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Abstract

Background: Although serum lactate levels are widely accepted markers of haemodynamic
instability, an alternative method to evaluate haemodynamic stability/instability continuously
and non-invasively may assist in improving the standard of patient care. We hypothesise that
blood lactate in paediatric ICU patients can be predicted using machine learning applied to
arterial waveforms and perioperative characteristics.Methods: Forty-eight post-operative chil-
dren, median age 4 months (2.9–11.8 interquartile range), mean baseline heart rate of 131 beats
per minute (range 33–197), mean lactate level at admission of 22.3 mg/dL (range 6.3–71.1),
were included. Morphological arterial waveform characteristics were acquired and analysed.
Predicting lactate levels was accomplished using regression-based supervised learning algo-
rithms, evaluated with hold-out cross-validation, including, basing prediction on the currently
acquired physiological measurements along with those acquired at admission, as well as adding
themost recent lactate measurement and the time since that measurement as prediction param-
eters. Algorithmswere assessed withmean absolute error, the average of the absolute differences
between actual and predicted lactate concentrations. Low values represent superior model per-
formance. Results: The best performing algorithmwas the tuned random forest, which yielded a
mean absolute error of 3.38 mg/dL when predicting blood lactate with updated ground truth
from the most recent blood draw. Conclusions: The random forest is capable of predicting
serum lactate levels by analysing perioperative variables, including the arterial pressure wave-
form. Thus, machine learning can predict patient blood lactate levels, a proxy for haemody-
namic instability, non-invasively, continuously and with accuracy that may demonstrate
clinical utility.

A non-negligible proportion of patients suffer from cardiac arrest after cardiac surgery, resulting
in poor prognoses.1 Small children like neonates and infants are more prone to experience
adverse events, such as cardiac arrest, especially for those who have single-ventricle circulation
and complex heart anomalies. To prevent such major adverse events in the paediatric ICU, pre-
dictive physiological markers have been sought.2 Serum lactate levels and its trend may indicate
haemodynamic instability.3 Monitoring serum lactate has been recommended for patients
undergoing resuscitation,4,5 and a rapid decrease in serum lactate levels has been identified
as an indicator of good outcome/prognosis in an adult population.6 Unfortunately, direct mea-
surement of lactate requires discrete blood sampling,2 normally not a serious concern in an adult
population; however, in the case of pre-mature and at-risk infants, frequent blood draws can be a
strain on the patient and can increase the risk of iatrogenic anaemia and infection,7 helping
motivate the development of alternative methods for assessing lactate non-invasively. The mon-
itoring of lactate in a paediatric population has been identified as potentially playing an impor-
tant role in predicting patient outcomes after cardiac surgery.8–10

An alternative method to estimate lactate to evaluate haemodynamic stability/instability
continuously and non-invasively may assist in improving the standard of patient care.
Characteristics of the arterial waveform may share a relationship with haemodynamic instabil-
ity. Although machine learning for diagnosis and prediction of outcomes in the paediatric pop-
ulation is not widely introduced yet, previous work successfully identified periventricular
leukomalacia in neonates after cardiac surgery.11 This is one of the examples that machine learn-
ing plays a significant role in diagnosing the paediatric population who undergo cardiac sur-
gery.12,13 These approaches7,13 employ the standard paradigm in machine learning known as
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classification, whereby the learning algorithm is responsible for a
group-wise prediction, in this case evaluating a new sample as
being an example set of measurements from a patient that is either
haemodynamically stable or haemodynamically unstable. This
machine learning classification approach provides limited infor-
mation to the clinicians responsible for patient care. In practice,
it is common for specific values of blood lactate (such as
>40 mg/dL) to be relied upon as an actionable event provoking
preventative treatment for the patient to reduce the risk of cardiac
arrest.2,14 Since serum lactate levels are relied upon clinically, in
this manuscript, we propose a machine learning-based regression
approach (as opposed to the more traditional classification
approach) that supports the direct targeting of serum lactate levels
bymachine learning in a paediatric population. Thus, in this study,
we hypothesise that blood lactate in paediatric ICU patients can be
predicted using machine learning applied to arterial waveforms
and perioperative characteristics.

Methods

The institutional review board approved this research work as a
prospective observational study on 14 November 2016, pursuant
to approval number B16-110, and the requirement for informed
patient consent was waived due to the non-interventional and
low-risk nature of this retrospective study.

