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UNIVERSAL PETTIS INTEGRABILITY 

KEVIN T. ANDREWS 

Since the invention of the Pettis integral over forty years ago [11], the 
problem of recognizing the Pettis integrability of a function against an 
individual measure has been much studied [5, 6, 7, 8, 9, 20]. More recently, 
Riddle-Saab-Uhl [14] and Riddle-Saab [13] have considered the problem 
of when a function is integrable against every Radon measure on a fixed 
compact Hausdorff space. These papers give various sufficient conditions 
on a function that ensure this universal Pettis integrability. In this paper, 
we see how far these various conditions go toward characterizing universal 
Pettis integrability. We base our work on a w*-analogue of the core of a 
vector-valued function [8]. 

We also give some sufficient conditions that ensure that a Banach space 
has the so-called universal Pettis integral property (UPIP) and consider 
some particular examples of spaces with this property. It is interesting that 
in these examples some of the special set theoretic axioms that play an 
important role in the study of the stronger Pettis integral property [6, 7] 
make an appearance. 

It is now time to fix some terminology and notation. Throughout this 
paper, ju will be a Radon probability measure on the a-algebra 2 of Borel 
subsets of a compact Hausdorff space £2. A subset of 12 is said to be 
ix-measurable if it is in the completion of the measure space (12, 2, \x). The 
letters X, 7, Z will denote real Banach spaces with duals X*, Y*, Z* 
respectively. A function /:12 —> X* is said to be JU-W*-measurable 
(respectively, \i-scalarly measurable) if for each x in X (respectively each 
x** in X**) and each e > 0 there is a compact set E c 12 such that 
lii^lE) < c and f(')x\E (respectively, x**f(-) \E) is continuous. The 
function fis universally scalarly measurable if it is jii-scalarly measurable 
for each Radon probability measure /A on 12. 

A subset W of X* is called a weak Baire set if it is a member of the 
a-algebra generated by all sets of the form g~ (B) where g:X* —» R is any 
continuous (for the weak topology of X*) function and B is a Borel subset 
of R. Edgar has shown [5] that a function /:12 —» X* is ju-scalarly 
measurable if and only if, for any weak Baire subset W of X*, the set 
/ ~ (W) is jit-measurable. 
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142 KEVIN T. ANDREWS 

A function/:Q, —» X* is said to be universally Lusin measurable if for 
every Radon probability measure /x on Œ, every € > 0, and every compact 
subset Kx of fi there is a compact subset K2 of Kx such that ii(Kx\K2) < e 
and /\K:K2 —* ^* is w*-continuous. We note that if / is universally 
scalarly measurable and has relatively w*-metrizable range, then / is 
universally Lusin measurable. Conversely, if / is universally Lusin 
measurable, then fis universally Borel measurable [20, p. 26] i.e., for each 
Radon probability measure /x on 12 and w*-Borel subset B of X*, the set 
/ ~ (B) is /x-measurable. 

Suppose that x**f(m) ^ Lx(\x) for all x** in X** and some fixed Radon 
probability measure /x. Then the w*-integral of f over a set E in 2 is that 
element of X* denoted by w* — jEfd\i and defined by 

(w* - jEfdv){x) = ^ / ( - M / x . 

The Dunford integral of f over E is that element of X*** denoted by 
D — j Efd\i and defined by 

[D - jEfdfi)(x**) = j^fdtx. 

We note that 

P{D - JEfd„) = w* - jEfd» 

where P;X*** —> X* is the canonical projection. If 

/ ( w * - / / < / , ) = D ~ fEfd, 

where J:X* —> X*** is the canonical injection, then / i s said to be \x-Pettis 
integrable over £ and we write P — jEfd\x for the common value of the 
integrals. The function / is said to be \x-Pettis integrable if it is /x-Pettis 
integrable over every set E in 2 . It is universally Pettis integrable if it is 
/x-Pettis integrable for each Radon probability measure /x. A Banach space 
is said to have the universal Pettis integral property (UPIP) if every 
bounded universally scalarly measurable function taking values in the 
space is universally Pettis integrable. 

A subset K of a. Banach space X is called a weak Radon-Nikodym set if 
for every probability measure space (£2, 2, /x) and every vector measure 
G:2 —» X such that G(E) e fi(E)K for every E in 2 , there exists a Pettis 
integrable function g:Q, —» K such that 

G(E) = P — J gd\x for every E in 2 . 

