SEMI-GROUPS OF MAPS IN A LOCALLY COMPACT
SPACE

J. R. DORROH

Suppose that S is a locally compact Hausdorff space. A one-parameter sems-
group of maps in S is a family {¢,;t > 0} of continuous functions from S
into S satistying

(i) ¢, 0 ¢y = ¢4y for £, u > 0, where the circle denotes composition, and
(ii) ¢ = e, the identity map on S.
A semi-group {¢,} of maps in S is said to be

(iii) of class (Cy) if ¢,(x) — x as t — 0 for each x in S,

(iv) separately continuous if the function ¢ — ¢,(x) is continuous on [0, ©)
for each x in .S, and

(v) doubly continuous if the function (¢, x) — ¢,(x) is continuous on
[0,0) X S.
We show that separate continuity implies double continuity and that if S is
o-compact (the union of countably many compact sets), then every class
(Cy) semi-group of maps in S is separately continuous.

We establish a 1-1 correspondence between the class of all separately con-
tinuous semi-groups of maps in .S and a certain easily describable class of
linear operators in C,(S), the linear space of all bounded, real-valued, con-
tinuous functions on .S. The correspondence would seem to justify calling the
linear operator corresponding to a given semi-group of maps in S the in-
finitesimal generator of that semi-group. A topology, called the bounded
strict topology, is introduced on the space C,(S), and it is shown that if S is
paracompact, then the bounded strict topology coincides with the more
familiar strict topology; see (1) or (3). It is then shown that if {¢,;¢ > 0} is
a separately continuous semi-group of maps in S, « > 0, and 7,f = fo ¢,
for f in C,(S) and ¢ > 0, then {e='T,;t > 0} is an equi-continuous semi-
group of class (Cy) in C,(S) with the bounded strict topology; see (9, p.
234). This is the major step in establishing the correspondence between
semi-groups of maps in S and their generators. The generator of {¢,} is given
by

Af = lim(fo ¢, — f)/t (t—0).

The class of generators A of separately continuous semi-groups {¢,} of maps
is the class of derivation operators 4 in C,(S) such that the domain of 4 is
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dense in C,(S) with the bounded strict topology, and for some & > 0 (equiva-
lently, for each @ > 0), the collection

(=74 = "R

is an equi-continuous collection of operators on C,(S) with the bounded strict
topology. Hufford (6) has carried out a similar program for S compact.

1. Topologies on function spaces. Let C(S) denote the linear space
of all continuous real-valued functions on S. Then C,(S) is the space of all
bounded functions in C(S). Let Co(S) denote the linear space of all functions
in C(S) which vanish at infinity, and let C,(S) denote the linear space of all
functions in C(S), which have compact support.

The norm, |[f]|, of a function f in C,(S) will mean the supremum norm
of f, and if K is a compact subset of S and f is in C(S), then ||f||x means the
supremum norm of flk, the restriction of f to K. If K is a compact subset of
S, then C(K) denotes the Banach space with supremum norm of continuous
real-valued functions on K. For each r > 0, B, denotes the set of all f in
Cy(S) such that |[f]] < 7.

The compact open topology (the topology of uniform convergence on com-
pact sets) on C(S) will be denoted by v, and its restriction to C,(S) will be
denoted by 4’. The strict topology, see (1), on C,(S) will be denoted by 8
and has a local neighbourhood basis at the origin the sets Vy = {f: |[f¢]| < 1}
for ¢ in Cy(S). An equivalent neighbourhood basis, by (4), consists of the sets

Vikw e = {2 11fllgn < € for n=1,23,...},

where {¢,} is a strictly increasing sequence of positive numbers approaching
infinity, and {K,} is an increasing sequence of compact sets. Conway (3)
has shown that if .S is paracompact, then (C,(S), B) is a Mackey space, i.e.,
there is no locally convex linear topology on C,(S) which properly contains
B and yields the same continuous linear functionals as 8.

The bounded strict topology on C,(S) is denoted by 8’ and has as a local
neighbourhood basis at the origin the system of all convex, balanced, absorbent
sets V such that for each » > 0 there is a 8 neighbourhood W of 0 such that
W M B, C V. That this is a basis for a locally convex linear topology follows
from (7, Theorem 2, p. 10). This method of generating topologies is discussed
by Collins in (2, § 5, pp. 265-268).

