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TOPOLOGICALLY VERSAL DEFORMATIONS OF 
MATRICES; CODIMENSION AT MOST TWO 

D. W. BASS 

1. Introduction. The reduction of a matrix to its Jordan normal form 
is an unstable operation in that both the normal form itself and the 
reducing mapping depend discontinuously on the elements of the original 

'2 r matrix. For example, the matrix 

that reduce to the form 

trivially reduces to itself in 

perturbations of this matrix 

which is certainly not a small pertur-

0 2J 
Jordan form, but there are arbitrarily small perturbations of this matrix 

"2 + 6 0] 
0 2j 

bation of the original matrix, and moreover the reducing mapping is not 
a small perturbation of the identity. In [1], Arnol'd derives the simplest 
possible normal forms to which families of matrices may be linearly 
reduced in a 'stable' manner. In this paper, we consider a 'topological' 
version of the problem, using the classification of matrices up to topo
logical conjugacy given in [8] and the classification of linear dynamical 
systems up to orbital equivalence given in [9]. The classification given in 
[8] was not complete. It has since been completed by Cappell and Shane-
son [6] for GL(Rn), n ^ 6. 

The work in this paper extends and modifies that by the author in [5]. 
For the sake of clarity we repeat the motivation and definitions given in 
[5]. In fact the definition of topological equivalence of deformations is 
modified. The definition was modified, partly to simplify the problem, 
and partly to relate the matrix deformation problem to the linear 
dynamical system deformation problem. The results in this paper can be 
viewed as a natural (though partial) solution to either problem. 

2. Definitions, preliminaries and main result. A smooth k-param-
eter family of matrices A is a smooth map, A : U —•> GL(Kn) where U is a 
neighbourhood of 0 £ Rfc and GL(Rn) is identified with R*2. Write 
A(0) = A0. A k-parameter deformation of A0 is the germ at 0 G R* of 
such a family. We denote the germ by Â and a representative of it by A. 
The word unfolding is sometimes used in place of the word deformation. 

We shall restrict our attention to the class of matrices A0 G GL+(Rn) 
where GL+(Rn) is the image of the set of all n X n matrices, M(n, n) 
under the standard exponential map, exp: M(n, n) —> GL(Kn). Matrices 
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in the class GL+(Rn) are of course those associated with the solution 
curves in linear dynamical systems. It therefore seems a natural restric
tion to introduce; moreover various technical complications and 'special' 
cases are avoided. 

If A o £ GL+ (Rn), the orbit system of A 0 in Kn is the set of A 0-invariant 
curves (called orbits) in Rn. Explicitly an ylo-invariant curve through 
y Ç Rn is given by t —> A0

fy {t G R) where A^ = exp(/Ço) and A0 = 
exp <2o. The orbit system is precisely the set of solution curves to the 
system dy/dt = Q0y. 

Let A : U —» GL+(Kn) be a ^-parameter family of matrices; denote by 
2A (w) the subset of £/ such that if x £ 2"1 (co), ^ has at least one pair of 
complex conjugate eigenvalues of modulus one. It will be clear later that 
if A is one of the 'stable' normal forms, 2A (co) is nowhere dense in U. 

Remark. The class of matrices with more than one pair of complex 
conjugate eigenvalues of modulus one were those that kept back Kuiper 
and Robbin [8] from a complete topological classification of linear maps. 
However, the associated problem for linear dynamical systems was com
pletely solved by Kuiper [9] (the corresponding matrices are those having 
at least one pair of pure imaginary eigenvalues). 