A subset AT of a Banach space X is called weakly precompact if every 
sequence in Khas a weak Cauchy subsequence. Two functions/ g:Q, —> X* 
are said to be /x-w*-equivalent (respectively [i-scalarly equivalent) iff(-)x = 
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g(-)x ft a.e. for all x in X (respectively x**/(*) = x**g(-) a.e. lor all x** in 
J**). The oscillation of a real-valued function h over a subset A of its 
domain is defined by 

osc(/i, 4 ) - sup{ |A(j) - A(/) U , t G A}. 

Let (12, 2, ft) be a measure space, let £ be a measurable set and let 
/:fi —> X* be a bounded function. Following [8], we defined the w*-c6>n? 0/ 
f over E, denoted by cor*(E), to be that subset of X* given by 

c o r ; ( £ ) = n w*-clco/(£V4). 
J iiA=0 

We summarize the basic (and essentially known) properties of these 
subsets of X* in the following proposition. 

PROPOSITION 1. Let f g:12 —> X* be w*-measurable functions. 
(i) If fiE > 0, //ze« covr(E) is a nonempty w*-compact convex subset 

ofX*. 
(ii) For each E in 2 , 

corj{E) = w*-clco |— (w* - J 5 / ^ ) : # c E, B e 2 , \iB > 0 | . 

(iii) Let E <= 2 . TAew coxJ(B) = œr*(B) for all B c £, 5 e 2 <=>/0r 
eac/z x /« X,f(-)x = g(')x ju-a.e. ow E. 

(iv) De/ine Û« operator T.X -> L^/x) &y Tx(-) = /(•)*. / / 0 G cory*(£2), 
z7z<?/7 T* (positivepart of Bl(L^di)*) ) = cor?(S2). Consequently, [f(-)x:x e 
X, ||x|| ^ 1} w weakly precompact in L^/x) <̂> cor?(£2) w a weak RN set. 

(v) If ii is a Radon probability measure on a compact Hausdorff space 12 
and the function f.Q, —» X* is scalarly measurable, then cor?(£2) z's a 
w*-separable subset of X*. 

(vi) If P:X -^ X is a bounded linear operator such that P*\COT*(ft) is the 
identity, then f and P*f are w*-equivalent. 

Proof, (i) is obvious, (ii) and (iii) follow from the Hahn-Banach theorem, 
as in Theorems 2.2 and 2.6 of [8]. (iv) follows from (iii) and Theorem 3 of 
[14]. (v) is a consequence of (ii) and Stegall's observation [7] that, if /x is a 
Radon measure, the set 

{ z > - f/dvEm-z} 

is relatively norm compact in X*** and hence the set 

{w* - jT/</M:£inz} 
is relatively norm compact in X*. (vi) follows from (iii). 
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In [14], Riddle, Saab, and Uhl show that if X is a separable Banach 
space and f:& —» X* a bounded ii-w*-measurable function such that 
{/(O-x-IUII = 1} is almost weakly precompact in / ^ ( / A ) , then / is /x-Pettis 
integrable. In a later paper [13], Riddle and Saab offer a universal 
converse to this result under the additional condition that the function/is 
universally Lusin measurable. Here is another universal converse with an 
extra condition on the Banach space X rather than the function/ 

LEMMA 2. Suppose that every w*-compact separable subset of X* is 
w*-metrizable. Let /:S2 —> X* be a bounded universally scalarly measurable 
function. Then for each Radon measure ft and each € > 0, there exists a 
compact set E in 2 with /x(S2\£) < e such that corr(E) is a w*-metrizable 
weak RN set. 

Proof. Define an operator T:X —> L00(/x) by Tx = f(')x. Since /x is a 
Radon measure, the set cor?(fl) is w*-separable and thus so is cor^ (12) — 
cor^(12); therefore, cor^(12) - cor^(fi) is w*-metrizable by our hypothesis. 
Now without loss of generality we have that 0 e corî(fi). Hence the set 
T*(Bl(Lœ(ji)*) ) is contained in cor^(fi) - cor?(Œ) as a consequence of 
Proposition 1 (iv). It follows that T has norm separable range. Choose xn 

in X with ||*J| ^ 1 such that Txn is norm dense in T(BIX). Let c > 0. 
Then there exists a compact set E in 2 with ^i(Q\E) < e and such that the 
restriction f(')xn\E is continuous for all n. Let 

^ = {/(•)*„!*:« e N}. 

