
SEMI-GROUPS OF MAPS IN A LOCALLY COMPACT 
SPACE 
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Suppose t h a t 5 is a locally compact Hausdorff space. A one-parameter semi­
group of maps in S is a family {4>t\ t > 0} of continuous functions from S 
into 5 satisfying 

(i) 4>t o cf)u = (f)t+u for t, u > 0, where the circle denotes composition, and 
(ii) <£o = e, the identi ty m a p on 5 . 

A semi-group {<j>t} of maps in S is said to be 

(iii) of class (Co) if <j>t(x) - ^ x a s t —> 0 for each x in 5 , 
(iv) separately continuous if the function £ —> <t>t(x) is continuous on [0, °o ) 

for each x in 5 , and 

(v) doubly continuous if the function (t, x)-^ (j>t(x) is continuous on 
[0, oo ) x S. 

W e show t h a t separate continuity implies double continui ty and t h a t if S is 
(7-compact (the union of countably many compact sets) , then every class 
(Co) semi-group of maps in S is separately continuous. 

We establish a 1-1 correspondence between the class of all separately con­
tinuous semi-groups of maps in 5 and a certain easily describable class of 
linear operators in Cb(S), the linear space of all bounded, real-valued, con­
tinuous functions on S. T h e correspondence would seem to justify calling the 
linear operator corresponding to a given semi-group of maps in S the in­
finitesimal generator of t ha t semi-group. A topology, called the bounded 
strict topology, is introduced on the space C6(5), and it is shown tha t if S is 
paracompact , then the bounded strict topology coincides with the more 
familiar strict topology; see (1) or (3). I t is then shown tha t if \<t>t', t > 0} is 
a separately continuous semi-group of maps in S, a > 0, and Ttf = fo<j>t 

for / in Cb(S) and t > 0, then {e~atTt\ t > 0} is an equi-continuous semi­
group of class (Co) in Cb(S) with the bounded strict topology; see (9, p . 
234). This is the major step in establishing the correspondence between 
semi-groups of maps in 5 and their generators. T h e generator of \4>t) is given 
by 

Af=lim(fo4>t-f)/t (*-»0). 

T h e class of generators A of separately continuous semi-groups {</>̂ } of maps 
is the class of derivation operators A in Cb(S) such t h a t the domain of A is 
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dense in Cb(S) with the bounded strict topology, and for some a > 0 (equiva-
lently, for each a > 0) , the collection 

{[I - n~\A - a)]-m}-,n=1 

is an equi-continuous collection of operators on Cb(S) with the bounded strict 
topology. Hufford (6) has carried out a similar program for S compact. 

1. Topo log ie s o n f u n c t i o n spaces . Let C(S) denote the linear space 
of all continuous real-valued functions on S. Then Cb(S) is the space of all 
bounded functions in C(S). Let Co (S) denote the linear space of all functions 
in C(S) which vanish a t infinity, and let CC(S) denote the linear space of all 
functions in C(S), which have compact support . 

T h e norm, | | / | | , of a function / in Cb(S) will mean the supremum norm 
of/, and if K is a compact subset of 5 and / is in C(S), then W/WK means the 
supremum norm of f\K, the restriction o f / to K. If K is a compact subset of 
S, then C(K) denotes the Banach space with supremum norm of continuous 
real-valued functions on K. For each r > 0, Br denotes the set of all / in 
Cb(S) such tha t | | / | | < r. 

T h e compact open topology (the topology of uniform convergence on com­
pact sets) on C(S) will be denoted by y, and its restriction to Cb(S) will be 
denoted by y'. T h e strict topology, see (1), on Cb(S) will be denoted by ft 
and has a local neighbourhood basis a t the origin the sets V+ = {/: | | /^ | | < 1} 
for \p in Co(S). An equivalent neighbourhood basis, by (4), consists of the sets 

V{Kn,*n} = {/: I l/l Un < «» f ° r " = 1, 2 , 3 , . . . } , 

where {en} is a strictly increasing sequence of positive numbers approaching 
infinity, and {Kn) is an increasing sequence of compact sets. Conway (3) 
has shown tha t if S is paracompact , then (Cb(S), 13) is a Mackey space, i.e., 
there is no locally convex linear topology on Cb(S) which properly contains 
/3 and yields the same continuous linear functionals as /3. 

T h e bounded strict topology on Cb(S) is denoted by /3r and has as a local 
neighbourhood basis a t the origin the system of all convex, balanced, absorbent 
sets V such t ha t for each r > 0 there is a /3 neighbourhood W of 0 such tha t 
W C\ Br (Z. V. T h a t this is a basis for a locally convex linear topology follows 
from (7, Theorem 2, p . 10). This method of generating topologies is discussed 
by Collins in (2, § 5, pp. 265-268). 

