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ABSTRACT

The concepts of speckle interferometry as developed by Labeyrie,
and of speckle imagery as formulated by Knox and Thompson are analyzed
for dependence on field-of-view size. The preliminary analysis, assuming
isoplanatism rederives the results of Korff, and derives the result previ-
ously inferred by Knox and Thompson from computer simulation, that allow-
able spatial frequency separation for difference of phase shift determination
must be less than r, /A When the assumption of isoplanatism is dropped,
results are obtained for the expected object power spectrum in speckle in-
terferometry and for the expected bispectrum in speckle imagery, showing
the dependence on angular spread for an object consisting of a pair of point
sources. An angle, ¥, , is defined (in terms of an integral over the
strength of turbulence distribution along the propagation path), which bounds
the range within which there are no significant anisoplanatism effects. It
is noted that the effect of anisoplanatism is not to attenuate the information
bearing signal but rather to impose incorrect information on the signal.
Thus anisoplanatism can result in incorrect conclusions with no indication

that there is a problem.
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1. INTRODUCTION AND SUMMARY

The work reported here had its origin in a suspicion that the speckle
imagery concept, as formulated by Knox and Thompson! might be immune
to the anisoplanatism problems of the Labeyrie? speckle interferometry
technique. We reasoned that for a pair of point sources (stars) that are
fully resolved and in separate isoplanatic patches, the Labeyrie technique
has anisoplanatism problems because, in generating the correlation func-
tion of the composite source it suppresses position information. We know
that by more conventional techniques, at least initially paying attention to
the position of each part of the fully resolved image, we could generate the
correlation function with no difficulty. We thought that, perhaps, since the
Knox-Thompson method retains position information it might have the inhe-

rent ability to get around anisoplanatism problems.

This line of reasoning was inspired by a report® of an isoplanatic
field-of-view for the Knox-Thompson algorithim that was much larger than
we had estimated should be expected, based on existing models of the verti-
cal distribution of turbulence. 4*® Our estimate of the expected isoplanatic
patch size was based on analysis for an adaptive optics system®+7 and on a
very cursory analysis of anisoplanatism effects for the Labeyrie speckle

interferometry technique.

Responding to these considerations we undertook a very detailed anal-
ysis of atmospheric turbulence effects for speckle interferometry, (i.e., for
the Labeyrie technique), and for speckle imagery, (i.e., for the Knox-
Thompson algorithim) — which work we shall review here, in a once over
lightly manner  We analyzed speckle interferometry initially for a single
point source, obtaining results equivalent to Korff's showing that the high
spatial frequencies do survive the recording and data processing at a non-

trivial level. We then repeated this analysis for a pair of point sources
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assumed to be in the same isoplanatic patch. This not only showed the same,
unaltered ''survival’ of the high spatial frequencies, but significantly allowed
us to complete the basic set of mathematical tools which we needed for the
anisoplanatism effects analysis. We then repeated the analysis of the speckle
interferometry technique, but this time with a pair of point sources that were
not in the same isoplanatic patch. The results of this analysis showed that
the isoplanatic patch size for speckle interferometry is essentially the same
as that for adaptive optics. But, somewhat surprisingly, the results indi-
cated that anisoplanatism does not '"wash out' the high spatial frequency con-
tent of the correlation function — rather, it has the effect of garbling the
information contained in the correlation function. Thus the correlation
function for a pair of equal intensity stars will, when there is an anisoplan-

atism problem, appear to represent a binary with unequal intensity stars!

We then switched to the analysis of speckle imagery. We started with
the analysis of a pair of point sources, assumed to be close enough together
that there were no anisoplanatism effects. In this analysis we were able to
show exactly why the Knox-Thompson algorithim works, and were able to
demonstrate analytically that the allowable spatial frequency separation
between adjacent frequencies should not be greater than 0.427 r, /A . We
then repeated our analysis of this problem, but without the assumption that
the two point sources were in the same isoplanatic patch. This analysis
showed that there was an effect due to anisoplanatism and that the isoplanatic
patch size is essentially the same as for adaptive optics and for speckle
imagery. But here again, we noticed that the effect of anisoplanatism was not
to eliminate the contribution of the high spatial frequency content of the ob-
ject from the image — but rather what anisoplanatisrn's effect was, was to
impose spurious modulation on the recovered data. Thus, the recovered
image would have fine details, but much of that detail might be spurious,

i.e., have little or nothing to do with the object.
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To return now to our starting point, what can we make of the fact that
the isoplanatic patch size for speckle imagery appears to be as large as it
is, while our model of the vertical distribution of the optical strength of tur-
bulence predicts a smaller isoplanatic patch size. We know from our anal-
ysis that the problem is not due to applying inappropriate theory. The theo-
retical results for the isoplanatic patch size are essentially the same for
adaptive optics, for speckle interferometry, and for speckle imagery. We
see two possible explanations. First, our models for the vertical distri-
bution of turbulence may be in error. There may be significantly less tur-
bulence at high altitudes than we now think. Alternatively, our interpreta-
tion of the speckle images recovered by use of the Knox-Thompson algori-
thim may be incorrect. The fine details presented in the images may be at
least partially spurious and the image size may not be a valid indication of
the isoplanatic patch size. We suspect that the problem lies with our tur-

bulence model, but are far from certain of this.