Since/is a universally scalarly measurable function, the set A is relatively 
compact (for the topology of pointwise convergence on E) in Mr(E). By a 
theorem of Bourgain, Fremlin, and Talagrand [1, p. 854], the set A is 
weakly precompact in C(E) and hence in L^di). Since A is norm dense 
in 

{/(•)x|£:|WI =i 1}, 

this latter set is weakly precompact in L^/x). Hence T^^Bl^L^E, /i)*) ) is 
a weak i W set and thus so is 

corf(E) ç ViBlL^E, ju)*) [16]. 

This completes the proof. 

It is instructive at this point to consider Phillips' example [12] of a 
bounded universally scalar measurable function 

/[o, i] -> x* = uo, i] 
that is not Lebesgue Pettis integrable. In this case, cor^[0, 1] = 0 and the 
functions x**f(-) are each constant except on a countable set. The 
difficulty here is that the w*-core of / i s too small to capture the behavior 
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of the function. On the other hand, if /:12 -> J* is universally Lusin 
measurable, then for each Radon measure /x on 12 there is a /x-null set N 
such that 

w*-clco f(Q\N) = corjf(Q) 

[13, Lemma 9] and as a consequence, / is universally Pettis integrable. 
Thus the relative size of cor? (12) seems to play a crucial role in the 
integrability of / , a suspicion that is confirmed by the following 
theorem. 

THEOREM 3. Let fi be a Radon probability measure and let f SI ~^> X* be a 
bounded scalarly measurable function. Suppose that cor?(12) is a w*-
metrizable weak RN set. Then the following are equivalent: 

(i)f is [x-Pettis integrable. 
(ii) f is fx-scalarly equivalent to a function g:12 —» X* such that the set 

w*-clco g(12) is w*-metrizable. 
(iii) For each x** in X**, there exists a sequence xn in X and a \i-null set N 

with \\xn\\ ta ||x**||/or all n and 

lim x*(xn) = x**(x*) 
n 

for all x* e f(Q\N) U cor^(12). 
(iv) For each x** in X**, each e > 0, ûwd e#c/z \x-measurable set E of 

positive measure, there exists a [x-measurable set B c E of positive measure 
such that 

osc(x**,/(£) U corj?(5)) < e. 

(v) i w #// ii-measurable sets E of positive measure 

(D - )Efd\A e X**-closure of cox}(E). 
fiE 

(vi) For each x** in X** awd eac/z \i-measurable set E of positive 
measure, 

x**f(-) = sup x**(x*) /x a.e. on E. 
x*ecorjÉ(£) 

(vii) If E is a \i-measurable set and W is any weak Baire set containing 
cor*(E), then 

li(E nf-\W)) = fiE. 

Proof (i) => (ii). Define a measure G:2 -» X* by 

G(£) = w* - jEfdii for all £ in 2 . 

Then 
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G(E) 
:E in 2 , \xE > 0 J c cor/(Q). 

Since this latter set is a weak RN set, the measure G has a Pettis integrable 
derivative g whose values lie in cor?(fi). Hence w*-clco g(12) is a 
w*-metrizable set and 

P - jEgdix = G(E) = w* - JFfdfi = P - jEfdii 

since/ is Pettis integrable. It follows that 

x**f(-) = x**g(m) /x-a.e. x* ^** 

s o / a n d g are scalarly equivalent. 
(ii) => (iii). Suppose t ha t / i s scalarly equivalent to a function g:S2 —> X* 

such that the set w*-clco g(S2) is w*-metrizable. Then, except on a set of 
measure zero, g must take its values in cor?(fi). For if Z is a norm 
separable subspace of X such that the Z and X topologies agree on w*-clco 
g(fi), then there exists a null set M and partitions irn of Œ into a finite 
number of measurable sets such that 

g(co)z = limg„(co)z 
n 

for all co in £2\M and z in Z. Here 

&i = 2- XE-

It follows that 

g(co) = w* - lim g„(<o) 

and hence 

g(co) G cor|(Q) = cor^(S2) for all <o in Q\M. 

Now define an operator T:X —» L^fi) by 

7x = g(-)x. 

Without loss of generality, we may suppose that 

0 G cor|(Q). 

Since cor|(S2) is a weak 1ÊJV set [16], so is 

T^BlLJiv)*) ) ç cor|(Q) - cor|(Q). 

