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The viscous force and torque on a closed
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The force and torque on a solid body in a viscous potential flow are often taken
to be independent of viscosity. Joseph et al. (Eur. J. Mech. B/Fluids, vol. 12, 1993,
pp. 97–106; J. Fluid Mech., vol. 265, 1994, pp. 1–23) proved that this holds for (i) the
force (not the torque) in any two-dimensional flow, and (ii) the drag force experienced
by a purely translating three-dimensional body. The remaining components of the force
and torque, along with general three-dimensional flows, were not considered. Importantly,
the flow was assumed to be unbounded and irrotational everywhere. We eliminate this
rarely satisfied assumption and consider the viscous force and torque experienced by any
closed surface where the flow is irrotational locally; this can include a body’s surface. Any
vorticity distribution is permitted away from the closed irrotational surface. In so doing,
we complete the analysis of Joseph et al. for all components of the viscous force and torque
in two and three dimensions and enable application to real flows that inevitably contain
regions of vorticity.

Key words: general fluid mechanics, Navier–Stokes equations

1. Introduction

The motion of a viscous fluid around a solid body is known to generate viscous stresses
that can affect both momentum transport and the forces experienced by the body. For an
incompressible flow, it is easily proved that non-zero viscous stresses do not contribute
to momentum transport in regions where the flow is irrotational (Batchelor 1967), i.e.
momentum transport is governed by the Euler equations for inviscid flow. This central
result underpins the use of potential flow theory in a range of contexts, including
calculation of the flows generated by aerofoils at high Reynolds number (Anderson 1991)
and solid bodies executing high-frequency oscillations (Crighton 1983). In both these
examples, the effects of vorticity may be confined to thin regions immediately adjacent to
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the solid body or in localised regions away from it (such as vortices shed from an aerofoil).
In addition to momentum transport, it is often taken that viscous stresses do not contribute
to the forces and torques experienced by a body in an incompressible viscous potential
flow (Pozrikidis 2011). This has enabled the widespread use of inviscid flow theory, which
is distinct from viscous potential flow, to compute these loads.

This use of inviscid theory was the subject of a detailed examination by Joseph,
Liao & Hu (1993) who employed a combination of (i) complex-variable methods for
two-dimensional flows, and (ii) an energy argument for three-dimensional flows generated
by purely translating bodies satisfying the no-penetration condition, e.g. a solid body or
a bubble that does not deform, which shall collectively be referred to as ‘rigid bodies’.
This analysis was repeated and extended to viscoelastic and second-order fluids by Joseph
& Liao (1994). Specifically, Joseph et al. (1993) examined the force and torque on a
rigid body in an unbounded and incompressible viscous potential flow. That is, a flow
satisfying the incompressible Navier–Stokes equations with zero vorticity throughout
the flow domain that invokes the no-penetration condition on the body in question.
Such a flow is rarely encountered in practice, with a notable exception being the steady
two-dimensional flow generated by a rotating cylinder, whose flow mimics that of a point
vortex.

For two-dimensional flows, Joseph et al. (1993) proved that the force experienced by the
body is independent of the fluid viscosity. However, they found that the torque exerted by
the fluid on the body depends on the product of the fluid viscosity and its circulation. This
somewhat unusual result appears to be rarely (if ever) referenced; it recovers the required
torque experienced by a steadily rotating cylinder. These previous results made use of
a complex-variable form of Gauss’ theorem, connecting flow properties at the body’s
surface to their behaviour at infinity. For three-dimensional flows, Joseph et al. (1993)
considered the drag component of the force for pure translational motion of a rigid body
and proved that it does not depend on viscosity. This used an alternative energy argument.
Other components of the force and other types of motion were not considered, and neither
was the torque in a three-dimensional flow.