Patient characteristics

Forty-eight children, 23 females and 25 males, median age of 4
months (2.9–11.8 months, interquartile range), a median body
weight of 5.4 kg (4.3–6.6 kg interquartile range), who underwent
heart surgery, were included in Table 1. The most common diag-
nosis was a ventricular septal defect in 14 patients, followed by a
double-outlet right ventricle in 8 patients, a complete atrio-
ventricular septal defect in 6 patients, 3 patients had hypoplastic
left heart syndrome, 3 patients had pulmonary atresia with a ven-
tricular septal defect, and 3 patients exhibited tetralogy of Fallot.
The most common procedures performed were ventricular septal
defect closure in 12 patients, followed by repair of double-outlet
right ventricle in five patients, and Fontan operation in three
patients.

Data acquisition

Perioperative patient variables and patient demographics were
obtained from the patient medical record and bedside monitoring
system. Patient characteristics were provided as input feature mea-
surements to all our machine learning models alongside cardiac
waveform data. Patient characteristics included age, gender, and
weight. In order to assess the characteristics and shape of the
arterial waveform, a newly developed novel software technology
developed commercially (Medical Try Systems, Tokyo, Japan)
was used to calculate the area under the cardiac waveform and peak
angle at every stroke from the cardiac waveform (see Fig 1 for an
illustrative example) and stored for 24–48 hours. Levels of blood
drawn lactate are also stored.

Arterial waveform characteristics

The arterial waveform, acquired from either side of the radial
artery, was shown on a bedside monitor, then analogue signals
of the arterial waveform were transmitted to a laptop computer
with the converter, and a newly designed computer programme

“Arterial Waveform Processing System” that rebuilds the arterial
waveform to calculate the area under the curve and the peak angle
of the arterial waveform from each acquired heartbeat (Fig 1).

Variables used as input are defined by the following equations:

Pmean ¼ Psystolicþ 2� Pdiastolicð Þ
3

(1)

The area under the arterial waveform curve was determined by
subtracting the diastolic pressure (Pdiastolic) from the blood pres-
sure (BP), as is illustrated in equation (2):

Area under the Curve ¼
X

N
n¼0

ðBPðnÞ � PdiastolicÞ � Dt (2)

The normalised area under the curve was calculated according
to equation (3):

Area normalized ¼ Area under the Curve
Psystolic� Pdiastolic

(3)

In various cases, an area (minute) value can also be determined,
corresponding to an expanded value of the area for a 1-minute
interval of the cardiac waveform. The area (minute) value was cal-
culated according to equation (4):

Area minute ¼ Area under the Curve

� 60; 000 ms
Stroke Time Per BeatðmsÞ (4)

The peak angle of the arterial waveform (see upper part of illustra-
tive Fig 1) can be determined as the angle between an upstroke line
and a downstroke line of each waveform cycle.

These extracted cardiac waveform characteristics were auto-
matically calculated in each heartbeat and shown as an average
of five beats presented on the computer screen and recorded con-
tinuously from the moment when the patient was admitted to the
paediatric ICU for 24–48 hours. When the blood gas was drawn,
the level of lactate, as well as the timing of the blood drawn, was
recorded in the programme. For each patient, the patient demo-
graphics including age, gender, weight and height, date of the sur-
gery, diagnosis, and type of surgery were recorded in the
programme before or after the admission to paediatric ICU. All
records were summarised and analysed in an anonymous way
post-operatively.

All the measurements acquired that are provided to machine
learning are summarised in Table 2, including patient characteris-
tics, fixed haemodynamicsmeasurements at admission to paediatric
ICU, continuous haemodynamic measurements and characteristics
of the arterial waveform.

Machine learning

Model design and approaches
Machine learning has been implemented as a regression problem,
allowing the learned models to directly target the patient’s serum
lactate and theoretically predict measurements that are directly
relied upon clinically as actionable events prompting interventions
to reduce the risk of cardiac arrest. Regression approaches poten-
tially provide statistical robustness improvements to the learning
machine relative to classification approaches. Patient characteris-
tics and physiological measurements provided in Table 1 were
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Table 1. Patient characteristics.