Consequently, T factors through a space Y ~f> lx [14]. Since T has norm 
separable range, we may assume that Y is separable. Let S:X —» 7 and 
/ : y —> L^fi) be the factorization operators i.e., T = / S . We may take 
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||/|| ^ 1. Then since 

T*(BlLJ}i)*) D cor|(Q) 

we have that 

S*(£/y*) D cor*(Q). 

Now fix JC** in J^**. We may assume ||x**|| = 1. Since S (BIX) is 
w*-sequentially dense in S**(BIX**) [15], there is a sequence xn in i?/.Y 
such that 

y*Sxn —> 5,**x**j* for all 7* in y*. 

It follows that 

x*(xn) -> JC**(JC*) for all JC* G cor*(fi) = cor|(Q) U g(Q\M). 

Since g(-)*„ = f(')x
n
 a-e- a n d ***/(•) = x**g(-) a.e., there is a null set TV 

such that 

x*(xn) -» JC**(JC*) for all JC* in f(Q\N) U cor/(Q) 

as desired. 
(iii) =» (iv). It suffices to prove the result for compact sets E so let JC** in 

X**, £ a compact subset of Œ and c > 0 be given and let g be as in the 
implication (i) => (ii). For each w*-Borel subset B of cor*(E) = cor*(E) 
we define 

MB) = Kg~\B) n £) . 

Since JU is a Radon probability measure and w*-clco g(fl) is w*-metrizable, 
À is a finite nonzero Radon measure [21, p. 31]. Let A be the support of À. 
Since cor*(E) is a weak RN set, we have by Theorem 1 of [16] and 
Proposition 7 of [17] that there is a w*-open slice S of cordis) such that 
A n 5 ^ 0 and 

OSC(JC**, w*-clco(v4 D S)) < c/6. 

Since 4̂ is the support of X, it follows that 

X(A n S) = X(S) > 0. 

Since each JC** is A-measurable [16], we can now find a w*-compact set 
K c cor|(2i) with the following properties: 

1) x**\K is continuous for the w*-topology of K 
2) OSC(JC**, w*-clco K) < c/6 
3)ju(£ n g-\K))>0._ 

If we now put G = E n g ^A), then since 

w*-clco g(G) c w*-clco A 

we have that 
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osc(x**, cor*(G) ) < c/6. 

Now, by hypothesis, choose xn <E Xwith \\xn\\ = \\x**\\ and a ju-null set N 
such that 

lim x*(x„) = x**(x*) for all x* e f(Q\N) U cor/(Q). 
n 

Using Egorov's theorem, we may assume that 

l im/(«)*„ = x**f(<S) 
n 

uniformly for co in G and 

lim x*(xn) = x**(x*) 

uniformly for x* in cor?(G). Since .***/(•) is ft-measurable, there is a 
measurable set 5 c G with fiB > 0 such that 

osc(x**/, 5 ) < c/6. 

Choose an integer TV such that 

osc(x**f - fxN, B) < c/6 and 

osc(x** - xN, cor*(B)) < c/6. 

Then 

osc ( / ( - )^ , 5 ) < c/2. 

It follows that 

osc(.%, w*-clco/(l?) ) ^ c/2. 

We now have that 

osc(x**,/(£) ) < c/6 and osc(x*, cotf(B) ) < c/6. 

If now we take xf e f(B) and xf G cor*(£), then 

|x**(xf) — x**(x*) I = I (x** — xN)x*\ 

+ I (xf - x2*)(x;v) I + I (x^ - x**)(x|) I 

< c/6 + c/2 + c/6 < c. 

Thus 

OSC(x**,/(£) U COYf(B)) < C, 

as desired. 
(iv) =̂> (v). Suppose not. Then there is a set E in 2 with [JiE > 0 and an 

x** in X**, such that 
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sup x**(.**) = a < b = — i^c**fdix. 
x*ecorf(E) \lE J t 

Let € = (b — a)/2. An application of Zorn's lemma now produces a 
maximal collection {Ba}aGA of mutually disjoint subsets of E with 
positive measure such that 

OSC(JC**,/(£) U coxJ(B)) < e/2. 

Since jn is a finite measure, the collection {Ba}a^A must necessarily be 
countable. Since the collection is maximal, the set E\ U B has meas-

ure zero. Choose a finite number of sets Ba , . . . , Ba such that 

n fllE 
H(E\U Bn) < - . 