With this introduction and summary we are now ready to proceed with
our analysis. We start with the Labeyrie speckle interferometry technique

for a single point source.

2, LABEYRIE SPECKLE INTERFEROMETRY: SINGLE POINT SOURCE

We consider a point source of wavelength A , and wave number

-l

k = 2n/A , located at an angular position 8 . This produces a wave func-
tion U(®) , where
UR) = Aexp[ik8-T+ig(8;7)] . (1)

at aperture position ¥ . Here ¢(8 ; T) is the turbulence induced phase

shift at position T due to propagation along the direction defined by g .
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The corresponding focal plane wavefunction will be u(a) , Where
u(@ = A T W@ exp(-ik8-F)U(F) , (2)

where W(T) is a function which serves to define the circular aperture of

diameter D , according to the equation
(1 , if |7|<4D

(3)
o , if |7| >4 D P

W(r) =

and U 1is a constant of proportionality. The focal plane intensity at the

angular position g is

1(8) = % |u(®)|? (4)

The quantities of basic interest to us here are the fourier transform of this

intensity
S(f) = [ d8 exp(-2mif-9)1(d) , (5)

where f is a spatial frequency (with units of cycles per radian), and the

associated power spectrum
J(F) = (s*H)s@)y . (6)

If we combine Eq.'s (2), (4), and (5) and make a multiple integral out
of the product of integrals, and then make use of the well known property
of the fourier transformation that the repeated fourier integral recovers the

starting function, we can obtain the result that
S) =3 |u|2 A2 exp (-2nif . §) [ &F W(F) W(THiD)

x exp {i[¢(T ;) -0(F ;T+r)]} : | (7)
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(where we have suppressed a factor of A® in this result by lumping it in
with the constant of proportionality, |2[|2 ). Now if we substitute Eq. (7)
into Eq. (6), make the product of integrals into a double integral and com-

mute the integration and ensemble averaging processes, we get

J(F) =% |u|¢(a2)2 [[ dF o7 W(2) WEHT)

x W(T*) W +\T) (exp {i[g(8 ;T) - 8 (§ ;7)

+¢(F F-aD) - o(8 ;THA0)])) . (8)

This is the quantity of basic interest in the Labeyrie speckle interferometry
technique. It is the quantity measured, (after all the image processing),
and hopefully contains a significant amount of information about the high
spatial frequency in the source. Since we are considering a point source

in this case, we would hope that J(-f") has a substantial value, (unity would
be ideal), for all spatial frequencies, at least upto D/A . The value of
J(-f-.) that we shall calculate here may be considered, when properly nor-
malized, to be the square of the turbulence limited modulation transfer

function for speckle interferometry.

Using the fact that the statistics of the turbulence induced phase fluc-

tuations, ¢ (é’; T) , are gaussian, we can reduce Eq. (8) to the form

@) =23 |u|4(a2) [J &F & W) W@
X W(E) WE+A) exp { -3 [ p(E-7*)
- pE- D)+ 50T) + 50T - pE-T 1T

(9)
+ .B(?_?’)]} ’

where B(P) is the wave-structure function, defined by the equation
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H(F) = ([0 ;T+7) -0 ;T)]2) : (10)

Since, quite obviously £ (0) = 0 , we can show that

J0) = (g |ul?az D2>2 (11)

This will serve as a normalization factor allowing us to obtain the modula-

tion transfer function at spatial frequency f , from ,,7(?) .

To proceed with our evaluation of J(f) we note that the wave-struc-

ture function can be written as®

H(B) = 6.88 (p/ry)5/® (12)
where r

o 1is a length, which we may call the wavefront distortion coherence

diameter. For convenience we write the exponent in Eq. (9) as

E = -3 [HE-F*) - p(F-T*-2T) + pxT) + H(ONT)

- BEFD) + 5E-E)]) (13)

Making use of Eq. (12) and forming power-series expansions as appropriate,
it can be shown that

Ew~-6.88 (\|T|/rg)8® , if A|F| << |T-F| . (14)

and

Er~-6.88 (|2 -7|/r)%% , if |T-7|<<ir|f] . (15)

Making use of these approximations and noting that we are interested in

J(.fl.) for values of |?| which are much larger than o /A , We can approx-

imate Eq. (9) with the relationship
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JE)~3 1y|s (A2p [[ &F dF” W(E) WEHE) WE*) WE D)
X exp [-6.88 (|F-T|/r /2] . (16)

The fact that we are interested in spatial frequencies much greater than

r, /A carries with it the implication that the aperture diameter, D , is
much greater than the coherence diameter, r, . In view of the rapid fall-
off of the exponential with increasing separation between T and T/ in