Two ^-parameter deformations of A0( = Bo), Â and B are said to be 
topologically equivalent if for some neighbourhood U of 0 in R*, there 
exists a fibre-preserving homeomorphism <ï>: U X R7* —> U X Rw such 
that for x Ç U — 2(w), 

J5 x == ™x ' **- x ' ^x 

and for x £ 2(«) (=2A(co) = 2B(œ)), $x takes orbits of Ax to orbits of 
Bx. On {0} X Rn, $0 is required to be the identity map. In the linear 
equivalence of deformations of Arnol'd $x is a similarity transformation 
for all x G U. Let <£: (V, 0) —» (U, 0) be a smooth map from a neighbour
hood of 0 in Kn to a neighbourhood of 0 in R*. The w-parameter family 
induced from the family A: U-^ GL(Rn) by </>, 4*(A) is defined by the 
equation <l>*(A)(x) = ^4(<£(x)), x G F. The family <t>*(A) is simply a 
reparameterisation of A. For example, if A is of the form 

[2 + x 0 1 . w 
L 0 3 + x 2 J ' x G K 

and </>:R2 —•> R is given by 0(x, 3/) = x + y then <t>*(A) is of the form 

Ï2+ (x + y) 0 1 
L 0 3 + (x + 3 )̂2J ' 

The germ of <£* (A) at 0 is called the deformation induced from Â by <t>. A 
deformation of a matrix A 0 is said to be a topologically versai (or just versai 
if there is no likelihood of ambiguity) k-parameter deformation of A0> if 
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any deformation of A 0 is topologically equivalent to a deformation 
induced from Â by some smooth m a p (/>. T h u s a versai family is equivalent 
up to parameterisat ion, to any other deformation of A0. I t is said to be 
miniversal if k is minimal with respect to topological versali ty. Impre
cisely it is the 'smallest ' family containing a t least one element from each 
topological equivalence class of matrices near Ac,. T h e par t i t ion of the 
parameter space determined by these topological equivalence classes of 
matrices near A0 is called the bifurcation diagram of A0. T h e miniversal 
deformations provide us with the 'normal forms' to which matrices can 
be topologically reduced in a stable manner . T h a t the reduction is stable 
follows from our main theorem. 

GL+(Kn) is part i t ioned into equivalence classes called topological 
orbits by the two non-intersecting equivalence relations of topological 
conjugacy and orbital equivalence. By abuse of language, a matr ix is said 
to be of codimension p if its topological orbit is a submanifold of GL(Rn) 
of codimension p. In Section 3, we establish which classes of matrices are 
of codimension ^ 2 . I t is conjectured t ha t the par t i t ion of GL+(Rn) into 
topological orbits defines a Whi tney stratification of GL+(Kn). For 
n = 2 or 3 it is easily verified and certainly holds for orbits of codimen
sion ^ 2 . 

We are now able to s ta te our main theorem. 

M A I N T H E O R E M . If the topological orbit 0(A0) of A 0 is a submanifold in 
GL+(Rn) of codimension at most two, then a deformation of AG is topo
logically versai if and only if it is transversal to 6(A0). 

T h e theorem establishes the stabil i ty of versai deformations. For, any 
versai deformation of AQ is transversal to 6(A0) and trivially remains 
transversal under small per turbat ions and, therefore, versai. Moreover, 
the versai deformation and its per turbat ion are, up to a smooth invertible 
change of parameters , topologically equivalent. T h u s we have established 
the 'stabil i ty of the reduction' to versai (normal) form. 

Remark. In our definition of topological equivalence of deformations of 
A0, it would be more natura l to require either t h a t $x be a topological 
conjugacy between Bx and Ax for all x £ U or t h a t $x preserves orbits 
for all x G U. T h e former is rejected for reasons indicated in the introduc
tion. T h e la t ter leads to severe technical difficulties in the proof t h a t 
'versai implies transversal ' in the main theorem. Nevertheless, I con
jecture t h a t the main theorem dealing with the classification of versai 
deformations of matrices relative to the notion of topological equivalence 
defined above, is still t rue relative to the more general notion of 'orbital 
equivalence' . T h e following informal remark is offered as intuit ive justi
fication for the conjecture. Any homeomorphism in a sequence of orbit-
preserving homeomorphisms would appear to need a certain degree of 
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'regularity' or 'niceness' (possibly only relative to the other homeo-
morphisms in the sequence) in order for the limit of that sequence of 
homeomorphisms to be itself an orbit-preserving homeomorphism, espe
cially if the orbit systems preserved by the limit homeomorphism are 
topologically distinct from those preserved by the other homeomorphisms 
in the sequence. Requiring that each homeomorphism in the sequence 
also conjugates the matrices giving rise to the orbit systems would provide 
(possibly) just that degree of 'regularity' or 'niceness' needed, though in 
general, of course, that might not be enough. 