For each /, choose any x*in corf(Ba). Since 

osc(x**J(Ba) U coif(Ba)) < €/2, 

we have that 

(^ I-**») — x**(.x*) 

Thus 

JB x**fd\i liBa x**(x?) < 

< e/2. 

c/t£a 

and so 

/

n I n 

i=\ ' i=\ 1 i=\ L 

Since 

ÀE\VBa) < 
€\lE 

we have that 

7 = 1 

and hence 

2||x**/lloo' 

< - u,E 
2 

]x**fd[i — x**\ 2J jxBa x*j < €JXE. 
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But then 

r . ( ̂  us... \ I 
< e 

1 L*«/</ji-***(2 — *f) 

and 

2 ^ x f G c o r ; ( £ ) , 

a contradiction. 
(v) =̂> (vi). Suppose not. Then there exists a set E of positive measure 

and an x** in X** such that 

JC**/*(<O) > sup x**(x*) for all <o in E. 
x*ecor/(£) 

Hence 

— /rx**fdfi > sup x**(.x*). 
juE JE x*^cotf(E) 

But this implies that 

— ID - JEfdix\ £ Jf**-closure of corf(E), 

a contradiction. 
(vi) => (vii). The hypothesis implies that (v) holds since otherwise there 

is a set E in 2 and a m * * and X** such that 

— /rX**fdii > sup x**(.**). 
\lE J E X*^COTJ(E) 

But this is impossible since then 

1 

x* ^ corJ{E) V ' tlE 
sup x**(x*) < — JFx**fdii 

= — I sup x**(x*)d[i 
flE J t X*^COTf{E) 

^ sup x**(x*), 
x* <Ecor*(E) 

a contradiction. Hence (v) holds. We now show (v) => (i). 
Let x** in X** and £ in 2 be fixed and let À and g be as in the 

implication (iii) => (iv). Let € > 0. Since cor?(£) is a w*-metrizable weak 
RN set, there exists a w*-compact metrizable subset AT of cor*(£) = 
QoxJ(E) such that 
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\(corf (E)\K) < € 

and x**|^ is continuous [16]. Let 8 > 0. Since x**\K is uniformly 
continuous, there exists an 77 > 0 such that if G c K and w* diam G < y\ 

then 

diam x**(G) < 8. 

Now let F = g - 1 (X) Pi £ and note that \i(E\F) < c. Since gXf has 
relatively w*-compact metrizable range, there exist disjoint measurable 
sets of positive measure £ ] , . . . , En such that 

n 

F = U Ei and w*-diam g(Et) < 77 for all /. 

Consequently, 

w*-diam coT*(Et) = w*-diam cor^(£z) < 17 

and so 

diam x**(corr(Ei) ) < 8 for all /. 

It follows that 

\x**l w* — ]Ffdn] — x**(x*)iiEt\ < 8\xEi 

for each / and any xfin coxJ{Ei). But, by hypothesis, 

— \D - I fd[i) e X**-closure of cor?(£f.), for all i. 
\XE1 V JLi ' 

Hence |x**(w* - )Efd\k\ ~ X**(D - JEfdA\ < 8liE1 

and so 

|x**(w* - JFfdix) - x**(/) - jffdlifl < SfiF. 

Since 8 > 0 was arbitrary, we have that 

and since e > 0 was arbitrary, we have that 

x**(w* - J^/d/i) = X**(D - JjdiA. 
Because this holds for all x** in X**, we have that 

w* ~ Lfdli = D " J/* 
s o / i s Pettis integrable. Since/and g have the same w*-core and both are 
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Pettis integrable, it follows that they are scalarly equivalent. Hence if W is 
any weak Baire set, we have that 

Xw°f= Xw° £M-a.e. [5]. 

Now suppose that W 2 corUE). Since the essential range of g\E is 
contained in covr(E), we have that 

fi(E n f~\W) ) = JExw ofdp = jEXw o gd[i = jEdix = jiE, 

as desired. 
(vii) => (i). By the proof of the above implication, it suffices to show that 

(vi) holds. Suppose (vi) doesn't hold i.e., there is a subset E of positive 
measure and a m * * i n F * such that 

x**f(u) > sup x**(x*) for all co in E. 
x*ecor/(£) 

Let 

W = [y* G X*\x**(y*) = sup JC**(X*) }. 
x*ecor^(E) 

Then W is a weak Baire set containing coi*(E) but 

v{Enf-\w)) = 0, 
a contradiction. This completes the proof. 