The author will attempt, at appropriate places in the paper, to point out
the reason for introducing the strict and the bounded strict topologies on
C,(S). Although the bounded strict topology has a somewhat cumbersome
definition, it does have several interesting connections with the strict topol-
ogy and, besides, agrees with it on norm bounded sets and gives rise to the
same continuous linear functionals. A linear transformation T from C,(S)
into a locally convex topological vector space (E, 7) is 8/ — 7 continuous if
and only if its restriction to each norm bounded set is 8 — 7 continuous. Also,
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a linear transformation T from C,(S) into C,(S) is 8/ — B’ continuous if and
only if its restriction to each norm bounded set is 8 — B continuous. These
last two properties are not needed in this paper, so no proof is given. How-
ever, the last property comes close to giving the reason for the introduction
of the 8’ topology.

TaeorEM 1. (Cy(S), B') s sequentially complete and has the same continuous
linear functionals as (Cy(S), B). Thus B’ = B if (Cy(S), B) is a Mackey space,
which s the case if S is paracompact.

Proof. Since B C f/, every 8’ Cauchy sequence is 8 Cauchy, and thus 8
convergent and norm bounded, by (1). But 8’ and 8 agree on norm bounded
sets, so every 3’ Cauchy sequence is 8’ convergent.

Since 8 C B/, every B continuous linear functional on C,(S) is 8’ con-
tinuous. Suppose L is a 8 continuous linear functional on C,(S). Then L is
norm continuous, so by the Riesz representation theorem there exists a unique
bounded regular Borel measure u on S such that Lf = [f du for all f in Cy(S).
Let Pf = ff du for all f in Cy(S). Then P is B continuous on C,(S), by (1),
and also is therefore 8’ continuous. But Cy(S) is 8’ dense in C,(S) since {¢, g}
is norm bounded and 8 convergent to g for g in C,(S) and {¢.} an approximate
identity for the Banach algebra Co(S). Therefore Pf = Lf for all f in C,(S).

2. Semi-groups of operators. A semi-group of operators in a linear
space X is a collection {1';;¢ > 0} of linear transformations from X into X
satisfying

Ty = I, the identity operator on X,

and T''1T,=T,,fors, t>0.

See (5) for the theory and terminology of semi-groups in a Banach space,
and (9) for the theory and terminology in a topological vector space. In this
section, {¢,;;¢t > 0} denotes a class (C,) semi-group of maps in .S, and
T.f=fo¢,for fin Cp(S) and ¢t > 0. Thus {7} is a semi-group of operators
in Cy(S), and |IT,f|| < |If]| for f in C,(S) and ¢ > 0.

THEOREM 2.1. Let ® denote the set of all f in C,(S) such that ||T,f — f|| — 0
as t — 0. Then ® is a Banach algebra under the supremum norm, and T, ® C &
for t > 0, so that {T',} is a class (Co) semi-group when resiricted to the Banach
space ®. Also, ® is B dense in Cy(S).

Proof. Clearly ® is a linear space. ® is an algebra since T, (fg) = (7", f) (T, 2).
If fis in C,(S), {f.} C &, and ||f,|| — 0, then

and NTof = fll < 2f = full + 1T fu = fll,
so that fis in ®. If 5,¢> 0, then T, T,f — I'sf = T«(T,f — f), so that
T:®C ®.
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If fis in Cy(S) and « > 0, then define f, on S by

Ja(x) = (1/a) Laf(¢,(x)) dt.

The integral exists for each x in S because the integrand is bounded and
continuous from the right. f, is clearly bounded. Take y in .S and K a compact
neighbourhood of y. Let g(¢) = T, f|x for 0 < { < a. Then g is weakly con-
tinuous from the right as a function from [0, «] into C(K) and is therefore
strongly measurable. Since g is bounded, g is Bochner integrable, and

el = /e [ g0 at.

