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Abstract

In a topological vector space, duality invariant is a very important property, some famous theorems, such
as the Mackey-Arens theorem, the Mackey theorem, the Mazur theorem and the Orlicz-Pettis theorem,
all show some duality invariants.

In this paper we would like to show an important improvement of the invariant results, which are
related to sequential evaluation convergence of function series. Especially, a very general invariant
result is established for an abstract mapping pair (£2, fl(£2, X)) consisting of a nonempty set Q and

, X) = {f e X" : f (SI) is bounded}, where X is a locally convex space.
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1. Introduction

Let X be a locally convex space with the dual space X'. Various admissible polar
topologies lie between the weak topology a(X, X') and the strong topology fi(X, X'),
for example, the Mackey topology z(X, X'). If a property P of X is shared by all
admissible polar topologies lying between cr(X, X') and r(X, X'), then P is called a
duality invariant.

The Mackey-Arens theorem and the Mackey theorem show that the continuity of
linear functionals on X and the boundedness of subsets of X are duality invariants. If
A is a convex subset of X, then the closure of A is a duality invariant by the Mazur
theorem, and the Orlicz-Pettis-McArthur theorem says that for [x}} C X the subseries
convergence of £ xj is also a duality invariant.

A few results have expanded the invariant ranges of boundedness and subseries
convergence [9, 5, 2]. Moreover, in 1998, Li Ronglu [4] has found two invariants
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370 Li Ronglu and Wang Junming [2]

which are invariable over all admissible polar topologies lying between a(X, X') and
0(X, X') as follows (see also [12, 15, 14]).

THEOREM A. Let k = c0 or I", 0 < p < +00. Then for every {xj} C X the
following conditions are equivalent:

(o0) V(tj) e k, }tjXj is a(X, X')-convergent.
7 = 1

00

(Po) V(tj)€k, YLfJxJ is P(X,X')-convergent.
7 = 1

Recently, Theorem A was improved by the following generalization of linear
functions see [7].

Let MC(0) = {<p € C c : lim,_0 *>(') = v(0) = 0, <p(ts) = <p(t)<p(s)}. Then for a
vector space X and <p e M C(0), let

' / X , C ) = [f e €x : f ( t x ) = <p(t)f ( x ) , t e < C , x e X ) .

The identity function y>o(0 = t belongs to MC(0) and QZ/^CX.C) includes all
linear functionals and many nonlinear functionals whenever dim X > 1. Moreover, if
<p e MC(0) but 0 ^ (p ^ (po, then each nonzero/ 6 QHv{X, C) is not linear. Then
we have

THEOREM B ([7, Corollary 3]). / / <pt e Af C(0), i = 0,1,... ,n, k = c0 or lp,
0 < p < +00, and X" C (J"=o QHvXx^ Q> then for every {Xj) C X the following
conditions are equivalent:

V(tj) € k, ^i^tjXj is a{X,X*)-convergent,

°1, x'(tjXj) = *'(*),/or a// J:' € X*.

tjXj is P(X,X*)~convergent,
7 = 1

w, //zere i n € X JMC/I that if A C X* an<i A is pointwise bounded on X, then

limn Yi"j = \ x'(tjxj^ — x'(x) uniformly for x' € A.

In this paper we prove an important improvement of the invariant results, which
are related to sequential evaluation convergence of function series. Especially, a
very general invariant result is established for an abstract mapping pair (£2, B{£i, X))
consisting of a nonempty set Q and /3(Q,X) = [f € Xn : f (Q) is bounded},
where X is a locally convex space.
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2. A function family and a sequence family

Let C(0) = {<p e Cc : l im,_oy(O = <p(0) = 0}.
For <p e C(0) and vector spaces X and Y, a function T : X —> Y is said to be

(p-radiative if for every x e X and t e [0, 1] there is an s e [0, |<p(0|] such that
T(tx) = sT(x). Let R9iX, Y) be the family of ^-radiative functions.