It thus remains to be seen whether these unanalysed force components and the
force/torque in a general three-dimensional flow depend on viscosity for an incompressible
viscous potential flow. In addition, whether the findings of Joseph et al. (1993) hold
for bodies/surfaces that do not invoke the no-penetration condition, e.g. a deformable
bubble, an elastic solid or a closed surface away from a body. The effect of relaxing this
no-penetration condition, and the applicability of the results of Joseph et al. (1993) to flows
that contain regions of non-zero vorticity, are currently unreported. This collective gap in
the literature provides the motivation for the present study.

We examine the viscous force and torque which arises from the deviatoric (viscous)
part of the stress tensor. These loads are calculated on an arbitrary closed surface, S, along
which the flow is irrotational locally, i.e. flow away from this surface is arbitrary and can
contain regions of non-zero vorticity. Such a surface is henceforth termed an ‘irrotational
surface’. Moreover, the flow domain can be bounded or unbounded. This is in contrast
to Joseph et al. (1993) who considered the surface upon which the force and torque are
calculated to be that of a rigid body. They also required the flow to be unbounded and
irrotational globally, i.e. zero vorticity everywhere. Under our broader assumptions, we
report a generalisation of the proofs provided by Joseph et al. (1993) to (i) any closed
surface, S, (ii) the complete force and torque vectors on this surface in both two and three
dimensions, (iii) any steady or unsteady flow in a bounded or unbounded domain and,
critically, (iv) flows that contain vorticity provided the vorticity is zero along the closed
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The viscous force and torque on a closed irrotational surface
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Figure 1. Schematic showing a closed irrotational surface, S, that encloses a body or any other fluid region;
presence of the body is not required. The position vector, r, relative to a chosen origin, 0, and the unit outward
normal vector, n, are shown. The flow away from the surface, S, i.e. either interior or exterior to it, can be
irrotational or contain vorticity. The fluid region, V , outside of S is used in the alternative and simpler analysis
reported in Appendix A.

surface, S. Results for the viscous force are given in § 2 whereas those for the viscous
torque are reported in § 3; their results are summarised in § 4 with conclusions given in
§ 5. For completeness, a simpler proof for a surface that encloses all regions of vorticity
in an unbounded flow is reported in Appendix A. Identical formulae for the viscous force
and torque are recovered despite these imposed restrictions.

2. Force calculation

The force exerted on the closed surface, S, by the fluid that surrounds it, is

F =
∫

S
n · T dS, (2.1)

where T is the stress tensor of the fluid and n is the outward normal vector to the surface;
see figure 1. The constitutive equation for a viscous incompressible flow is

T = −pI + 2μe, (2.2)

where p is the pressure field, μ is the shear viscosity, I is the identity tensor and e is the
rate-of-strain tensor. For all irrotational flows, the spin tensor is zero which establishes that
the velocity gradient tensor is equal to the rate-of-strain tensor, i.e. e = ∇u, where u is the
velocity field, i.e. the velocity gradient tensor is symmetric. This fact appears to have been
overlooked by Joseph et al. (1993), who used the notation D[u] to refer to the symmetric
part of ∇u and made no mention of this identity when the flow is irrotational (their central
focus). Substituting this identity and (2.2) into (2.1) gives

F = −
∫

S
pn dS + 2μ

∫
S

n · ∇u dS. (2.3)

Note that the pressure field, p, is independent of viscosity when the flow is irrotational
everywhere, an assumption that we do not impose in this study.
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The focus of this study is on the second term in (2.3) that is often referred to as the
‘viscous force’, which we identify by

F v ≡ 2μ

∫
S

n · ∇u dS. (2.4)

This defines the contribution from the (non-zero) deviatoric part of the stress tensor in a
viscous potential flow. It is distinct from inviscid flow for which the viscous force does not
exist. We calculate the value of this viscous force, F v , for a general viscous potential flow
in two and three spatial dimensions.

