma \cdot a\},$$

hence $f^{-1}(a - \Gamma)$ is closed.

THEOREM 4.3. Suppose S and T are topological spaces, $g: S \to T$ is continuous, $f: T \to R^n$ is Γ semi-continuous, $h: R^n \to R^k$ is linear, and $h^{-1}(h(\Gamma)) = \Gamma$. Then $f \circ g$ is Γ semi-continuous and $h \circ f$ is $h(\Gamma)$ semi-continuous.

References

- C. Olech, Integrals of set valued functions and linear optimal control problems, IFAC, Fourth Congress of the International Federation of Automatic Control, Warsaw, June 16–21 (1969), 22–35.
- Integrals of set-valued functions and linear optimal control problems, Proceedings of the Colloquium on Optimal Control Theory, Brussels (1969), 109–125.
- 3. R. T. Rockafellar, Convex analysis (Princeton University Press, 1970).
- D. H. Wagner, Integral of a set-valued function with semi-closed values, Journal of Mathematical Analysis and Applications, 55 (1976), 616–633.

DANIEL H. WAGNER

- 5. D. H. Wagner and L. D. Stone, Necessity and existence results on constrained optimization of separable functionals by a multiplier rule, SIAM Journal on Control 12 (1974), 356-372.
- 6. P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optimization Theory Appl. 14 (1974), 319-377.

Daniel H. Wagner, Associates Station Square One, Paoli, Pennsylvania 19301