If X is a topological vector space, then let JV(X) be the family of neighborhoods of
0 € X and, for <p e C(0) and U e «yK(X), a function T : X -> F is (<p, U)-radiative
if for every x 6 £/ and r e [0, 1] there is s € [0, |<p(0|] for which T{tx) =
Let R^yiX, Y) be the family of {<p, t/)-radiative functions.

It is easy to see that 7(0) = 0 for every T e RVyU(X, Y) and

R,(X, Y) c p | ^,j/(X, y), 1J

i/cv

EXAMPLE 2.1. (1) <p00) = r, f e C. If T : X ->• K is homogeneous, then
T e R^(X, Y) so R^iX, Y) includes all linear operators. Moreover, if (p e MC(0)
and i^(f) > 0 for t > 0, then QHV(X, Y) c /?^(X, F), for example, for an associative
algebra X over R and 7(JC) = V2x3, for every x e X, T € Q ^ C * , X) c RV(X, X),
where i^(r) = ?3.
(2) Let <p{t) = jrf/2, t e C. If 0 < t < 1 and 0 < |JC| < TT/2, then

sin tx x
sin tx = t sin x

tx sin x
and

sin tx x x it
0 < t < t < — t — (pit)

tx smx sin* 2

so s ine /?v,(_,Aw/2)(IR, R).
(3) Let(X, || • ||) be a normed space and define 7 : X - • R by

IkII > i .

ForO < f < 1 andO < ||JC|| < 1, \\tx\\ < 1 and

TO.) -

where 0 < f < v^VII* II < y/\\x\\, 0 < rj < y/\\x\\ and £ < r? so

0 < e^"V7 < -/i < e-Jt.
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LetO < t < 1 and ||JC|| > 1. Iff||jt|| < l,then

[4]

where 0 < £ < VII* II < 1 so 0 < e^V* < e*Ji. If r||jc || > 1, then

T(tx) = v^W = sTtT{x)

and 0 < -/t < ey/i. Hence T e RV(X,R), where <p(f) = eVRI-
(4) Let coo = {(«;) e CN : «j = 0 eventually} and 0 < p < +oo. Define

T : lp -+ lp by

0 = ( 0 , 0 , . . . ) .

andIf (ay) 6 Coo, then t(a}) = (taj) e
and (ay) 6 IP\COQ,

ta,

^ , ) = 0 = 07((ay);~ ,). For f > 0

so T(t(aj)fL,) = V?r((fl;)~ ,). Thus T e / ? / / ' , P), where *>(r) =

Let X be a vector space and k(X) c XN; A(X) is said to be c0-decomposable if for
every (x,) 6 A(X) there exist (*)) e c0 and (zj) e A(X) such that (*,) = (tjij), that
is, Xj = /)Z; for all j ; A-(X) is said to be c0-composite (respectively, l°°-composite)
if (tjZj) € MX) for every ((,•) 6 c0 (respectively, l°°) and (x;) 6 MX). Clearly, a
co-decomposable family is /°° -composite if and only if it is c0-composite.

EXAMPLE 2.2. (1) A topological vector space X is said to be braked if for every
(xj) e co(X) = ((ZJ) e XN : z, —*• 0} there is a scalar sequence Xj —> oo for which
XjXj -*• 0 [3, page 43]. Thus, X is braked if and only if co(X) is c0-decomposable.
Every metrizable topological vector space and the nonmetrizable (/', weak) are braked
and, especially, every (LF) space (for example, the space S) of test functions) is not
metrizable but braked [7].
(2) g : X ->• [0, +oo) is called a gauge on X if g(0) = 0, g(tx) < g(x) for |r| < 1,

x e X and there is a M > 0 such that g(tx) < \t\g(x) whenever |f| > M, x e X.
ForO < p < 1, every /3-norm || • || : X - • [0,+oo) (||0|| = 0, | |« | | = |r|"||x||,
Iki + x2\\ < ||xi|| + 11*21|) is a gauge on X. For a gauge g : X -> [0, +oo) and
0 < p < +oo, let

then lp(X;g) is both c0-decomposable [7, Lemma 1] and /°°-composite.
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(3) Let (X, || • ||) be a normed space and k(X) = {(xj) e X* : 3 <5 e (0, 1) such that
\\XJ || =j\ Vy e N}. Then k(X) is c0-decomposable but not c0-composite.
(4) Let X be a topological vector space. If k(X)Cl°°(X) such that k(X)\co(X)^<p,

then k(X) is not c0-decomposable.