2.1. Two-dimensional flows
For a two-dimensional plane flow, the surface, S, corresponds to a closed line contour
in the two-dimensional Cartesian plane that is projected into an infinite cylinder in the
direction normal to the plane. This closed line contour is paramaterised by a variable,
s ∈ [0, smax), and the flow is independent of the Cartesian coordinate normal to the plane.
The corresponding two-dimensional Cartesian components of the viscous force per unit
cylinder length in this plane, denoted fi with i = 1 and 2, follows from (2.4),

fi = 2μ

∫ smax

0
εkm

∂ui

∂xk

dxm

ds
ds, (2.5)

where εkm is the two-dimensional Levi-Civita symbol and the Cartesian components of
the position vector, r, and velocity field, u, are denoted xi and ui, respectively.

Each component of fi is considered separately. For i = 1, (2.5) gives

f1 = 2μ

∫ smax

0

∂u1

∂x1

dx2

ds
− ∂u1

∂x2

dx1

ds
ds. (2.6)

Making use of the continuity equation for incompressible flow, and noting that the flow is
irrotational along s ∈ [0, smax), then gives

f1 = −2μ

∫ smax

0

∂u2

∂x1

dx1

ds
+ ∂u2

∂x2

dx2

ds
ds = −2μ

∫ smax

0

∂u2

∂s
ds, (2.7)

from which it immediately follows that

f1 = 0, (2.8)

because the line contour is closed and the velocity field is continuous. The same result
obviously holds for i = 2, i.e. fi = 0 with i = 1 and 2.

This analysis therefore proves that the viscous force on any irrotational surface, S, that
is closed in the plane is identically zero, i.e.

F v = 0. (2.9)

This result applies to any two-dimensional flow that may have vorticity away from S.

2.2. Three-dimensional flows
For a general three-dimensional flow, the closed irrotational surface, S, is parameterised
by two independent variables, v ∈ [0, vmax) and w ∈ [0, wmax), which form a
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rectangular domain. The three Cartesian components, Fi where i = 1, 2, 3, of the viscous
force, F v , in (2.4) can then be written as

Fi = 2μ

∫ wmax

0

∫ vmax

0
εjmn

∂ui

∂xj

∂xm

∂v

∂xn

∂w
dv dw, (2.10)

where εjmn is the three-dimensional Levi-Civita symbol, and the Cartesian components
of the position vector, r, and velocity field, u, are xi and ui, respectively. As before, we
examine the components of (2.10) one at a time. For i = 1, and by making use of the
continuity equation for incompressible flow, (2.10) can be written as

F1 = 2μ

∫ wmax

0

∫ vmax

0

(
∂u2

∂xm

∂xm

∂w

)
∂x3

∂v
−

(
∂u2

∂xm

∂xm

∂v

)
∂x3

∂w

+
(

∂u3

∂xm

∂xm

∂v

)
∂x2

∂w
−

(
∂u3

∂xm

∂xm

∂w

)
∂x2

∂v
dv dw, (2.11)

which immediately simplifies to

F1 = 2μ

∫ wmax

0

∫ vmax

0

∂u2

∂w
∂x3

∂v
− ∂u3

∂w
∂x2

∂v
+ ∂u3

∂v

∂x2

∂w
− ∂u2

∂v

∂x3

∂w
dv dw. (2.12)

Integrating each term in (2.12) by parts, while noting that the region of integration is a
rectangular domain, then gives

F1 = 2μ

{∫ vmax

0

[
u2

∂x3

∂v
− u3

∂x2

∂v

]w=wmax

w=0
dv +

∫ wmax

0

[
u3

∂x2

∂w
− u2

∂x3

∂w

]v=vmax

v=0
dw

}
.