3. Matrices of codimension at most two. The following lemma 
established in [5] is useful in determining the codimension of a matrix. 
Recall that if a deformation Â is linearly versai, then trivially Â is 
topologically versai. 

LEMMA 1. Let A be a linearly miniver sal deformation of A0 with repre
sentative A: U->GL(Rn), 0 e U C R*. / / UT C U is a submanifold of 
codimension p in U, where UT = {% G U\A (x) is of topological type T), then 
the germ at A 0 of the set of all matrices of type T is the germ of a submanifold 
of codimension p in GL(Rn). 

In other words to show that a certain topological orbit 6(A0) is a sub
manifold of codimension k, it is sufficient to consider a representative A 
of the Arnol'd normal form for a deformation Â of A0 and establish that 
there is a smooth ^-parameter 'subfamily' embedded in A corresponding 
to an open subset of 6(Ao). 

A matrix A0 £ GL+(Kn) is said to be hyperbolic if all of its eigenvalues 
are of modulus different from one. A0 is said to be of type l f X w ; ' X hyp. 
(i, j = 0, 1, 2) if it has just one i X i Jordan block with associated eigen
value one and just one j X j complex Jordan block with associated com
plex eigenvalue of modulus one; the remaining eigenvalues of A0 are of 
modulus different from one. The real form for a 2 X 2 complex Jordan 
block with complex eigenvalue co = x + iy is the 4 X 4 real matrix 

r"x l —y o n 
O x 0 —y I 

\ y 0 x 1 
I 0 y 0 x I 

The following lemma further simplifies the problem of classifying the 
elements of GL+(Rn) up to topological equivalence. It also offers a con
siderable simplification to the proof of the main theorem. Essentially, 
the lemma allows us to 'forget about' the hyperbolic part of A0 and its 
deformations. 

LEMMA 2. LetAo G GL+(Rn) be a matrix of the form 
Bo 0 
0 H{ 

where B0 
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is a p X p matrix with eigenvalues of modulus one and where Ho is hyper
bolic. Then any k-parameter deformation Â of Ac is topologically equivalent 

where B is a k-parameter deformation 
0 ffo. 

to a deformation of the form 

of Bo G GL+(Rk). 

Proof. Arnol'd proves in fl] that any deformation of a matrix A0 stably 
reduces to a deformation in block diagonal form. Each block corresponds 
to an eigenvalue of A0. Rearranging these blocks, so that those corres
ponding to eigenvalues of A0 of modulus one precede those blocks cor
responding to eigenvalues of modulus different from one, we have that A 
is linearly equivalent (up to reparameterisation) to a family C of the 
form 

xe ucRk \BX 0 
0 Hx 

where Hx is the block of hyperbolic blocks and Bx is the block of non-
hyperbolic blocks. Now using the absolute structural stability of hyper
bolic endomorphisms [10], we can topologically reduce the family C to 
the form claimed in the lemma. 

COROLLARY 1. Â is a topologically versai deformation of A 0 if and only if 
B is a topologically versai deformation of B0. 

COROLLARY 2. Â is transversal to 0(A0) if and only if B is transversal to 
6(B0). 

Proof. From the lemma, it is clear that the codimension of 6(AQ) equals 
the codimension of 6(B0). It is sufficient to show that A is transversal to 
6(A0) at 0 if and only if C is transversal to 6(A0) at 0. 

In some neighbourhood U of 0 in R^ 

where x G U and Px Ç GL(Rn). Taking the associated tangent bundle 
maps of both sides at x = 0, we have 

Co* = ^ o * + [Po*,Ao]. 