3. Sequential evaluation convergence

LEMMA 3.1 ([1], [11, page 12]). Let G be an abelian topological group and let
xtj e Gfori,j e N. Ifeach subsequence {m,-} of'{/} has a further subsequence {«,}
such that

(1) linv+oo*^,,, = Oforj e N and
(2) lim^oo YlJLi xn,n, = 0,

then Xn —> 0.

This is a special case of the Antosik-Mikusinski basic matrix theorem ([11, page 10]
and [16]).

LEMMA 3.2. Let X be a vector space and V a convex subset ofX such that 0 6 V.
Ifx\,x2, • • • ,xn e X andM > 0such that

M 2~]XJ e V, for every nonempty A C {1, 2, . . . , n],

then Y!j=\ sixj e V.for every 0 < Sj < M,j = 1, 2, . . . , n.

PROOF. If Mx e V and 0 < 5 < M, then ^ = s(Mx)/M + (1 - s/M)0 e V.
Assume that the conclusion holds for n = k. Let M > 0 and x\,x2, • • • ,xk, xk+i e X
such that

0) M ZjeAxj e v> f o r

Let 0 < Sj < M, I < j < k + I. Without loss of generality, assume that
= maxi</<i+i Sj. Then (i) implies that

and, in particular,

(ii) si(yi H \-ym) 6 V, for all {y,, . . . , ym] c {x, +**+1, JC2, • • • .-**}, and
(iii) SI(JC, +x i + 1) + T,J=2SJXJ € V
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by the inductive assumption and (ii). Observing that ]T\= 1 SjXj e V, by (i) and the
inductive assumption, (iii) implies that

2SJXJ = ( l - —
k+\ , s k

( ) J2SJXJ + ~
J

e V. •

Let S be a nonempty set and [sj} c S, S* C Cs. Referring to the weak convergence
in linear analysis, we say that EJLi sj ls CT(S, S*)-convergent if there is 5 e 5 such
that E J l i •s'Cty) = •*'(•*) for each 5' 6 S#. Similarly, E y t i sj is y8(5, S*)-convergent if
there is s e 5 such that limn Ej=i S'(SJ) — s'(s) uniformly with respect to s' e A c 5*
whenever A is pointwise bounded on 5, that is, sups,€A \s'(t)\ < 00, for all t e S-

THEOREM 3.3. Let X, Y be vector spaces and <p, if € C(0), X(X) C XN. If
k(X) is both Co-decomposable and Co-composite, then for every [Tj} C RV{X, Y) and
Y* C R$(Y,C) the following conditions are equivalent:

00

(a2) V(jf;) e A(A'), y^TjjXj) is a(Y, Y*)-convergent.
7 = 1

00

7 = 1

PROOF. Assume that (cr2) holds, that is, for every (Xj) e X(X) there is y G Y such

that E ~ i(y' ° 7J)(^) = y'(y), for every y' € K*.
Let (A:J) e A(X). If A C Y" such that A is pointwise bounded on Y but the

convergence of EJLiO' ' ° 7/)(x7) ' s n o t uniform with respect t oy ' e A, then there
exist e > 0, {y£} C A and an integer sequence ni\ < «i < w2 < n2 < • • • such that

(3.1)

There exist (/)) e c0 and (z7-) € A.(X) for which (Xj) = (tjZj). Then 8k —
maxm,<j<ni |ry| ->• 0 and, observing that 7](0) = 0 and / ( 0 ) = 0 for y' e Y*,
each 8k > 0 by (3.1). Since <$* -»• 0 and (p(Sk) -*• 0, without loss of generality, we
assume that Sk < I and \<p(Sk)\ < 1 for all k e N. Then for mk < j < nt there exist
0 < 0,- < \(p(Sk)\ < 1 andO < sj < \f(8j)\ such that