We note that condition (iv) of the above theorem owes its origin to Saab 
and Saab [17] and comes close to saying that w*-clco/(£2) is a weak RN 
set. It is also worth mentioning that conditions (vi) and (vii) of the above 
theorem have their antecedents in the work of Uhl [24] and Edgar [5] on 
the question of when scalarly measurable functions are scalarly equivalent 
to strongly measurable functions. Condition (iii) is related to the Bourgain 
property discussed by Riddle and Saab [13] which also ensures that a 
function is Pettis integrable. 

Recently [2], various one to one operators weaker than embeddings have 
been used to study the Radon-Nikodym property. In light of condition 
(vii) of Theorem 3, it seems natural to introduce here the concept of a 
weak Baire embedding. A one to one adjoint operator T:X* —» 7* is called 
a weak Baire embedding if for every weak Baire subset W of X* there is a 
weak Baire subset S of Y* such that 

TW = TX* n S. 

Obviously any dual embedding is also a weak Baire embedding; hence the 
dual of any separable space weak Baire embeds into l^. But the concept is 
not limited to dual embeddings; for example, any separable dual space 
weak Baire embeds into l2 [2, Proposition 1.2]. We now have the following 
stability result. 
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COROLLARY 4. Let T:X* —> 7* be a weak Baire embedding and suppose 
that the w*-compact separable subsets of X* and 7* are w*-metrizable. Then 
a function f:Q —> X* is universally Pettis integrable if and only if the function 
7/:S2 —> 7* is universally Pettis integrable. Consequently, X* has the UPIP if 
7* does. 

Proof. One direction is clear. For the other, suppose that Tf is 
universally Pettis integrable and let fi be a Radon probability measure on 
Œ. If Wis a weak Baire subset of X*, then TW = TX* n 5 for some weak 
Baire subset S of 7*. Hence 

/_ 1(W0 = (Tfy\TW) = (Tf)~\S) 

since r i s one to one and so / i s universally scalarly measurable. Let € > 0. 
By Lemma 2 there is a compact subset E of 12 such that IL(Q\E) < e and 
COVUE) is a w*-metrizable weak RN set. Hence without loss of generality 
we may assume that cor?(fi) is a w*-metrizable weak RN set. Let £" be a 
jut-measurable subset of £2 and suppose that Wis a weak Baire subset of X* 
such that W contains cor*(E). Then 

S D TW D T(coxf(E)) =covfy(E) 

and so by Theorem 3, 

K£ n ( r / r 1 ^ ) ) = /x£. 

But 

so another application of Theorem 3 shows that / is /x-Pettis integrable. 
Since /x is an arbitrary Radon probability measure, we are done. 

We turn next to the problem of what conditions imply that a Banach 
space has the universal Pettis integral property. Riddle, Saab, and Uhl [14] 
have shown that the dual of a separable space has this property and ask if 
the dual of a weakly compactly generated space also does. In light of 
Theorem 4, we may view the fact the dual of a separable space has the 
UPIP as a consequence of the fact that /^ has the UPIP. 

We now give two general conditions that ensure that a Banach space has 
the UPIP. The first of these requires a property (which we call property 
(*) ) that is enjoyed by separable or reflexive Banach spaces X. It is akin to 
requiring that (X*, weak) be Lindelof or that X* have property (C) of R. 
Pol, conditions that ensure that X* has the stronger Pettis integral 
property [6]. 

(*) Let {Aa} be a collection of nonempty w*-compact convex subsets 
of X*. Let x*** G x*** be a w*-sequentially continuous functional 
such that for any countable subcollection {Aa};J^ of {Aa} we have that 

+ oo 
x*** G X**-closure of fi 4 . Then x*** G X**-closure of Pi A„. 
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COROLLARY 5. If every w*-compact separable subset of X* is w*-
metrizable and X has property (*), then X* has the UPIP. 

Proof Let/:Œ —> X* be a universally scalarly measurable function and 
let 6 > 0. If /x is a Radon probability measure on 0, then by Lemma 2 
there exists a compact set F with n(£l\F) < e such that corr(F) is a 
w*-metrizable weak JRTV set. Let E be any measurable subset of F having 
positive measure and let {Na}a^A be the collection of all null subsets of E. 
If {N;} z=°^ is any countable subcollection, then 

n w*- clco f(F\Na) = w*-clco/(£ \N) 

where 

+ CO 

N = U Na 

is null. Hence the w*-sequentially continuous functional — (D — j fd\i) 

is in the X**-closure of 

-foo 

.n w*-clœf(E\Nai) 

for any countable subcollection of the JVa's. Since X has property (*), this 
implies that 

— \ D ~ LfdM G X**-closure of n w*-clco/(£\A0. 