Since [Po*, AQ] maps vectors in the tangent space at 0 Ç U, to vectors 
in the tangent space to 6(A0) at A0, it follows immediately that C is 
transversal to 6(A0) at 0 if and only if A is transversal to 6(A0) at 0. 

LEMMA 3. The following table gives the complete list of matrices of codi
mension at most two: 

Codimension 0 1 2 

Topological Type hyp. 1 X hyp. 
co X hyp. 

1 X co X hyp. 
I2 X hyp. 
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Proof. From Lemma 1, it is sufficient to give a linearly miniversal de
formation of the appropriate matrices. In view of Lemma 2 we can ignore 
the hyperbolic parts of the matrices considered. The hyp. and 1 X hyp. 
cases are then trivial. 

Consider a matrix A0 of type œ. A representative of a linearly mini
versal deformation of A0 is of the form: 

[ a + %i b + x2] 
L — (b + x2) a + #ij 

where w = a ± ib and (xi, x2) (z U C. R2 The subset of U associated 
with matrices of the same topological type as A 0 is given by the equation 

(a + x,Y + (6 + x2)
2 = 1 

which clearly defines a submanifold of codimension one in U. 
Consider A0 of type w X 1. A representative of a linearly miniversal 

3-parameter deformation of A0 is of the form: 

r fl + xi b + x2 0 n 
— (ô + x2) a + Xi 0 

L 0 0 1 + X3J 

where o> = a zL ib, and (xi, x2, x3) £ U (Z R3- The subset of U corres
ponding to matrices of type 00 X 1 is given by the set 

{(xi, x2, x3)|(a + Xi)2 + (6 + x2)2 = 1 and x3 = 0} 

which clearly defines a submanifold of codimension two in R3. 
Consider A0 of type l2. A representative of a linearly miniversal de

formation of A0 is of the form: 

[1 1 1 
[Xi 1 + X2J 

where (xi, x2) Ç U C R2- The subset of U corresponding to matrices of 
the same topological type of A 0 is trivially the set {(xx, x2)|xi = x2 = 0}. 
Thus l2 is of codimension two. 

That there are no other matrices of codimension two may easily be 
checked. We take as an example one possible candidate and show it is of 
codimension three. Let A0 be of type wi X co2 where coi 7e oo2 or Ô32; i.e., 
A0 has two distinct complex conjugate pairs of eigenvalues of modulus 
one. For simplicity consider AQ in GL(C2); then a representative of a 
linearly miniversal deformation of A0 is of the form: 

[wi + Z\ 0 1 
L 0 co2 + z2\ 

where (zi, z2) Ç £/ C C2. The subset of U corresponding to matrices with 
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two distinct eigenvalues of modulus one is given by the torus 

i (zi, z2) G U\ |coi + zi| = 1 and |co2 + z2| = 1}. 

The subset of the torus corresponding to matrices of the same 'orbital 
type' as A 0 is a curve given by the equation 

Arg (coi + zi) = k Arg(co2 + z2) 

(see [9]) for some real constant k ^ 0. Hence .4 0 is of codimension 3. 

The main result of the paper proved in the next section relies heavily 
on the following two lemmas together with various technical extensions 
and modifications of them. The first is proved, in a slightly different form 
in [3] and the second is proved using similar arguments. 

LEMMA 4. Let Â and B be one-parameter deformations of A0 = MR with 
representatives A, B: U —» GL(R), 0 £ U C R. / / Ax is topologically con
jugate to Bxfor all x £ U, then Â and B are topologically equivalent deforma
tions of AQ if and only if for some neighbourhood V C U of 0, the function 
c: V — {0} —> R + extends over V where 

CW \ogB(x)' 

LEMMA 5. Let Â andB be one parameter deformations of A0 = co Ç GL(C) 
where co = e^} (3 ^ 0 or TT, with representatives A, B: U —* GL(C), 0 Ç 
U CL R- If Axis topologically conjugate to Bxfor all x £ U — {0}, then Â 
and B are topologically equivalent deformations of A 0 if and only if for some 
neighbourhood V d U of 0, the function c\: V — {0} —> R + extends over V 
where 

_ \og\\A{x)\\ 
Cl{X) - log ||5(x)|| • 

The significance of the function c(or d) will be appreciated once 
it has been noted that a 'typical' homeomorphism conjugating two linear 
maps on R, for example, f(y) = Xiy and g(y) = \2y (Xi, X2 > 1) is of the 
form y —» yc where c = log Xx/log X2. 