Let rt = maxmi<i<n, \ir(9j)\ and a > 0 . Since l i m ^ o ^ W = VHO) = 0 - there
is »7 > 0 such that |i^(r)| < a whenever \t\ < rj . Moreover, #>(<5,t) —• 0 so there is
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ô e N for which \(p(Sk)\ < iq whenever k > ko. Hence, if k > ko and mk < j < nk,
then 0 < Gj < \<p(Sk)\ < r) and 0 < rk = maxm4<,<n4 \\J/(6j)\ < a. Thus, rk -+ 0 and
(3.1) becomes

(3.2) (Wmk <j < nk) (3SJ 6 [0, rk]) such that >£, keN.

Let k € N. If rk\ ^ 6 A ( ^ ° Tj)(tjZj/Sk)\ < e for each nonempty A C [mk, mk + 1,
. . . , nk), then | X)"Lmt

 X7 Wk ° 75)C'y -Z/ /**) | < e by Lemma 3.2 for the case X = C
and V = {t e C : |r| < s}. This contradicts (3.2) and, hence, there is A* C [mk,
mk + l,..., n^forv/hich rk\^2j(iAi(y'koTj)(tjZj /8k)\ > s. Thus, we have a sequence
{Ak} of finite subsets of N such that

(3.3) maxAj. < minA i + i ,

We claim that the matrix

> e , k eM.

satisfies conditions of Lemma 3.1. In fact, for a subsequence {/n,-}of {/} let {«,} = {m,}
and a ; = tj/Snt ifj e Ant (k = 1, 2, . . . ) and or, = 0 otherwise. Now let Uj = OCJZJ

for each j e N.
Since k(X) is both c0-decomposable and c0-composite, A.(X) is also /°°-composite.

So (otj) e l°° shows that (uj) e X(X) and, by (a2), there is y e Y such that

Observing that 7} (0) = 0 for; e N and y'(0) = 0 for y' e Y*, we have

y'(y) =
t=I ;

Since {y^} C A, where A is pointwise bounded on Y and rn. -> 0, rB.^.
as i -*• oo. Moreover,

%-zj) = ^ Iim rB((y; o Tj) (%-zj) = 0.

Hence, by Lemma 3.1, r,

(3.3) and, hence, (a2) =
eA.()',' ° 7J)(/,z7/<5,) —> 0 as /
holds.

oo. This contradicts
D
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The co-decomposability of k(X) cannot be omitted in Theorem 3.3.

[8]

EXAMPLE 3.1. If k c l°° but A\c0 # <t>, then A is not c0-decomposable and there
exist a locally convex space X with the dual X' and a sequence {7}} C L(C, X) C
fl^CC.X) such that £ ° I , Ti(sj) ' s cr(X, X')-convergent for each (s,) e A but
Y1T=\ 7) (fy) c a n n o t be )3(X, X')-convergent whenever (fy) 6 A\c0.

In fact, let X = (/°°, crC/00, / ' )) and TJ : C - • X, T; (/) = tes, where

e, = ( 0 , . . . , 0 , 1,0,0,

For (sj)ek<zl°° and (a,) e /' = X',

. . . ) .

j=n+\

as n -»• +oo, so a (X, X') — 5ZJL, 7̂  (57) = ($y), for every (s^) e A..

Let B = {(a;) e /' : YlJLi \aj\ — U anc^ (0) e ^-\co- There exists an increasing
{jk} C N and a 5 > 0 such that \tJk\>8 for all k € N and

Y / t > f I .