Demographics Number Range

Age (months, median, IQR) 4 2.9–11.8

Gender (male/female) 25/23

Weight (kg, median, IQR) 5.4 4.3–7.6

Height (cm, median, IQR) 59 54–69

Diagnosis (N= 48)

VSD 14

DORV 8

c-AVSD 6

HLHS 3

PA/VSD 3

TOF 3

PAPVD 2

ASD 1

MS 1

d-TGA 1

TA 1

p-AVSD 1

LCA stenosis 1

IAA/VSD 1

PDA 1

Aortic root dilatation 1

Procedure (N= 48)

VSD closure 12

DORV repair 5

PAB 5

Fontan operation 3

RVOTR 2

BCPS 2

BT shunt 2

PAPVD repair 2

c-AVSD repair 2

TOF repair 2

RV to PA conduit replacement 2

ASD closure 1

ASO 1

MVR 1

IAA/VSD repair 1

David procedure 1

p-AVSD repair 1

Norwood procedure 1

PDA ligation 1

LCA stenosis repair 1

ASD: atrial septal defect; ASO: arterial switch operation; BCPS: bicaval cavo-pulmonary shunt; BT shunt: Blalock–Taussig shunt; c-AVSD: complete atrioventricular septal
defect; DORV: double-outlet right ventricle; d-TGA: d-transposition of great arteries; HLHS: hypoplastic left heart syndrome; IAA/VSD: interruption of aortic arch with
ventricular septal defect; IQR: interquartile range; LCA: left coronary artery; MS: mitral stenosis; MVR: mitral valve replacement; p-AVSD: partial atrioventricular septal defect;
PDA: patient ductus arteriosus; PAB: pulmonary artery banding; PAPVD: partial anomalous pulmonary vein drainage; PA/VSD: pulmonary atresia with ventricular septal
defect; RVOTR: right ventricle outflow tract repair; RV to PA: right ventricle to the pulmonary artery; TA: tricuspidatresia; TOF: tetralogy of Fallot; VSD: ventricular septal defect.
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acquired and analysed using specialised software/hardware.
Predicting a patient’s blood lactate levels was accomplished using
six different regression-based supervised learning algorithms.

Two main approaches were considered: basing the prediction
on the currently acquired physiological measurements along with
those acquired at admission, as well as a second approach that
involved adding the most recent lactate measurement and the time
since that measurement as prediction parameters. The second
approach supports updating the learning system’s predictive
capacity whenever a patient has a new ground truth blood lactate
reading acquired.

These machine learning designs (both approaches) are capable
of providing lactate estimates at any point in the monitoring proc-
ess, which enables continuous patient monitoring and live feed-
back for clinicians. The second model which includes the most
recent blood draw as an input parameter is effectively adaptive.
The adaptive system’s input includes the most recent blood draw
lactate concentration as an input feature measurement alongside
the time since the most recent blood-drawn lactate was sampled.
We examined which in-lab-validated learning models (six learning
technologies) will support each of the two approaches (non-adap-
tive and adaptive) in terms of the quality and predictability of lac-
tate levels to assess prediction accuracy by mean absolute error (in
mg/dL). The performance of different mathematical algorithms
was assessed by calculating the mean absolute error which is the
mean of the absolute difference between the actual and predicted
lactate concentrations. A low mean absolute error suggests supe-
rior performance of a particular mathematical model.

Learning models included in the analysis
We compared six different learningmodels to assess their potential
in each of our two approaches (non-adaptive and adaptive learn-
ing), and this included Hypertuned random forest, Random forest
regressor, AdaBoost regressor, Hypertuned AdaBoost, Decision
tree, and Hypertuned decision tree.

Validation
All algorithms were compared with hold-out cross-validation.
Specifically, we applied K-Fold cross-validation (K= 5, 10) to
ensure that training and testing samples are kept separate where
the training set is split into K smaller sets, with K-1 sets included
for training and the remaining held-out set relied upon for testing
evaluation. The process is repeated such that each of the K sets are
held out on different validation runs, and the performance of the
learners is averaged across the K validation trials. The six learning
models and two different learning approaches (adaptive and non-
adaptive learning models) result in twelve different approaches