An appeal to Theorem 3 now establishes the Pettis integrability of f\F. 
Since e > 0 was arbitrary and jit is any Radon measure, the function / is 
universally Pettis integrable. 

The hypothesis for the next result may be viewed as a natural weakening 
of Mazur's condition on X*: every w*-sequentially continuous functional 
on X** is w*-continuous i.e., in X*. Mazur's condition is known to imply 
that X* has the Pettis integral property [6]. 

COROLLARY 6. If every w*-compact separable subset of X* is w*-
metrizable and every w*-sequentially continuous functional on X** is the 
X**-limit of a w*-separable subset of X*, then X* has the UPIP. 

Proof Let/:£2 —» X* be a universally scalarly measurable function and 
let € > 0. If ju is a Radon probability measure on &2, then, by Lemma 2, 
there exists a measurable set F with ti(Çl\F) < e such that corr(F) is a 
w*-metrizable weak RN set. Let E be any measurable subset of F having 
positive measure and choose a w*-separable subset S of X* such that 
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D - fEfd, £ J**-closure of S. 

Let 7 be the w*-closed linear span of S U corUF) in X*. Then the unit 
ball of 7 is a w*-metrizable subset of X*. Choose a norm separable 
subspace Z of X such that the restriction map R: J* -> Z* is an isometry 
from 7 to R(Y). By Theorem 3, the function Rf:Q -> Z* is ju-Pettis 
integrable. Now let x** be in X** and choose a net {*a}a(E/4 in X such 
that 

x** = w* — lim xa and ||JCJ| ^ ||x**|| for all a in ,4. 
a 

Define, for each a in A, linear functional la on R(Y) by 

/a(tfy) = X(ya). 

Each of these functionals is continuous for the bounded Z topology on 
R(Y) and hence [4, p. 428] for the Z topology on R(Y). Now apply the 
Hanh-Banach theorem to extend la to a za in Z with | | z j | ^ | |x j | . Let z** 
be a w*-cluster point of the za's. Then there is a subnet a(/?) of a such 
that 

z** = w* _ l i m 

Consequently, for all y in Y 

x**(y) = limyix^fi) = lim Ry(za(P)) = z * * ( ^ ) = i?*z**(>>). 

Since D — jEfd\i e X** -closure of 7, we have that 

X**ID - JEfdii) = R*Z**(D - JEfdnJ 

= fj**Rfdii 

= z**(/> - JEfdii) 

= z**lw* - JjAfdli) 

= Z**R(W* - JEfdli) 

= R*z**lw* - JEfd\i\ 
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and hence/XF an (^ t hus / a r e /x-Pettis integrable. Since /x was an arbitrary 
Radon probability measure, this completes the proof. 

We turn next to some particular examples of spaces with the UPIP for 
which some special axioms are required. We consider only dual spaces 
whose preduals are weakly K-analytic; for such spaces it is known that 
every w*-compact separable set is w*-metrizable [23, 25] so Lemma 2 and 
hence Theorem 3 are applicable. Recall that a cardinal a is said to be a 
real valued measurable cardinal if there exists a set T having cardinality a 
and a finite nonzero measure defined on all subsets of T that vanishes on 
singleton sets. It is consistent with the usual axioms of set theory that no 
such cardinals exist; for further details we refer the reader to [22]. The 
least real valued measurable cardinal is denoted by mr\ the cardinality of 
the continuum by c. The following result is an easy modification of a result 
of Edgar [6, Theorem 5.9]. 

THEOREM 7. Assume mr = c. Then, for any set T, /j(T) has the UPIP. 

Proof. Let/:fi —> lx(J) be a universally scalarly measurable function and 
let ft be a Radon measure on Œ. Let (Œ, 2*, ft) denote the completion of 
(Œ, 2 , ii). Then for each x** in 1^(1) and each Borel subset B of the real 
line we have that (x**f)~ (B) is in 2* [21, p. 26]. Since fx is a Radon 
measure, the sets 

D- jjJdp.E in 2* } and 

{x**/C):||x**|| ^ 1} 

are norm compact in ^(T)** and Lx{[x) respectively [7]. But then, by 
[4, p. 168], there is a sub a-algebra 2f of 2* which is the completion of a 
countably generated a-algebra 2j such that 

[D - JEfdii:E in 2fj 

is norm dense in [D — jEfd\x\E in 2*} and (;c**/)-1(i?) is in 2f for each 
x** in IQJX) and each Borel subset B of the real line. We note that the 
cardinality of 2j is c and that for each E in 2f, 

IxE = sup{tiB:B in 21? B c E}. 