Observing that {es\ C S and (X, £(X, X')) = (/°°, ^(/°°, / ')) = (Z00, II • I D ,
E j l i 7/ (0) ' s /5(X\ X')-convergent, then

, X') - J ] 7} (ry) ?fe (fy) = a(X, X') -

However, this is impossible since both (X, /8(X, X')) and(X, cr(X, X')) areHausdorff
and /3(X,X') is stronger than CT(X,X'). This shows that 5Z°^, 7} (^) cannot be

, X')-convergent.

THEOREM 3.4. Let X be a topological vector space, U 6 J/{X), k(X) C /°°(X),
and let Y be a vector space. Ifk(X) is both co-decomposable and Co-composite, then
for every <p,fe C(0), Y* C R+iY, C) and {Tj} C Ry.uiX, Y), the conditions (a2)
and {fc) are equivalent.

PROOF. AS stated in Example 2.2 (4), k(X) C co(X) and A.(X) is /°°-composite.
Then, for (a ; ) e /°° and (Zj) e X(X), ( a ^ ; ) 6 A.(X) and a ; Z ; -> 0 so CCJZJ € [/
eventually. Now the desired equivalence follows from the arguments similar to those
given in the proof of Theorem 3.3. D
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COROLLARY 3.5. (i) Let(p,y/f e C(0) and Y be a vector space, Y* C R^,(Y, Q-
IfX is a braked space and U € JY(X), then fork(X) = co(X) and {7)} C R?,u(X, Y),
and the conditions (a2) and (/S2) are equivalent.

(ii) Let X, Y be vector spaces and g : X —>• [0, +00) a gauge and Ue = {x e X :
g(x) < e), Y* C / ? , ( / , C). Then for k{X) = lp(X;g) (0 < p < +00) and
{Tj} c RVtUt(X, Y), the conditions (cr2) and (y62) ore equivalent.

COROLLARY 3.6. Let X be a vector space and <p, ty 6 C(0), X# C R+(X, C),
D£ = [z e C : |z| < s). If X. C /°° a/M? A. w fcofA c0-decomposable and c0-
composite, then for every [Fj} C ?̂̂ ,De (C, C) and {XJ } C X the following conditions
are equivalent:

Fy(//)^- is o(X,X*)-convergent.
7 = 1

00

7=1

PROOF. Define 7} : C ->• X by 7}(z) = FJ(Z)XJ, j e N. If 0 < r < 1 and
z 6 D£, then 7} (rz) = F7 (tz)xj = sFj (z)xj = sTj (z), where 0 < s < \<p(t)\. Hence,

c RViDt(C, X) and the desired equivalence follows from Theorem 3.4. •

Let k c CN. We say that a series ^Xj in a topological vector space X is A-
multiplier convergent or, simply, A-mc if 5^°1, tjXj converges for every (tj) e k
(see [11, 14]). It was shown ([6]) that a sequentially complete locally convex space
X contains no copy of (c0, || • I D if and only if co-mc, /°°-mc and {0, l}*-mc are
equivalent for series in X and if and only if for every co-mc series J2 xj m % m e series
Z ^ l i hxi converges uniformly with respect to (tj) e {(ay) e I1 : J2TL\ \ai I — ^) ( s e e

[6]; [11, page 143]). In fact, k-mc was one of the key issues in analysis during the last
century.

We say that A(C CN) is mc-invariable if for every vector space X and X* c
R<P(X,C), where <p e C(0), each A-multiplier a(X, X#)-convergent series in X is
A.-multiplier fi(X, X#)-convergent. By Corollary 3.6, c0 and lp(0 < p < +00) are
mc-invariable and, especially, Corollary 3.6 gives a simple method for construction of
mc-invariable families.