The author will a t t empt , a t appropriate places in the paper, to point out 
the reason for introducing the strict and the bounded strict topologies on 
Cb(S). Although the bounded strict topology has a somewhat cumbersome 
definition, it does have several interesting connections with the strict topol­
ogy and, besides, agrees with it on norm bounded sets and gives rise to the 
same continuous linear functionals. A linear transformation T from Cb(S) 
into a locally convex topological vector space (£ , r ) is /3' — r continuous if 
and only if its restriction to each norm bounded set is /3 — r continuous. Also, 
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a linear t ransformation T from Cb(S) into Cb(S) is ft — ft cont inuous if and 
only if its restriction to each norm bounded set is ft — 13 continuous. These 
last two properties are no t needed in this paper, so no proof is given. How­
ever, the last proper ty comes close to giving the reason for the introduct ion 
of the ft topology. 

T H E O R E M 1. (Cb(S), ft) is sequentially complete and has the same continuous 
linear junctionals as (Cb(S), ft. Thus ft = (3 if (Cb(S), ft is a Mackey space, 
which is the case if S is paracompact. 

Proof. Since (3 C ft, every ft Cauchy sequence is (3 Cauchy, and thus /3 
convergent and norm bounded, by (1). B u t ft and f3 agree on norm bounded 
sets, so every ft Cauchy sequence is ft convergent. 

Since (3 C ft, every j3 continuous linear functional on Cb(S) is ft con­
tinuous. Suppose L is a ft continuous linear functional on Cb(S). Then L is 
norm continuous, so by the Riesz representat ion theorem there exists a unique 
bounded regular Borel measure JJL on S such t h a t Lf = ff du for a l l / in CQ(S). 
Let Pf = Jf d/j, for all / in Cb(S). Then P is /3 continuous on Cb(S)} by (1), 
and also is therefore ft continuous. Bu t Co(S) is ft dense in Cb(S) since {\[/a g] 
is norm bounded and f3 convergent to g for g in Cb(S) and {\f/a} an approximate 
identi ty for the Banach algebra Co(S). Therefore Pf = Lf for a l l / in Cb(S). 

2. S e m i - g r o u p s of operators . A semi-group of operators in a linear 
space X is a collection {Tt\ t > 0} of linear t ransformations from X into X 
satisfying 

TQ = I, the identi ty operator on X, 

and Tt Ts = Tt+S for s, t > 0. 

See (5) for the theory and terminology of semi-groups in a Banach space, 
and (9) for the theory and terminology in a topological vector space. In this 
section, {</>*; t > 0} denotes a class (Co) semi-group of maps in S, and 
Ttf = f o 4>t f o r / in Cb(S) and t > 0. T h u s {Tt} is a semi-group of operators 
in Cb(S), and | | r « / | | < | | / | | f o r / in Cb(S) and / > 0. 

T H E O R E M 2.1. Let $ denote the set of all f in Cb(S) such that \\Ttf — / | | —» 0 
as t —-> 0. Then $ is a Banach algebra under the supremum norm, and Tt $ C $ 
for t > 0, so that {T\) is a class (Co) semi-group when restricted to the Banach 
space <£. Also, $ is (3 dense in Cb(S). 

Proof. Clearly $ is a linear space. $ is an algebra since Tt (fg) = (Ttf)(Tt g). 
If / is in Cb(S), {fn} C $, and | | /n | | -> 0, then 

Ttf-f= Tt(f-fn)+ (Ttf„-fn) + (fn-f) 

and \\Ttf-f\\ < 2 \\f - fn\\ + \\Ttfn-fn\\, 

so t h a t / is in <î>. If s, t > 0, then Tt Tsf — Tsf = Ts(Ttf — / ) , so t h a t 

Ts $ C $ . 
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If / is in Cj,(S) and a > 0, then define fa on S by 

/„(*) = ( l /«) ( f(4>t(x))dt. 

The integral exists for each x in S because the integrand is bounded and 
continuous from the right. fa is clearly bounded. Take y in 5 and K a compact 
neighbourhood of y. Let g(t) = Ttf\K for 0 < t < a. Then g is weakly con­
tinuous from the right as a function from [0, a] into C(K) and is therefore 
strongly measurable. Since g is bounded, g is Bochner integrable, and 

fa\K= (1/a) fg(0<ft. 