(2.13)

The Jacobian of the (v, w)-parametrisation of S vanishes at any of its singular points.
Because the velocity field is continuous it then follows that the integrands in (2.13) also
vanish, regardless of whether the surface, S, is singly or multiply connected, e.g. a sphere
or a torus. This gives the required result,

F1 = 0. (2.14)

The remaining components of the viscous force, F v , can be obtained by interchanging
indices in the above analysis, i.e. Fi = 0 for i = 1, 2, 3. This gives the required result,

F v = 0. (2.15)

The collective analysis in this § 2 thus proves that the viscous force acting on any closed
irrotational surface, S, is identically zero, regardless of its dimensionality. We emphasise
that this result applies to both steady and unsteady flows in bounded or unbounded
domains, and to flows that may contain vorticity away from S.
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3. Torque calculation

Next, we examine the torque exerted by the fluid on the same irrotational surface, S,

Λ =
∫

S
r × (n · T ) dS, (3.1)

where r is the position vector from some chosen origin; see figure 1. Substituting (2.2)
into (3.1) gives

Λ = −
∫

S
(r × n)p dS + 2μ

∫
S

r × (n · e) dS, (3.2)

and we again examine the contribution from the deviatoric part of the stress tensor, i.e.

Λv ≡ 2μ

∫
S

r × (n · e) dS, (3.3)

which is often termed the ‘viscous torque’. Because the velocity gradient tensor is
symmetric for an irrotational flow, i.e. e = ∇u, as discussed above, (3.3) becomes

Λv ≡ 2μ

∫
S

r × (n · ∇u) dS. (3.4)

We now calculate the value of Λv for both two- and three-dimensional flows.

3.1. Two-dimensional flows
The irrotational surface, S, its parameterisation in the variable, s, and all other symbols are
as described in § 2.1. The torque vector is always normal to the plane of a two-dimensional
flow. Therefore, the viscous torque for any two-dimensional flow in the Cartesian
(x1, x2)-plane can be expressed as

Λv = ΛLx̂3, (3.5)

where x̂3 is the basis vector in the Cartesian x3-direction orthogonal to the (x1, x2)-plane
and L is a nominal length in the same direction. The scalar torque per unit length, Λ, then
immediately follows from (3.4),

Λ = 2μ

∫ smax

0
εjkεmnxj

∂uk

∂xm

dxn

ds
ds. (3.6)

This can be simplified using the continuity equation for incompressible flow and by
expressing the product, εjkεmn, in terms of the Kronecker delta, giving

Λ = 2μ

∫ smax

0
xj

∂uj

∂xk

dxk

ds
ds = 2μ

∫ smax

0
xj

∂uj

∂s
ds. (3.7)

Integrating by parts yields

Λ = −2μ

∫ smax

0
uj

∂xj

∂s
ds, (3.8)

where the integral is formally the circulation, Γ , around the closed line contour. It then
follows from (3.5) that the viscous torque is

Λv = −2μΓ L x̂3. (3.9)

This proves that the viscous torque on any irrotational surface, S, that is closed in the
plane, depends on viscosity provided the circulation is non-zero around its closed line
contour in the plane.

987 A19-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.402
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3.2. Three-dimensional flows
Using the surface paramaterisation for three-dimensional flows in § 2.2, the Cartesian
components of the viscous torque, Λv , in (3.4), denoted Λi, become

Λi = 2μ

∫ wmax

0

∫ vmax

0
εijkεmpqxj

∂uk

∂xm

∂xp

∂v

∂xq

∂w
dv dw. (3.10)

Expressing the product of the Levi-Civita pseudotensors in terms of the identity tensor
gives

Λi = 2μ

∫ wmax

0

∫ vmax

0
xj

(
∂ui

∂w
∂xj

∂v
− ∂ui

∂v

∂xj

∂w
+ ∂uj

∂v

∂xi

∂w
− ∂uj

∂w
∂xi

∂v

)
dv dw, (3.11)

which simplifies using integrating by parts to produce

Λi = 2μ

(∫ vmax

0
Γw

∂xi

∂v
dv −

∫ wmax

0
Γv

∂xi

∂w
dw

)
, (3.12)

where Γv and Γw are evaluated in the v- and w-directions, respectively, and are defined by

Γv ≡
∫ vmax

0
uj

∂xj

∂v
dv, Γw ≡

∫ wmax

0
uj

∂xj

∂w
dw. (3.13a,b)

Because S is an irrotational surface, Γv is independent of w and Γw is independent of v,
i.e. both Γv and Γw are constants, with (3.12) becoming