EXAMPLE 3.2. (1) Let U = (-n/2, n/2) and for each; 6 N, define F7• : K -> K
by Fy (x) = sinO' ~Jx). If 0 < t < 1 and 0 < \x \ < n/2, then

Fj (tx) = sin(tj ~jx) — s s'm(j ~Jx) = sFj (x),
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where 0 < s < nt/2 = (p(t) so {Fj} C R^,u(R, K) (see Example 2.1 (2)). For
(tj) € c0,

\Fj(tj)\ = \sm(j-Jtj)\ <j-J\tj\< sup | r*LT ; .
k

Then Xo = {(sin(/ ~' tj))°°=] : (tj) e c0} C f|,,>o'P>that is> *o is a very small family
and the A0-multiplier a(X, X#)-convergence is a very weak condition. However,
Corollary 3.6 shows that XQ is mc-invariable.
(2) Define F}, : R -» R by /=}(*) = e*1*1 - 1 , ; e N. Then, for 0 < r < 1 and

where a < 0 so {/=}} C /?^(IR, R) (see Example 2.1 (3)) and A^ = {(e>W
(tj) e I2} is mc-invariable. Notice that k^ includes unbounded sequences.

4. Series of abstract functions

Let Q, be a compact Hausdorff space and C(S2, X) the space of continuous functions
valued in a Banach space X. For {0, l}N-mc of £ / ; , where fj € C(&, X), the
Thomas theorem says that the following conditions are equivalent (see [13, 8]):

(1) (V(r,) e {0, ID ( 3 / e C(Q, X)) such that £ £ , r,/, (<u) = / (w), co e £2.
(2) (V(f;) € {0, 1}*) ( 3 / € C(£2, X)) such that limn £J = 1 ^/;-(o>) = / ( « ) uni-

formly with respect to co e Q.

Here {0, 1}N is not mc-invariable (see Example 3.1). It should also be pointed out
that for mc-invariable A c C N and A-mc, a Thomas-type result holds in an even more
abstract setting. In fact, we can consider the abstract mapping pair (£2, B(S2, X))
consisting of an abstract set 12 and B(Q,X) = {/ € Xn : /(£2) is bounded},
where X is a locally convex space. By a reasoning which is similar to the proof of
Theorem 3.3, we have the following

THEOREM 4.1. Let X be a locally convex space and 12 ^ 0, A. C CN, {Fj} C
RV(C, C), where <p € C(0). If X is both co-decomposable and co-composite, then for
every [fj} C B(Q, X) the following conditions are equivalent:

(pwc) (V(r,) 6 A) (3 / 6 B(Q,X)) such that weak-^JL, Fj(tj)fj(a)) = f (co),
eoett.

(uc) (V(r;) G X) (3 / e B(Q, X)) such that lim, £"=i FJ(tJ)fj(co) = f (co) uni-
formly with respect to co e Q.
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P R O O F . Fix a> e £2 and define Tj•. : C ->• X by 7}(z) = Fj(z)fj(co), then 7} e

/?»,(C, X) and, by Theorem 3.3, the condition (pwc) is equivalent to the following

(pc) (V(f;) € A) ( 3 / € fl(«, X)) such that £ ,°1, F7 (*,)/, (<u) = / (<o), &> 6 fl.

Suppose that (pc) holds and (tj) 6 A but the convergence of £ ° I , /=} (/ ,) / , (<y) is
not uniform for a> e Q. Then there exist a convex V e JV(X), [cok] c £2 and an
integer sequence m\ < n\ < m2 < n2 < • • • such that

(4.1)

Let (tj) = (rijdj), where (r)j) e c0 and (a ; ) 6 X. Then 8k = maxmt <,-<„, \r)j | -* 0
and each ^ > 0. Since {/*}} C RV(C, C), for sufficiently large k and mk < j < nk

there is s, € [0, \<p(8k)\] for which

and, without loss of generality, (4.1) becomes

0 < sj < \<p(Sk)\ for mk <j < nk,

Then, by Lemma 3.2, for each t e N there is a Ak c {»it, m* + 1, . . . , n*} such that

max A* < minAjt+i, | ^ (5 t ) |

Now consider the matrix

M= \\<P(&i)\

Since each / ; e fi(f2, X) so [fj (co,) : / 6 N) is bounded, similarly to the proof of
Theorem 3.3, the matrix M satisfies conditions of Lemma 3.1. Hence, Lemma 3.1
shows that lim* \<p(Sk)\ $2;-6At Fj(r)jaj/Sk)fj(a}k) = 0. This is a contradiction so
(pc) => (uc) holds. •

It is also worthwhile observing that Theorem 4.1 has several interesting special

cases.