4. Proof of the main theorem. The proof that 'transversal implies 
versai' given in [5] is false. The proof contains the appealing but false 
statement that a-A-cf) = a-B implies A-(j> = B. The correct proof 
actually follows quickly after the construction of the map <j> mentioned 
above (though the proof does not generalise to arbitrary codimension as 
suggested in [5]). 

Proof of Theorem 1 (i). Transversal Deformations are Versai. Let A be 
a deformation of A0 transversal to 6(A0) with representative A: U -+ 
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GL+(RW), 0 £ U C R*. To show Â is topologically versai, it is sufficient 
to show any linearly miniversal deformation of A 0 is topologically equiv
alent to Â (possibly after reparameterisation). In fact we shall show that 
there is a reparameterisation of A that allows us to assume Â is a ^-param
eter deformation of A0 where p is the codimension of 6(A0) (p = 0, 1, 2). 
More precisely we construct a map <j>: V —* U, 0 Ç F C Rp such that 
<t>*(A) is a ^-parameter deformation of A0 that is transversal to d(A0) at 
0. The versality of <t>*(A) implies the versality of Â. 

Since 6(A0) is a submanifold of codimension^? (p = 0, 1, 2), there exists 
a smooth map 

a: (GL+(R»),.4o)-->(R1\0) 

such that a is a submersion at 0 and such that the germ of a_1(0) at A 0 is 
the germ of 6 (A 0) at A 0. Since 4̂ is transversal to 6 (A 0), a-A: U —» Kp is a 
submersion at 0 and we may choose local coordinates for Rk such that 

a-A(xlt . . . , xk) = (xi, . . . , Xp) 

where (xi, . . . , xk) G f/. Let [/' C U be the set 

{(xi, . . . , xk) G £/|#p+i = . • • = xk = 0}. 

Then a-^4| t/r is a local diffeomorphism at 0. Let 

(a-A)\U' = V CRp and 0 = (a-A\ U')~K 

Then 0*(^4) is a deformation of ^40 transversal to 6(A0). 
From Corollary 1 to Lemma 2, it is sufficient to consider deformations 

of the non-hyperbolic part of A0. We therefore assume (i) A0 G GL(R) if 
A0 is 1 X hyp (ii) A0 G GL(R2) if ^ 0 is l2 X hyp or w X hyp (iii) 
A0 Ç GL(R3) if 4̂ o is co X 1 X hyp. The proof now becomes a straight
forward construction of explicit topological equivalences. In fact in the 
case of 1 X hyp and l2 X hyp, the equivalence is the identity. For the 
remaining cases the reader is referred to the constructions in [4]. 

The proof that Versai implies transversal' is given in [5] for the hyp 
and 1 X hyp cases. We omit the proof of the *o> X hyp' case because of 
its similarity to the '1 X hyp' case. The remaining two cases are dealt 
with below. 

Proof of Theorem l(ii). Versai deformations are Transversal. 
(a) co X 1 X hyp case. In view of Lemma 2, it is sufficient to con

sider Ao G GL(R3) of type co X 1. Let A\_U-* GL(R3), 0 G U C R* be 
a representative of a versai deformation Â of A0. Let B be a 2-parameter 
deformation of A0, transversal to 6(A0) with representative B:V—> 
GL(R3), 0 6 V C R2. By an argument similar to that used in Lemma 2, 
Corollary 2, it may be shown that it is sufficient to consider A in a linearly 
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, x e u c R* 

reduced form. Precisely we assume A is of the form 

ai(x) (1 + a2(x)) 0 
- (1 + a2(x)) ax{x) 0 

0 0 1 + a3(x)_ 

We take B in a particularly simple form. Namely Z> is of the form: 

Xi 1 + Xi 0 

— (1 + Xi) Xi 0 

0 0 1 + x2 J 
(xu x2) G V C R2. 