Therefore /« is in Cb (5). For each x in 5, 

|/«(*i(*)) -/«(*) I = (1/a) f+/(*,(*))<fc- f/(*,(*))<** 
I «/ z «Jo 

/(*,(*)) <k- /(*.(*)) <fc| < (2*/«)||/||, 
« «Jo 

so that fa is in $>. Also /« —>/ weakly in (C&(5), /3) as a —* 0, so that <ï> is 
weakly dense in (C6(5), 0) and therefore dense in (CÔ(S), £). 

Remark. For / in <£, the function £ —» 7 ^ / is norm continuous (from both 
sides) since for t > 0 and 0 < h < t, we have 

and 

Tt+hf - Ttf = r» T V - r , / 

r , / - T W = rt_h(Thf-f). 

Theorem 2.1 provides perhaps the most pressing reason for the use of the 
jS topology. The /3-denseness of <£ is needed to prove Theorem 2.2, which is 
essential to all that follows. The /3-denseness is obtainable because of the 
simple nature of /3 weak sequential convergence. 

We give an example in which $ is not all of Cb(S), and the setting cannot 
be easily reduced to a simpler one. Take 5 to be real Euclidean 4-space E4l 

and let 

<t> t (#i> #2, #3, #4) = (xi/ (1 + |#i| t) , %2 e*, x% cos t -\- x4 sin t, — x3 sin t + x4 cos /). 

Then f(xi, x2, x3, x±) = sin x2 is not in <É>. The problem cannot be reduced to 
linear semi-groups in E4 because of the first term, and the maps <j>t have no 
apparent continuous extension to any reasonable compactification of 5 in 
such a way that the extended maps would form a separately continuous 
semi-group. The generator of {<£*} is an extension of 

— Xi \xi\ (d/dXi) + x2{d/dx2) + X±(d/dXz) — Xz(d/dx±). 

https://doi.org/10.4153/CJM-1967-063-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-063-3


692 J. R. DORROH 

T H E O R E M 2.2. If {<t>t} is separately continuous, then {<f>t} is doubly continuous. 

Proof. Suppose x is in 5 and t > 0 (the case / = 0 requires only a trivial 
modification). Suppose U is an open set in S having compact closure U~ 
and containing <t>t(x). Take V open in 5 with <j>t{pc) in V and V~ C U. T a k e 
/ in Cb(S) w i t h / ( 5 ) C [0, l],f(4>t(x)) = 0, and f(y) = 1 for y in S \ F . 

Since $ is fi dense in Cb(S), $ is certainly 7 ' dense in Cb(S). T a k e g in <ï> 
such t h a t ||g -f\\u- < 1/8 T a k e <5 > 0 such t h a t \\TS g - Ttg\\ < 1/8 for 
\s — t\ < 8. Let W denote a neighbourhood of x such t ha t <t>t(y) is in F and 
g(<t>t(y)) < 1/4 for 3/ in W. 

If |s — t\ < 8, and 3/ is in W, then 

gfo.OO) = g(4>*(y)) - g(4>t(y)) + sfoiOO) < 3/8, 

so t h a t 0 s (y) is in F U (S\U~), because g(z) > 7 /8 for s in U~\V. Now 
fix y in W, and let &(s) = <l>s(y) for |s — t\ < 5. T h e range of h is connected, 
and h{t) is in F, so h(s) is in F for all \s — t\ < 8, since F and 5 \ £ 7 ~ are 
separated. 

T H E O R E M 2.3. If S is a-compact, then {4>t} is separately continuous. 

Proof. For each / in C(S) and t > 0, let Ptf = f o <t>t. Then each Pt is a 
continuous linear operator from (C(S), 7) into (C(S), 7 ) , because 

11̂ /11* = ll/IU« 
for £ > 0 and K compact . Clearly [Pt] is a semi-group of operators in C(S), 
and Ptf

 = Ttf îor t ^ 0 and / in C6(5). T h e function t -^ Ptf is norm con­
tinuous, and thus 7 measurable on [0, 00 ) for each / in $. Since <ï> is f3 dense 
in Cb(S), $ is 7 dense in C(S). Since 5 is o--compact, (C(S), 7) is a Fréchet 
space, so t h a t every f u n c t i o n / in C(S) is the limit of a sequence of functions 
in $ , and thus {Pt\ t > 0} is a strongly measurable semi-group of continuous 
operators in (C(S), 7 ) . Therefore, by (8), {Pt) is strongly continuous on 
( 0 , œ ) . 

Suppose t ha t x is in S, t > 0, and U is an open set containing <j>t(x). T a k e 
/ in C(S) such t h a t / ( 5 ) C [0, 1], f(<f>t(x)) = 0, and f(y) = 1 for y in S \ £ / . 
T a k e 8 > 0 such t h a t 

I I ^ / - ^ « / I I M < I / 2 

for |s - t\ < 8. Thenf(<t>s(x)) < 1/2 for \s - t\ < 8 so t ha t <£6,(x) is in U. 