Therefore f, is in C,(S). For each x in S,

att o
i) — £ = (/)| [ 8.0 a5 — [ 70, as
att t
= /)| [ s ds = [ o) as| < @i,

so that f, is in ®. Also f, — f weakly in (Co(S), B) as @ — 0, so that & is
weakly dense in (Cy(S), 8) and therefore dense in (C,(S), B).

Remark. For f in ®, the function ¢ — 7', f is norm continuous (from both
sides) since for t > 0 and 0 < & < ¢, we have

Tt+hf —1.f=T, th - I.f
and Tzf— Tt—hf = Tz—h(Thf_f)-

Theorem 2.1 provides perhaps the most pressing reason for the use of the
B8 topology. The B-denseness of ® is needed to prove Theorem 2.2, which is
essential to all that follows. The B-denseness is obtainable because of the
simple nature of 38 weak sequential convergence.

We give an example in which & is not all of C,(S), and the setting cannot
be easily reduced to a simpler one. Take .S to be real Euclidean 4-space E,,
and let

& (21, X0, X3, 24) = (x1/ (1 + |1] £), x5 €', x3 cOs £ + x4 8in ¢, —x38in ¢ + x4 cos ¢).

Then f(x1, X2, x3, x4) = sin x2 is not in ®. The problem cannot be reduced to
linear semi-groups in E; because of the first term, and the maps ¢, have no
apparent continuous extension to any reasonable compactification of S in
such a way that the extended maps would form a separately continuous
semi-group. The generator of {¢,} is an extension of

—x1 |x1] (8/0x1) + x2(9/9x2) + x4(8/dx3) — x3(8/9x4).
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THEOREM 2.2. If {¢,} is separately continuous, then {¢,} is doubly continuous.

Proof. Suppose x is in .S and ¢ > 0 (the case { = 0 requires only a trivial
modification). Suppose U is an open set in S having compact closure U~
and containing ¢,(x). Take V open in S with ¢,(x) in IV and V- C U. Take
fin C,(S) with f(S) C [0, 1], f(¢.(x)) = 0, and f(y) = 1 for y in SN\ V.

Since ® is B8 dense in C,(S), ® is certainly v’ dense in C,(S). Take g in &
such that ||g — f|lo- < 1/8 Take § > 0 such that ||[T5¢g — T, g|| < 1/8 for
|s — ¢| < 6. Let W denote a neighbourhood of x such that ¢,(y) is in V" and
g(o.(y)) <1/4 for y in W.

If |s — ¢| <4, and y is in W, then

g(@:()) = g(o:(y)) — g(o.(y)) + glo.(y)) < 3/8,

so that ¢,(y) is in VU (S\ U~), because g(z) > 7/8 for z in U\ 1. Now
fix y in W, and let h(s) = ¢,(y) for |s — t| < 8. The range of % is connected,
and A(f) is in V, so h(s) is in V for all |s — ¢| < §, since V and S\ U~ are
separated.

TarorEM 2.3. If S is o-compact, then {¢,} is separately continuous.

Proof. For each fin C(S) and ¢t > 0, let P,f = fo ¢,. Then each P, is a
continuous linear operator from (C(S), v) into (C(S), v), because

U2 fllx = [fllsc

for £ > 0 and K compact. Clearly {P,} is a semi-group of operators in C(S),
and P,f = T ,ffort > 0 and f in C,(S). The function ¢ — P, f is norm con-
tinuous, and thus v measurable on [0, ) for each f in ®. Since ® is 8 dense
in C,(S), ® is v dense in C(S). Since S is g-compact, (C(S), v) is a Fréchet
space, so that every function f in C(S) is the limit of a sequence of functions
in ®, and thus {P,; ¢ > 0} is a strongly measurable semi-group of continuous
operators in (C(S), v). Therefore, by (8), {P,} is strongly continuous on
(0, ).

Suppose that x is in .S, ¢ > 0, and U is an open set containing ¢,(x). Take
fin C(S) such that f(S) C [0, 1], f(¢.(x)) = 0, and f(y) = 1 for y in S\ U.
Take § > 0 such that

L5 f = Pifllisy <1/2
for |s — ¢| < 8. Then f(¢,(x)) < 1/2 for |s — | < § so that ¢,(x) is in U.