The versality of 4̂ now implies there exists a smooth map </>: F —> [/ 
such that <t>*(A) is topologically equivalent to B. Notice that this im
mediately implies c/>* {A ) and B have the same bifurcation diagrams. Thus 

2**<A>(1) = 2 B ( 1 ) ( = 2 ( 1 ) ) and Z**<A>(«) = 2*(co) (= S(w)). 

It follows from Lemmas 4 and 5 that this topological equivalence between 
(f)*(A) and B exists only if the functions c: V — 2(1) —» R + and c\\ V — 
2(co) —» R + extend over F where 

c(x) = log(l + a3(0(xi,x2)))/log(l + x2) 

and 

£i(x) = log[ai2(0(xi, x2)) + (1 + a2(</>(xi, x2)))2] / 

log(x!2 + (1 + x 0 2 ) . 

Both c and C\ are ratios of logarithms of moduli of eigenvalues. It is then 
shown that these conditions on c and C\ imply the transversality of A. We 
choose axes in GL(R3) at A0 such that 4>*(A) and B can be regarded as 
the maps V —» R3 given by: 

4>*(A)(xi, x2) = (ai(0(xi, x2)), a2(0(xi, x2)), a3(0(*ii x2))) 

and^ (x i , x 2 ) = (xx, Xi, x2). 

2(D-

x2 

2(co X 1) 
- * X i 

S(co) 

Bifurcation diagram for 
4>*(A) and 5 
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On 2(1), az(<l>(xi, 0)) = 0 , which implies 

(-isr) - »• 
Since the functions c and c\ extend over F, limX2^oc(x) and \imxl^oCi(x) 

exist and are non-zero. By an elementary application of L'Hopital's rule 
it follows 

(§9ll±) ^ 0 o r (Ê011*) 
\ OXi / (0,0) \ OXi / 

^ 0 
(0,0) 

and that 

(da* • <f>\ 
\ dxz J 9* 0. 

(0,0) 

It is clear that the map A : V -
is transversal to 6(Ao) at 0. 

GL(R3) is an embedding at 0. Hence A 

(b) l2 X hyp case. From Lemma 2, it is sufficient to consider A0 £ 
GL(R2) of type I2. Let A: U -> GL(R2), 0 £ U C R* be a representative 
of a versai deformation A of A$. Let B be a 2-parameter deformation of 
A o transversal to 6(A0) with representative £ : F ->GZ,(R2),0 G F C R2. 
We may assume that A is in a linearly reduced form. We take A and 5 to 
be in the following respective forms: 

1 1 
lax(x) 1 + a2(x) 

x G U C R*, 

1 
Xi 

1 
1 + x2 

(xi, x2) G F C R2. 

Since 4̂ is versai, there exists a smooth map 0: F —> £7 such that <£*C<4) 
and 5 are topologically equivalent. We have immediately that 

2**W(1) = 2*(1 ) (=2(1 ) ) and 2**<4>(co) = 2*(«) (= S(«)). 