T H E O R E M 2.4. If {<j>t} is separately continuous, and k > 0, //&era the family 

\Tt\ 0 < / < k) is an equi-continuous family of operators from (Cb(S), fi) into 

(C 6 (S ) , 0 ) . 

Proof. Let V[Kn,tn} be a /3 neighbourhood of 0. Let Kn' = G([0, k] X Kn) for 
w = 1, 2, 3, . . . , where G(/, x) = cj>t(x) for / > 0 and x in S. Then 

C F{Kn,en} for 0 < t < &. 
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THEOREM 2.5. If {<j>t) is separately continuous, and a > 0, then 

{e-«tTt]t>0} 

is an equi-continuous family of operators from (Cb(S),f3f) into (Cb(S), fi'). 

Proof. Let Qt = e~atTt for t > 0, and let V denote a convex balanced (3' 
neighbourhood of 0. For each r > 0, let Vr denote a convex balanced /3 neigh­
bourhood of 0 such that Vr P\ Br C V, take r' > 0 such that r' < r and 
-Br' C Vr, and take &r > 0 such that e~akr < (rf/r). Let WT denote a convex 
balanced (3 neighbourhood of 0 such that TtWT(Z Vr for 0 < t < kr. Then 

Qt(Br n rag c (sr n 7r) c 7 for * > o. 
Let 

Then ^ r H 17, C W for r > 0, so that W is a /3' neighbourhood of 0. 

Remark. (Theorem 2.5 shows the reason for the use of the /^'-topology. In 
order to use the semi-group theory as given in (9), it is necessary that the 
operators form an equi-continuous collection in the topological vector space 
in which they are considered, and (Cb(S)} /3') is the only satisfactory space 
the author can find. 

THEOREM 2.6. If {<j>t} is separately continuous, and a > 0, then {e~at Tt} is 
strongly continuous on [0, °° ) as a semi-group of operators in (Cb(S), y'), 
(C6(S),0), or (Cb(S),Pf). 

Proof. It suffices to prove strong continuity in (C&(5), y'), since y', 13, 
and jSr agree on norm bounded sets. Also, it suffices to take a = 0. The strong 
continuity in (Cb(S), yf) follows by a routine argument based on the double 
continuity of {<j>t}-

THEOREM 7. Suppose {Zt; t > 0} is a semi-group of linear operators in 
Cb (S). Then the following statements are equivalent: 

(i) there exists a unique separately continuous semi-group {0t\ t > 0} of 
maps in S such that Ztf = f o 6t for f in Cb(S) and t > 0; 

(ii) (a) each Zt is a non-zero algebraic homomorphism on Cb(S); 
(b) each Zt is either fi continuous, (3f continuous, or y' continuous; 
(c) for each f in Cb(S), the function t—>Ztf is either p continuous, 

/3f continuous, or y' continuous on [0, <» ); 
(iii) each Zt is a non-zero algebraic homomorphism on Cb(S), and for each 

a > 0, {eatZt;t^0} is an equi-continuous semi-group of class (Co) in 
(C6(S),/3'), see (9, p. 234). 

Proof. That (i) implies (iii) has already been established. That (iii) implies 
(ii) is apparent. We shall show that (ii) implies (i). 
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Suppose t > 0 and x is in S. Let 

Lf = [Ztf](x) for each / in Cb(S). 

Then L is a non-zero multiplicative linear functional on Cb(S). Therefore, 
there is a unique point y in S~, the Stone-Cech compactification of S, such 
that Lf = f~(y) for a l l / in C&(5), w h e r e / - denotes the continuous extension 
of/ to S~. But by (b), (1), and Theorem 1, y is in S. Therefore, for each 
s > 0, there exists a unique function 6S from S into 5 such that Zs f = f o 6S 

for all / in Cb(S). The fact that each 6S is a map follows from the complete 
regularity of S and the fact t h a t / o 9S is continuous for each/ in Cb(S). Clearly, 
\ds: s > 0} is a semi-group of maps in S. We now have | |Z 5 / | | = ||/|| f o r / in 
Cb(S) and 5 > 0, so the three types of strong continuity described in (c) are 
all equivalent. The separate continuity of {6S} follows by an argument like 
the last part of the argument for Theorem 2.3. 