TuareorEM 2.4. If {¢,} is separately continuous, and k > 0, then the family
{T,;0 <t <k} is an equi-continuous family of operators from (C,(S), 8) into

Proof. Let Vik,, e be a 8 neighbourhood of 0. Let K,” = G([0, k] X K,) for
n=123,..., where G(t,x) = ¢,(x) for t > 0 and x in S. Then

T Vigmeny C Vigniens for 0 K<t E
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THEOREM 2.5. If {¢,} is separately continuous, and o > 0, then
{ee' Tt > 0}
is an equi-continuous family of operators from (Co(S), B') into (Co(S), 8').

Proof. Let Q, = e«'T", for t > 0, and let V denote a convex balanced g’
neighbourhood of 0. For each » > 0, let V, denote a convex balanced 8 neigh-
bourhood of 0 such that V, N\ B, C V, take ' > 0 such that 7/ < 7 and
B, C V,, and take k, > 0 such that e~ < (#'/r). Let W, denote a convex
balanced B8 neighbourhood of 0 such that 7", W, C V, for 0 < ¢t < k,. Then

0.(B.NW,)C B.NV,)CV fort>0.
Let

wW=nQo (V).
120
Then B, \ W, C W for r > 0, so that W is a 8 neighbourhood of 0.

Remark. (Theorem 2.5 shows the reason for the use of the f’-topology. In
order to use the semi-group theory as given in (9), it is necessary that the
operators form an equi-continuous collection in the topological vector space
in which they are considered, and (C,(S), 8’) is the only satisfactory space
the author can find.

THEOREM 2.6. If {¢,} is separately continuous, and o > 0, then {e==' T} is
strongly continuous on [0, ) as a semi-group of operators in (Cy(S), '),

(CD(S)’B)r or (CD(S)v Bl)

Proof. 1t suffices to prove strong continuity in (C»(S), ¥’), since v/, 8,
and B’ agree on norm bounded sets. Also, it suffices to take @ = 0. The strong
continuity in (C,(S), v’) follows by a routine argument based on the double
continuity of {¢,}.

THEOREM 7. Suppose {Z,;t > 0} is a semi-group of linear operators in
C,(S). Then the following statements are equivalent:
(i) there exists a umique separately continuous semi-group {0,;¢t > 0} of
maps in S such that Z,f = f o8, for f in Cp(S) and t > 0,
(i1) (a) each Z, is a non-gero algebraic homomorphism on C,(S);
(b) each Z, is either B continuous, B’ continuous, or v' continuous;
(c) for each f in C,(S), the function t — Z,f is either B continuous,
B’ continuous, or v continuous on [0, x);
(iii) each Z, is a mom-zero algebraic homomorphism on C,(S), and for each
a>0, {e'Z,;t >0} is an equi-continuous semi-group of class (Co) in
(Co(S), B’), see (9, p. 234).

Proof. That (i) implies (iii) has already been established. That (iii) implies
(ii) is apparent. We shall show that (ii) implies (i).
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Suppose ¢ > 0 and «x is in S. Let
Lf = [Z,f](x) for each f in C,(S).

Then L is a non-zero multiplicative linear functional on C,(S). Therefore,
there is a unique point y in S—, the Stone-Cech compactification of S, such
that Lf = f~(y) for all f in C,(S), where f~ denotes the continuous extension
of f to S—. But by (b), (1), and Theorem 1, y is in S. Therefore, for each
s > 0, there exists a unique function 6, from .S into .S such that Z; f = fo 6
for all f in C,(S). The fact that each 6; is a map follows from the complete
regularity of S and the fact that f o 6;is continuous for each f in C,(S). Clearly,
{6,: s > 0} is a semi-group of maps in S. We now have ||Z, f|| = ||f|| for f in
Cy(S) and s > 0, so the three types of strong continuity described in (c) are
all equivalent. The separate continuity of {6} follows by an argument like
the last part of the argument for Theorem 2.3.