Λi = 2μ(Γwxi|v=vmax
v=0 − Γvxi|w=wmax

w=0 ). (3.14)

For (v, w)-parameterisations without singularities, e.g. for the surface of a torus, (3.14)
gives Λi = 0 because the positions, xi, are coincident at their respective v and w limits.
This result also holds for parameterisations with singularities, e.g. for the surface of a
sphere, due to the mixed nature of the products in (3.14), e.g. Γw must vanish when
xi|v=vmax

v=0 /= 0. The required result for the viscous torque is then

Λv = 0, (3.15)

which holds for singly and multiply connected surfaces, e.g. spheres and tori.

4. Summary

The results in §§ 2 and 3 prove that all components of the viscous force, F v , on any closed
irrotational surface, S, are always zero for both two and three-dimensional flows, i.e.

F v = 0. (4.1)

The same is true for the viscous torque in three-dimensional flows only. In contrast,
the viscous torque in a two-dimensional plane flow can be non-zero and dependent on
viscosity, provided the circulation, Γ , is also non-zero, i.e.

Λv =
{

0, ‘three-dimensional flows’,
−2μΓ L x̂3, ‘two-dimensional flows’, (4.2)

where x̂3 is the basis vector orthogonal to the plane and L is the nominal length in the
same direction. Importantly, the viscous torque is independent of the chosen origin of r
because the viscous force acting on S is identically zero.

987 A19-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.402


J.E. Sader and D.I. Pullin

These results differ fundamentally from those reported by Joseph et al. (1993) who
considered the viscous force and torque acting on a rigid body in an unbounded
irrotational flow. The viscous torque and all components of the viscous force in a general
three-dimensional flow were not considered. The formulae in (4.1) and (4.2) generalise the
results of Joseph et al. (1993) to all components of the viscous force and torque on any
closed irrotational surface, regardless of the vorticity distribution away from this surface
and whether the flow domain is bounded or unbounded.

5. Conclusions

The contribution of viscous (deviatoric) stresses to the force and torque experienced by an
arbitrary closed irrotational surface has been derived. The flow can be steady or unsteady
and in a bounded or unbounded domain. The existence of vorticity away from this surface
is immaterial. An alternative and simpler analysis for an unbounded irrotational domain is
reported in Appendix A, for which identical formulae are obtained.

This extends and completes the analysis of Joseph et al. (1993) who assumed an
unbounded flow that is irrotational everywhere, and calculated the forces and torques
on the surface of a rigid body only. For three-dimensional flows, this previous analysis
only considered the drag force experienced by a rigid body undergoing pure translation.
The general analyses reported here encompass these previously studied cases and enable
application to real viscous flows that inevitably contain regions of vorticity.

Declaration of interests. The authors report no conflict of interest.
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John E. Sader https://orcid.org/0000-0002-7096-0627;
D.I. Pullin https://orcid.org/0009-0007-5991-2863.

Appendix A. Unbounded irrotational flows

In this appendix, we present an alternative analysis more closely aligned to that of Joseph
et al. (1993). Specifically, we consider an unbounded flow that is irrotational everywhere
outside the closed surface, S, which may or may not coincide with a body’s surface; in
contrast to Joseph et al. (1993) where S coincides with the surface of a rigid body. The
velocity field is also assumed to vanish far from S and the mass flux through S is zero.
This analysis is more restrictive than that in §§ 2 and 3, which only requires the flow to
be irrotational on the surface, S; the flow can be bounded or unbounded. Even so and
somewhat surprisingly, the derived formulae for the viscous force and torque are identical
to those in §§ 2 and 3. This shows that the requirement in this appendix that the flow be
unbounded and irrotational everywhere outside S is an over constraint. The flow need only
be irrotational on the surface for the formulae reported in this appendix to apply.