being evaluated in this study. K-fold cross-validation was per-
formed in a fair manner, whereby for each validation run, each
of the 12 learning models was trained on identical samples and
tested on identical held-out test samples, providing standardisation
in the comparisons reported in this study. Furthermore, K-fold
randomisation was performed at the patient level instead of the
more traditional randomisation based on blood lactate examina-
tions (ground truth data). This validation strategy prevents our
learning algorithms from being able to test or validate on held-
out blood lactate readings from patients who had other data con-
tributing to the training of the model. This strategy helps ensure
that the findings we present in this study are robust across patients
and will be much more likely to function appropriately when pro-
gressing to prospective clinical evaluation. We performed a corre-
lation analysis across all of the variables included in the study. We
also performed an analysis of feature importance to inform the
reader and clinicians/users of the technology, regarding the appar-
ent contributions of each measurement acquired to the resultant
lactate predictions.

Results

Figure 2 provides the correlation matrix of data where the relation-
ship between two variables is visually illustrated. Figure 2 shows the
absolute correlation of independent variables to the target level of
lactate (see bottom row), as well as the correlative relationship
between all variables. Appendix Table 1 provides the numerical
values of the correlations between variables of interest and the tar-
get lactate value. In model 1 (non-adaptive), the lactate level at
admission had the highest value, in model 2 (adaptive), the pre-
vious lactate level had the highest correlation value. Feature impor-
tance assessment ranked our leading underlying features as: the
initial lactate level, hours after admission, area under the curve,
and sharpness of the peak angle of the arterial waveform. In the
two different approaches (non-adaptive and adaptive), the perfor-
mance for the first model (traditional non-adaptive learner) was
observed with the hypertuned random forest, which yielded a
mean absolute error of 5.60 mg/dL. The performance from the sec-
ond approach (adaptive to updates in patient blood lactate) was
also based on the hypertuned random forest, which yielded a lead-
ing mean absolute error of 3.38 mg/dL when predicting blood lac-
tate with updated ground truth. This leading model produced
lactate predictions that yielded a 0.73 correlation with ground truth
blood drawn lactate readings.

Discussion

A non-negligible proportion of post-cardiac surgery patients suffer
from cardiac arrest that necessitates cardiac massage and eventually
results in an extracorporeal membrane oxygenation insertion. Poor
patient outcomes such as death are possible, and even if the patient’s
life is saved, the patient could experience complications such as brain
damage.15,16 Small children like neonates and infants aremore prone
to experience cardiac arrest, especially for those who have single-
ventricle circulation and complex heart anomalies. Intensivists
and physicians treat the patients to ameliorate the at-risk haemody-
namics based on theory and their experiences; however, there are
occasions when it is uncertain what is the best treatment option
in very critical situations. To address this problem, multiple tools
have been invented and clinically relied upon17–19 where some of
the haemodynamic indices are associated with patient cardiac out-
put. However, these devices are not usually suitable for the paediatric

Figure 1. Measuring the area under the curve and peak angle of the arterial
waveform.
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population and those with complex CHD. Predicting haemody-
namic instability before causing cardiac arrest would be greatly ben-
eficial to the patients to save their lives.20,21 Bose and colleagues were
successful in performing a single-institutional retrospective cohort
study where their model was able to identify impending cardiac
arrest at least 2 hours prior to the event with an overall accuracy
of 75%.22,23 Also, Barker et al proposed a hybrid neural network
for the prediction of mortality risk in neonatal ICUs.24 As is the case
with these examples, machine learning can efficiently model a

variety of patient measurements, variables, and even model the pas-
sage of time.

This is a preliminary study to apply machine learning for a pre-
diction model of the level of lactate, a well-accepted marker of hae-
modynamic instability2,14,25–27 aiming for clinical utility in a
paediatric population, which has considerable potential to benefit
from reduced physical blood draws, unlike the creation of similar
technologies for an adult population,28 for which blood draws pose
little concern.

Table 2. Measurements input to machine learning for lactate prediction.