Consequently, the proof of Theorem 5.9 of [6] shows that the function fis 
Pettis integrable over each set E in 2f, since the proof of that result holds 
for any finite complete measure space that is countably generated up to 
null sets. It follows that 

D - jEfdii'.E in 2* j c lx(T) 

s o / i s universally Pettis integrable. 
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For our next result we recall that the density character of a space is the 
least cardinal such that there is a dense subset of the space with that 
cardinality. 

THEOREM 8. Let C(K) be a weakly K-analytic space and suppose that the 
density character of K is not a real valued measurable cardinal. Then the 
space M{K) has the UPIP. 

Proof. Let/: 12 —» M(K) be universally scalarly measurable and let fi be a 
Radon probability measure on 12. For each Borel subset C of K, let 
PC\M(K) —> M(K) be the natural projection given by 

PC(X) = X(- n C). 

Since cor?(12) is a w*-metrizable compact set, there is a compact 
metrizable K0 <z K such that the natural projection PK is the identity 
on cor^(12). Suppose that / is not jti-Pettis integrable. Then by Theorem 
3 (v) there is a measurable set E of positive measure and a functional 
b e M(K)* such that 

- ^ L < *>,/(•) > d/x > sup &(**). 
lit Jt^ x* e coijÉ(£) 

Now define a (signed) Borel measure on AT by 

MC) = -^ / £ < b, pKoUCn-) > 4* 

for each Borel subset C of K. Since the density character of K is not a 
real-valued measurable cardinal, the measure X is a (signed) Radon 
measure [23]. But if C is any metrizable compact subset of K, then the 
function PK uCfis Pettis integrable by Theorem 3. Since PK / a n d PK ucf 
are w*-equivalent by (vi) of Proposition 1 and both are Pettis integrable, 
these functions are scalarly equivalent. It follows that 

MC) = ^ JE < b, PKoUCf(-) > dix 

\xE 

1 

\xE - / , < b,w* - \Jd\L > 

^ sup b(x* 
x*ecorjr(E) 
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<\jE<bJ(')>dli = \(K). 

Consequently, the measure X does not have metrizable support. This 
contradiction of Théorème 6.7 of [23] completes the proof. 

We note that the proof of the above result can easily be adapted to show 
that if K is a compact Hausdorff space such that every strongly additive 
measure of finite variation defined on the Borel subsets of K has 
metrizable support, then L^v, K, B) has the UPIP (here v is any finite 
measure on the Borel subsets B of K). 

Finally, we see that if we impose an additional condition on the 
function (namely, that / ( - )x# :^ —> X* is universally scalarly measurable 
for each w*-Borel subset B of X*), we can adapt the result of Theorem 8 to 
any weakly ^-analytic space. This condition holds, for example, if / is 
universally Borel measurable. Thus when X is weakly ^-analytic, we may 
replace Lusin measurability with the weaker Borel measurability and still 
ensure Pettis integrability. 

THEOREM 9. Let X be a weakly K-analytic space and suppose that the 
norm density character of X is not a real valued measurable cardinal. Let 

f:Q—> X* be a universally scalarly measurable function. If, for each w*-Borel 
subset B of X*, the function /(*)x# :^ ~> ^* is universally scalarly 
measurable, then f is universally Pettis integrable. 

Proof Suppose not. Then there exists a Radon measure /x defined on the 
Borel subsets of £2 and a measurable set E of positive measure such that 

D — JEfd[i <£ X**-linear span of cor*(E) 

since otherwise the argument of Corollary 6 would show that fis /x-Pettis 
integrable. Hence there is a functional x** in X** such that 

J^**/<//i > 0 and < x**, corf(E) > = 0. 

We may assume that ***/(•) = 0 ju-a.e. on E. Now define a nonzero 
positive measure X on the w* Borel subsets of w*-clco/(S2) by 

X(C> = JE<x**>f(')Xc>dP-
By hypothesis and Théorème 6.11 of [23], À is a Radon measure and 
therefore has metrizable support, but it is easily seen that X(C) = 0 for 
every w*-compact metrizable subset C. This contradiction completes the 
proof. 
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