EXAMPLE4.1. (1) Let X, Y be Banach spaces, £2 = {x e X : \\x\\ < 1}, <p e C(0)
and {F;} C /?V(C, C). Let A be a c0-decomposable and c0-composite family of
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sequences in C. If {7}} C L(X, Y) such that EJ t i Fj (tj)Tj(x) converges whenever
(tj) 6 Xand* € £2, then the Banach-Steinhaus theorem shows that EJl i Fj(tj)Tj(-) e

L(X, Y) for each (tj) e A. Fortunately, Theorem 4.1 gives a stronger conclusion as
follows.

For each (tj) e X, EJ l i Fj (*/) 7) converges in the operator norm, that is,

lim
j=n

= lim sup = 0.

Note that even for the simplest case of k = CQ or lp (0 < p < +oo) and /<} (r) = r,
the Banach-Steinhaus theorem cannot assert that E j t i 0 7) converges in the operator
norm since the Banach-Steinhaus theorem only asserts that EJLi // 7] (x) is uniformly
convergent on every relatively compact subset of X ([10, page 299]).

(2) A topological space £2 is said to be pseudocompact if every continuous / :
£2 -*• IR is bounded on £2. A normal space is countably compact if and only if it
is pseudocompact. Dini's lemma says that if £2 is pseudocompact and {/n}£L0 is a
sequence in C(£2, R) such that/„(&>) \ fQ(a>) at each a> e Q, then limn/n(a>) =
fo(co) uniformly for a> e £2. Since ^ j t i l / ; ^ ) —/;+i(<w)] is {0, l}N-mc, the Dini
lemma is also a Thomas type version. Now Theorem 4.1 implies a similar result as
follows.

Let X be a locally convex space and k a c0-decomposable and c0-composite family
of sequences in C, <p € C(0) and {Fj} c /?^(C, C). If £2 is a pseudocompact space
and {/}} C C(£2,X) such that X^ti Fj(tj)fj(co) converges whenever (tj) e k and
co e £2, then the following conditions are equivalent.

(0 E;°°=i Fj (tj )fj (•) 6 B(H, X), for every (r,) € X;
(ii) for every (/)) e k, YlJLi Fj(tj)fj(co) converges uniformly with respect to

u> e £2;
Ciii) E ~ , f) (</)/; (•) € C(£2, X) for every (»,) 6 k.

(3) Let £2 be a nonempty set and \fj) C B(£2, X) such that ^ ° 1 , I// (o»)l < +oo
at each co e £2. If X = c0 or /p (0 < p < +oo), then the following conditions are
equivalent:

(iv) { E " i [exP {Uj \IVI) ~ 1]/; (<w) : o> e £2} is bounded whenever (tj) 6 X;
(v) for every (tj) e X, EJ l i [exP (lr; I/^'T) "" ^]/J ( ^ converges uniformly with

respect t o w e £2.

In particular, if E is a cx-algebra of subsets of £2 and /z, : E —> C is a countably
additive measure such that EJ l i IM> (-̂ )I < +°° a t e a ch A € E, then for X e
{c0, l°° (0 < p < +oo)} the following conditions are equivalent:

(vi) for every (tj) e X, E £ , [exp (|r, l/^/T) - l]/*;O : S - • C is a bounded
measure.
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(vii) for every ((,) e X, £ ° 1 , [exp (\tj \/J/J) - l]/X; (•) : E -> C is a countably
additive measure.

Observing that {(fj (a>))j*Li '• co e Q} C I1 and using the resonance theorem instead
of Theorem 4.1, and using linear analysis, we can also obtain the equivalence of the
following conditions:

(vi') { Yl'jLi ljfj (co) : a> e &} is bounded at each (/,-) e c0.
(vii') For each (/)) 6 c0, ]CJti hfi ^ converges uniformly for co e £2.
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