Abbreviations in Figure 2 Measurements (unit) Description

Patient characteristics

Age (days) Patient age at surgery

Gender (male/female) Gender of the patient

Weight (kg) Weight at surgery

Fixed haemodynamic measurements at admission to PICU

hr0 HR at admission to PICU (times/minute) Heart rate initially measured at admission to PICU

lactate0 Blood lactate concentration at admission to
PICU (mg/dL)

Level of lactate initially drawn at admission to PICU

psys0 Systolic BP at admission to PICU (mmHg) Systolic BP initially measured at admission to PICU

pmean0 Mean BP at admission to PICU (mmHg) Mean BP initially measured at admission to PICU

pdias0 Diastolic BP at admission to PICU (mmHg) Diastolic BP initially measured at admission to PICU

Continuous haemodynamic measurements

hr Current HR (times/minute) Current heart rate

hours Elapsed time since admission to PICU
(minute)

psys Current systolic BP (mmHg) Current systolic BP

pmean Current mean BP (mmHg) Current mean BP

pdias Current diastolic BP (mmHg) Current diastolic BP

hourssincePreviousLactate Time since most recent blood lactate
acquisition (minute)

Only used in model 2

previousLactate Most recent blood lactate concentration
(mg/dL)

Current level of lactate, only used in model 2

Arterial waveform characteristics: fixed values

area0 Area under the curve (mmHg*ms) at
admission to PICU

Integrated area of arterial waveform subtracted by diastolic pressure:
equation (2) in the text

area0(nu) Area normalised (ms) at admission to PICU Area under the curve divided by the pulse pressure (Psystolic – Pdiastolic):
equation (3) in the text

area0(min) Area minute (mmHg*ms) at admission to
PICU

Summation of the area under the curve per minute: equation (4)

sharpness0 Peak angle of waveform (degree) at
admission to PICU

Angle between upstroke line and downstroke line

Arterial waveform characteristics: continuous values

area Area under the curve (mmHg*ms) Integrated area of arterial waveform subtracted by diastolic pressure:
equation (2) in the text

area (nu) Area normalised (ms) Area under the curve divided by the pulse pressure (Psystolic – Pdiastolic):
equation (3) in the text

area(min) Area minute (mmHg*ms) Summation of the area under the curve per minute: equation (4)

sharpness Peak angle of waveform (degree) Angle between upstroke line and downstroke line

BP: blood pressure; HR: heart rate; PICU: paediatric ICU.
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One of the novel features of this technique is that it can predict
the level of lactate continuously from the available patient data.
This continuous system predicting the level of lactate may poten-
tially be able to reduce the blood draws wherein now the average
blood draws in each patient is 8–10 times for 48 hours, the fre-
quency of blood draws can be reduced by estimating the continu-
ous values of lactate in between less frequent blood draws.
Furthermore, in the future, this method can potentially
strengthen the standard of care by enabling the continuous pre-
diction of lactate concentration and to inform clinicians before
adverse events happen and can provide easy to interpret warnings
associated with rising patient serum lactate levels. Thus, continu-
ous feedback potentially supports clinicians in assessing the tra-
jectory and dynamic changes of lactate concentrations. As a result
of our study, the hypertuned random forest showed the greatest
performance with the lowest mean absolute errors. The model
exhibited improved accuracy when provided with the most recent
level of lactate and the time since that most recent blood draw.
One of the novel features of our method is to predict the level
of lactate directly instead of grouping the range of patient lactate
levels (high, middle, and low) into stratified groups to support a
more traditional classification-based machine learning approach.
In each heartbeat, variations in the characteristics of the arterial
waveform and other influential variables can inform prediction of
the patient’s level of serum lactate. This is a novel technique and
the most applicable to clinicians’ needs in paediatric ICU where
the critically ill patient’s haemodynamics can drastically change
with time. Each component of the arterial waveform, diastolic
pressure, peak pressure, ejection time, rate of rising of arterial
pressure during systole, and mean arterial pressure are based

on several interrelated ventriculo-arterial processes.29 There is
a great deal of information that can be gleaned from examining
the arterial waveform.