S(«) 

• Xi 

2(1) 

Bifurcation diagram for <t>*(A) and 13. 
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In order to prove A is transversal to 0(i4o), it is sufficient to regard 
0* (A ) and B as maps from V into R2 and show that 

(*°f+) *0 and ( ^ ) *0. 
\ OXi / (0,0) \ OX2 / (0,0) 

Notice that a,i-<j> is zero on 2(1) and hence 

\ OX2 I (0,0) 

The general form for a conjugacy 3> between c/>*(̂ 4) and B on V — 
(2(1) U 2(co)) is very complicated. However, certain subspaces of R2 

may be assumed 'invariant' for each parameter value, and the general 
form for <ï> on these subspaces considered. For x = (xi, x2) (E V such that 
Xi ^ 0, both </>*(A)x and J3X have one eigenvalue greater than one and one 
eigenvalue less than one. Since the eigenspaces for <t>*(A)x and Bx merge 
as x —> 0, we make the reasonable assumption that the eigenspaces for 
<j>*{A)x and Bx coincide for x G V+ = {x £ V\%i ^ 0}. Then by con
sidering <£>r on the eigenspaces in R2, it may be shown, using Lemma 4, 
that 0*^4) and B are topologically equivalent only if the functions 

d: V+ - 2(1) - * R + and c2: V+ - 2(1) -> R+ 

extend over F + where 

_ [log (1 + a2(«Hx)) ~ M4>(*))2 + ax(4>(x)))1/2j 
l W l o g ( l + x 2 - (x2

2 + x01 /2) 

r M = [log (1 + «*(»(*)) + M » ( « ) ) ' + ai(0(»)))1/8] 
21 j l o g ( l + x 2 + ( x 2

2 + x1)1/2) 

As usual, Ci(x) and Co(x) are the ratios of the logarithms of the eigen
values of <j)*(A)x and Bx. We show that \imx^o+Ci(x) and lim^o+£2(x) 
exist and are non-zero only if 

( ^ ) ^ 0 and ( - ^ ) * 0 , 
\ 0X1 I (o.o) \ ax2 / (o,o) 

which then means that A is transversal to 0(^lo). The problem here is 
complicated by the fact that the eigenvalues are not smooth functions of 
the parameters. 

Claim. If X\n\x^+C\(x) exists and is non-zero then 

\ OXi I (0,0) 
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Proof of Claim. Write 

fli(0(#i, 0)) = a(x) and a2(0(xi, 0)) = b(x). 

Then 

r \og(l+b(x) + (b\x)+a(x))in) 
lim a(x) = lim —. T—-—T/27 
z-»0+ x->0+ lOg (1 + X ) 

which, using L'Hopital's rule, equals 

.. 2b'(pc) - (b\x) + a(x)yll2(2b(x)b'{x) + a'(x)) 
l im -j/2 

v 1/2,,/ x b'{x)x1'2 a'(x)x1/2 

= hmx'b (x) - -. } . ~ / j2( ,x1 / 2 . 

The first two terms in the expression vanish as x —> 0 (note that 
a(x) > 0 for x > 0). The third term also vanishes unless 

limx_>o+ (a'(x))2x/a(x) exists and is non-zero. 

Since the limit is non-zero, there is a neighbourhood of 0 in which 
a' (x) 7e 0 for all x ^ 0, a(x) > 0 for x > 0, hence we may apply L'Hopi
tal's rule and conclude the limit is non-zero only if a'(0) 9^ 0. Thus 

(dai • 4>\ 
\ dxi J 

^0. 
(0,0) 

The proof that if lim.T^o+C2(x) ^ 0 then 

*0, 
(da2 • <A 
\ dx2 J ( 1>2 / (0,0) 

is much simpler. For 

lim^0
+c2(^) = Hm3;2_>o

+ log(l + 2a2(0(O, x2)))/log(l + 2x2) 

and this limit exists and is non-zero only if 

(da2 • <A 
\ dx2 / (0,0) 

This completes the proof of the main theorem. 

COROLLARY 1. The miniver sal forms for deformations of matrices AQ of 
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type 1 X hyp, « X hyp, co X 1 X hyp, l2 X hyp are respectively: 

x 1 + x 
0 

Ho 

1 + x 0 
0 Ho\ ' - ( 1 + x ) i 

0 

x 1 + x 0 
- (1 + x) x 0 0 J 

0 0 l +y 
0 H0 

1 0 
l + y 

0 H0 

where HQ is the hyperbolic part of A0. 
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