THEOREM 2.9. Let A be a linear transformation from a subspace D(A) of 
Cb(S) into Cb(S). Then the following statements are equivalent: 

(i) there exists a unique separately continuous semi-group \6t] t > 0} of 
maps in S such that f is in D(A) if and only if 

\im(foOt - f)/t (*-»0) 

exists in the fif topology (or, equivalently, in the /3 topology) and 

Af=lim(foet-f)/t (*-0) 
for all f in D{A); 

(ii) D(A) is dense in (Cb(S), &') (or equivalently, in (Cb(S), /3)), A is a 
derivation (i.e., fg is in D(A) and A(fg) = f(Ag) + g(Af) for f, g in D(A)), 
and for each a > 0, the collection 

Fa= {[I-n-\A -a)]-m\Tn,„^ 

is an equi-continuous collection of operators in (Cb(S), fif); 
(iii) D(A) is dense in (Cb(S), (3'), A is a derivation, and for some a > 0, 

Fa is an equi-continuous collection of operators in (Cb(S), (3f). 

Proof. First, let us remark that the equivalence of the /3 and /3' denseness 
of D(A) is a consequence of Theorem 1 and the fact that weak density and 
density of a subspace are equivalent. 

Suppose that (i) holds. Then A is clearly a derivation. Suppose a > 0, 
and let 

M tf = e-^fodt 

for / in Cb(S) and t > 0. Then {Mt} is an equi-continuous semi-group of class 
(Co) in (Cb(S),t3f), by Theorem 2.7. Clearly, the infinitesimal generator of 
{Mt} is A — a, so that (ii) follows from (9, p. 246). 

That (ii) implies (iii) is clear. Suppose (iii) is true, and let a denote a 
positive number such that the collection Fa is equi-continuous. 
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Let {Nt} denote the semi-group generated by A — a. By (9, Remark, p. 
248), 

Ntf = limw_œ (exp[t(A - a)(I - n~l(A - a))-1])/ for each/ in Cb(S). 

Let Zt = eat Nt for t > 0. Then {Zt} is a semi-group of operators in Cb(S). 
Moreover, {Zt} is strongly /3' continuous on [0, °° ) and 0' equi-continuous 
on each interval [0, k). Also 

(d/dt)Ztf=A(ZJ) =Zt(Af) 

fo r / in D(A) and / > 0. We now prove that each Zt is a non-zero algebraic 
homomorphism. 

Take / , g in D 04 ), and let 

H{t) = (ZJ)(Ztg) for * > 0 . 
Then 

^'(t) = (z«/)4(z(g) + (zfgM(z«/), 
H'(s) - AH{s) = 0, 

Zt_sH'(s) - Zt^AH{s) = 0, 

(d/ds)Z^sH(s) = 0, 
Z^sH{s) = ZtH(0) = Z0H(t), 

H(t) = Zt(fg). 

Since Z?04) is dense in (C6(5), /3') and each Z* is continuous, each Zt is an 
algebraic homomorphism. Since Ztf—>f as / —» 0 for all / in Cb(S),Zt is 
certainly non-zero for small /. Suppose /w is a sequence of continuous non-zero 
algebraic endomorphisms on (C6(5), /3') and Jnf-+ 0 as w —> co for a l l / in 
C&(5). Then, by the argument for Theorem 2.7, there is a unique sequence 
{\f/n} of maps in 5 such that Jnf = / o \f/n. Fix an x in S. Then {^(x)}) must 
cluster at some point y in S~, the Stone-Cech compactification of S, and 
/ 0/^0*0) must cluster at /_0y) for every / in Cb(S), where /~ denotes the 
extension of/ to S~~. Therefore /~ (y) = 0 for a l l / in Cb(S), a contradiction. 
Therefore, each Zt is non-zero. 

Therefore, by Theorem 2.7, there is a unique separately continuous semi­
group of maps {6t} such that Ztf = f odt fo r / in Cb(S) and / > 0. Thus 4̂ 
is defined as in (i). 

Remark. In connection with Theorem 2.8, we mention t h a t / is in D(A) 
if there exists a g in C&(5) such that (f(6t(x)) — f(x))/t —* g(x) as £ —> 0 for 
all x in 5. Suppose there is such a function g. Then for each x, the function 
t—>f(dt(x)) has right derivative g(0*0*0) a t J for all / > 0. Since this right 
derivative is continuous, it is also the derivative (see, for instance, (9, pp. 
239, 240)). Thus, for each x in S, we have 

f(0t(pc))-f(x) = f g(0€(*))d£ 
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and 

Lfo0,-/](*) = [ fjoOidtjix), 
so that 

(fo6t-f)/t= (1/0 ( goe.ds, 

and 4 / = g, the last two integrals being taken as integrals of continuous 
functions from [0,/] into (C&(5), £')• 
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