As expected and consistent with our clinical impression when
treating the patients in paediatric ICU, the characteristics and mor-
phology of the arterial waveform hold significant value. Even if the
systolic blood pressure is the same, when the arterial waveform is
highly peaked and narrow shaped, the levels of lactate are often
elevated, while when the arterial waveform is fat-shaped, the haemo-
dynamics are stable, and the level of lactate tends to be low. Also, the
patient’s initial condition when admitted to paediatric ICU is a very
important factor that affects assessment of the patient’s haemody-
namic stability/instability on the basis of what operations they have
recently undergone, and these factors may influence the post-oper-
ative course. The results of this study were supportive of this con-
cept. The results of the current study have demonstrated that
machine learning has great potential to predict haemodynamic
instability by including a series of measurements and variables that
are available in modern non-invasive bedside monitoring devices.
Limitations of the study include the nature of the retrospective study.
A small number of patients with disproportionate patient diagnoses
and age may have influenced the study findings. We did not include
the variables such as diagnosis and type of procedure for the predic-
tionmodel because including these features degraded model perfor-
mance slightly; however, this might be mainly due to the small
number and variety of cases. In addition, none of the patients expe-
rienced a mortality-related event nor did any undergo an extra-cor-
poreal membrane oxygenation insertion during the study period.
Although we could predict the level of lactate with this technology,
lactate is not a single indicator for haemodynamic instability/

Figure 2. Correlations between variables input to our machine learning models as a hot map. Note that red values are highly correlated variables.
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stability, but it is noteworthy that Meredith et al asserted that per-
sistently elevated post-operative lactate is associated with increased
morbidity and mortality in the paediatric cardiac population.30,31

Also, increased lactate production is multifactorial: anaerobic
metabolism and hyperglycaemia. Increased lactate load by packed
red blood cell transfusions and decreased lactate clearance may all
result in hyperlactatemia.32 In children and adolescents, benign lac-
tic acidosis is commonwithout haemodynamic disturbance.33 These
post-operative behaviours of lactate must be investigated in future
studies. The underlying technology created has the potential to be
expanded upon to not only predict a patient’s current lactate, poten-
tially in lieu of a blood draw, but to predict a trend curve of a patient’s
lactate extending into the future. We anticipate predicting future
lactate trends and future trends of other important clinical measure-
ments based on arterial waveform characteristics. We are currently
upgrading the system to record more variables which appear on the
bedside monitor in a larger cohort by increasing participating insti-
tutions. The technology may be able to overcome any shortcomings
associated with lactate being a late marker of inadequate systemic
oxygen delivery. A large-scale dataset including a range of patient
populations and outcomes to train the programme is likely to
strengthen the utility and predictability of haemodynamic instability
and eventually is expected to play a significant role towards prevent-
ing unfortunate outcomes in high-risk paediatric ICU patients.

Rigorous hold-out validation was performed in this study in
order to ensure that the results reported are likely to generalise well
to future data from patients not yet seen by the learning model.
Validation was performed with K-Fold randomisation at the
patient level instead of randomising based on each of the ground
truth (blood lactate) readings available (there were typically many
blood draws per patient). This validation strategy prevents our
learning algorithms from being able to test or validate on held-
out blood lactate readings from patients who had other data con-
tributing to the training of the model. Thus, this strategy helps
ensure that the findings we present in this study are robust across
patients and will be much more likely to function appropriately
when progressing to prospective clinical evaluation on a new col-
lection of paediatric ICU patients. Future work will investigate the
potential of the approaches presented in this manuscript as part of
a prospective clinical study. Also, while this preliminary work
involved a small cohort of low to moderate risk cardiac surgery
patients, future work needs to not only predict future lactate con-
tinuously by mathematical algorithms, but more importantly,
directly predict the occurrence of major adverse events after car-
diac surgery. Future work will incorporate an upgraded data
acquisition programme that will include all variables on the bed-
side monitor towards assessing the safety of the patient’s care and
supporting predicting the patient’s haemodynamic instability
toward prevention of cardiac arrest. Future work will also include
a thorough assessment of the effects of techniques to address
unwanted artefacts in the patient data, with detailed analysis of
the resultant effects on model performance.

In conclusion, preliminary work to predict the direct level of
lactate from post-operative variables, including the area/sharpness
of the arterial waveforms, by using machine learning technology
achieved promising performance that may represent technology
of clinical utility. The hypertuned random forest demonstrated
the best performance to predict the level of lactate through sta-
tistically rigorous hold-out validation, whereby the predictive
accuracy is established on samples that the learning algorithm
was not trained on. The most recently acquired lactate levels do
not only help improve the model performance but also was the

most dominant feature in the learning system. Broad data collec-
tion will strengthen the model performance and improve the pre-
dictability of haemodynamic deterioration. Future work will
involve prospective evaluation of the technologies created in paedi-
atric ICUs.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1047951122000932
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