A.1. Force
Consider the two surfaces enclosing the unbounded fluid domain, V , outside of the surface,
S; see figure 1. The first is the surface, S, itself and the second is a surface far from it, S∞.
We note the velocity field varies as |u| ∼ 1/rn, as r → ∞, where r is the distance from
a chosen origin enclosed by S and n is a positive constant (Batchelor 1967). All potential
flows that decay to zero far from the body satisfy the following constraints: n > 0 for
two-dimensional flows and n > 1 for three-dimensional flows (Batchelor 1967). Therefore,
the surface, S, in the second term of (2.3) can be replaced by the joint surface, S + S∞,
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The viscous force and torque on a closed irrotational surface

because the contribution from the surface, S∞, is always zero (with n being the inward
normal to the volumetric fluid domain, V). The resulting surface integral over S + S∞ can
then be replaced by the volume integral over the fluid domain, V , using Gauss’ theorem,

F v = −2μ

∫
V

∇2u dV. (A1)

Because ∇2u = 0 for any incompressible irrotational flow, (A1) becomes

F v = 0. (A2)

Equation (A2) proves that the deviatoric part of the stress tensor does not contribute to
any component of the viscous force experienced by the surface, S. This result holds for
both two- and three-dimensional flows.

A.2. Torque
To examine the viscous torque, we replace the domain of the integral in (3.3) by S + S∞,
where S∞ is defined in § A.1, and make use of Gauss’ theorem, which gives

∫
S

r × (n · e) dS +
∫

S∞
r × (n · e) dS = −

∫
V

r × (∇ · e) − ε : e dV = 0, (A3)

where n is the inward normal to the volumetric fluid domain, V , the Levi-Civita
pseudotensor is ε, and we have used the properties that (i) ∇ · e = 0 for an incompressible
irrotational flow, and (ii) ε : e = 0 because e is symmetric. Substituting (A3) into (3.3)
yields

Λv = −2μ

∫
S∞

r × (n · e) dS, (A4)

establishing that the viscous torque is zero provided the surface integral over S∞ vanishes.
Again noting that the velocity field varies as |u| ∼ 1/rn for r → ∞, (A4) vanishes

when n > 1 and n > 2 for two- and three-dimensional flows, respectively; a stronger
constraint than that required for the force in § A.1. Even so, these conditions are satisfied
for all three-dimensional flows (Batchelor 1967), including flows generated by multiply
connected surfaces, e.g. tori. This establishes that the viscous torque (and the viscous
force, see § A.1) vanishes for those flows, i.e.

Λ3D
v = 0, (A5)

where the superscript 3D denotes three-dimensional flows. In contrast, these constraints
on n are violated for two-dimensional flows establishing that the viscous torque can be
non-zero, i.e.

Λ2D
v = −2μ

∫
S∞

r × (n · e) dS, (A6)

with the superscript 2D denoting two-dimensional flows. From the general multipole
expansion for the velocity field in potential flow, it follows that (Batchelor 1967)

u ∼ Γ

2πr
φ̂, r → ∞, (A7)
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in cylindrical polar coordinates, (r, φ, z), where φ̂ is the basis vector in the φ-direction
and the circulation is Γ . Equations (A6) and (A7) then give the required viscous torque,

Λ2D
v = −2μΓ L x̂3, (A8)

where L is the nominal length perpendicular to the (x1, x2)-plane flow. That is, the viscous
torque is non-zero and depends on viscosity only when the circulation, Γ , is also non-zero.
This matches the result reported by Joseph et al. (1993) when the surface, S, is chosen to
be that of a rigid body, i.e. the no-penetration condition is imposed on S.

This analysis proves that dimensionality controls when the viscous torque vanishes.

A.3. Summary
The formulae derived in §§ A.1 and A.2 complete the analysis first reported by Joseph
et al. (1993) which was restricted to (i) the force and torque in unbounded two-dimensional
flows, and (ii) the drag force in an unbounded three-dimensional flow generated by a purely
translating body. They also generalise the results of Joseph et al. (1993) which considered
the force and torque acting on the surface of a rigid body only. These results may be
attainable using alternative impulse formulations (Eldredge 2019).
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