THEOREM 2.9. Let A be a linear transformation from a subspace D(A) of
C,(S) nto Cy(S). Then the following statements are equivalent:
(i) there exists a umique separately continuous semi-group {0, t > 0} of
maps i S such that f is in D(A) if and only if

lim(fo0, —f)/t (t—0)
exists in the B’ topology (or, equivalently, in the B topology) and

Af =lim(fo 8, — f)/t (t—0)
for all f in D(4);
(ii) D(A) s dense in (Cy(S), ') (or equivalently, in (C,(S),B8)), A is a
derivation (i.e., fg is in D(A) and A (fg) = f(Ag) + g(Af) for f, g in D(4)),
and for each o > 0, the collection

Fo={[I =04 =) ™%

is an equi-continuous collection of operators in (Co(S), 8');
(iii) D(4) s dense in (Cy(S),B'), 4 is a dertvation, and for some o > 0,
F, is an equi-continuous collection of operators in (C,(S), 8').

Proof. First, let us remark that the equivalence of the 8 and 8’ denseness
of D(A) is a consequence of Theorem 1 and the fact that weak density and
density of a subspace are equivalent.

Suppose that (i) holds. Then A is clearly a derivation. Suppose a > 0,
and let

M,f=e=fo0,

for f in C,(S) and ¢ > 0. Then {M} is an equi-continuous semi-group of class
(Co) in (Cy(S), '), by Theorem 2.7. Clearly, the infinitesimal generator of
{M,} is A — «, so that (ii) follows from (9, p. 246).

That (ii) implies (iii) is clear. Suppose (iii) is true, and let « denote a
positive number such that the collection F, is equi-continuous.
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Let {N,} denote the semi-group generated by 4 — a. By (9, Remark, p.
248),

N, f = lim, , (exp[t(4d —a)(I — w1 (4 — a))71])f for each f in Cy(S).

Let Z, = ¢2* N, for ¢ > 0. Then {Z,} is a semi-group of operators in C,(S).
Moreover, {Z,} is strongly 8’ continuous on [0, ®») and 8’ equi-continuous
on each interval [0, k). Also

d/d)Z.f = A(Z.f) = Z. (4f)

for fin D(A) and ¢ > 0. We now prove that each Z, is a non-zero algebraic
homomorphism.
Take f, g in D(4), and let

H({) = (Z.f)(Z.g) for £ > 0.
Then
H'(t) = (Z.HA(Z.g) + (Z.9)A(Z.]),
H'(s) — AH(s) = 0,
ZysH'(s) —Z,—sAH(s) = 0,
(d/ds)Z,—s H(s) = 0,
Z, sH(s) = Z,H(0) = ZyH(1),
H(t) = Z.(fg).

Since D(4) is dense in (C,(S), 8’) and each Z, is continuous, each Z, is an
algebraic homomorphism. Since Z,f—f as t — 0 for all f in C,(S), Z, is
certainly non-zero for small ¢{. Suppose J, is a sequence of continuous non-zero
algebraic endomorphisms on (C,(S), 8’) and J,f— 0 as n — = for all f in
C,(S). Then, by the argument for Theorem 2.7, there is a unique sequence
{¥n} of maps in S such that J, f = f o ¢,. Fix an x in S. Then {¢,(x)}) must
cluster at some point y in S—, the Stone-Cech compactification of S, and
fn(x)) must cluster at f~(y) for every f in C,(S), where f~ denotes the
extension of f to S—. Therefore f~(y) = 0 for all f in C,(S), a contradiction.
Therefore, each Z, is non-zero.

Therefore, by Theorem 2.7, there is a unique separately continuous semi-
group of maps {f,} such that Z,f = f o6, for f in C,(S) and ¢ > 0. Thus 4
is defined as in (i).

Remark. In connection with Theorem 2.8, we mention that f is in D(A)
if there exists a g in C,(S) such that (f(8,(x)) — f(x))/t — g(x) as t — 0 for
all x in S. Suppose there is such a function g. Then for each x, the function
t— f(0,(x)) has right derivative g(8,(x)) at ¢ for all £ > 0. Since this right
derivative is continuous, it is also the derivative (see, for instance, (9, pp.
239, 240)). Thus, for each x in .S, we have

J60.) — £) = | 2@
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| [ eosde],

(o0, =N/t = /) | gonas

and Af = g, the last two integrals being taken as integrals of continuous
functions from [0, {] into (Cy(S), 8').

[fob, — f1(x)

so that

Il
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