Eq. (16), except when I'i" -7 l is much less than r, , we can make the

Q
approximation that W(Z) W(¥) = W(?) and that W(? + AT) W(F + %) =

W(? + )\f) in Eq. (16) . Thus we can reduce our result to the form

JE) =3 |yt (A2 {j dz W(7) W(?m’)}

X{J'd&'exp[-().BS (‘—;{'/ro)B/E]} , (17)

where we have made the replacement X =T - ¥/ . Both the ?{-integration

and the T-integration can be carried out, the latter giving rise to a quantity
proportional to T, (?) , the diffraction limited optical transfer function of
an aperture of diameter D , operating at wavelength A , for spatial fre-

quency f . Thus it can be shown that

% = 0.435 (r, /D)2 7, (-f.) , for )xl:-f.l >> 1y . (18)

Here J(O) provides the normalization needed so that we can consider this
ratio, J(?)/J(O) , to be the square of the modulation transfer function for
speckle interferometry. This result has previously been obtained by Korff 19,
This result, of course, does not indicate any isoplanatism dependence. For

that we would need a pair of point sources to provide some angular spread.

In the next section we treat the two point source version of speckle

interferometer performance, but restrict attention to the case where
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isoplanatism is assumed. This will set the groundwork for our analysis in

the subsequent section of the case where anisoplanatism effects are expected.

3. LABEYRIE SPECKLE INTERFEROMETRY: TWO POINT SOURCES:
ISOPLANATISM ASSUMED

Proceeding in exactly the same manner as in the preceding section
but considering a pair of point sources, (incoherent with respect to each
other), located at 63 and EJ' and having amplitudes AJ and AJ' , re-
spectively, it can be shown that the spatial frequency fourier transform of
the focal plane intensity pattern in any (randomly selected) speckle image
will be

SE) = & |u|? [ dF W(F) WERL)

X {Aaz exp (-2nif T ) exp {i[@@,;7)-¢ (@ ;F+I)])

| +AJ§ exp (-2m i}'.'é’y) e xp {i[¢(_9.J,;?)"¢(_9'3,;?+)\?)]}} . (19)

Using this expression to evaluate the power spectrum as defined by Eq. (6),

we get after the appropriate mathematical manipulations, the result that

JE) =% |uj¢[[ & &f* WE) WERT) WE) WET)

x ((A2)Pexp (i[p( T) -8 @, T+ @ T +\D) -8 (8 ;7))
+ (A2)(A,2) exp [-2nif - (§, -F,,)]

x exp {i[#(,;T) -0 (@, ;T\D)+p (§,; 7N -9@,:T)])

+ (A2)A,) exp [2nif - (§,-6,,)]

x exp {-i[8(@,iF) - 6@, ;(F+AT) +4(F ;T A7) -9 (F, ;7))

+ (A 2P exp {i[p(F,F) - @, THl)+6 @, T ) -9(@,:T)11). (20)
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It is to be noted that this expression contains terms corresponding to "inter-
ference'' between the two point sources — but in this case it is ""interfer-
ence'' of the two random intensity patterns, and not interference between the

electromagnetic fields.,

To proceed beyond this point we again make use of the fact thé,t the
phase fluctuation statistics are gaussian., We introduce the approximation
that for the evaluation of this integral the statistics of wavefront distortion
can be considered to be isotropic with respectto T, ¥ (or at least invari-

ant under 180° reversal), without regard for the orientation of the direction

-l

of 8, - 63' as projected on the T-plane. This allows us to write

(Lo (8,; %) -0 (8,;7)12)

~3 ([0 (8, T)-0@, 3 TNP) +([0(F,: ) -0 @, TPy}, (21)

to be substituted into the expression we get when we take the ensemble aver-
age of the exponential terms in Eq. (20) , using the fact that the phase sta-

tistics are gaussian. Thus we can reduce Eq. (20) to the form
JE) =3 |ule [[dF aF- WE) WEHD) WE?) WE )

X {[(A,a)u (A 2P ] exp (-{.arr'-'r"wﬁ(x?) -3 [H(F-F-2T)

+ ,3(}'_?'+>f)]}> +2(A2)(A ?) cos [2nf - (¥, -8,.)] exp {-B()
- ([p@,T)-g@ T2 -1 ([8(,;T*) -9 (8,,:T)2)
+ 3 ([, ) -8, T )12y +2([8 @,:7%) -9 @, T2y

+ 2 (o (8, TN ) - ¢ (@,,577)12)y+ 3 (¢ (@‘j T4N) -¢(§,,;?)]2)}}
(22)
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Now restricting our attention to the case where isoplanatism is assumed

so that

HE) ~ ([6(8,:F+3) - 0(8y ;7)1 : (23)

and making use of the fact that the wave-structure function is isotropic,

[so that B(P) = 5 (-P) ], we can reduce Eq. (22) to the form
J(E) =3 ||+ {(A2P+2(A3)(A 2P cos [2nT - (@, -F,)]+(4,2)7)
X [[ dF d2* W(2) W(E+AE) W(Z*) W(Z*+)\)

x exp (- (BE-T)+508) - 3 [BE-T7 M) +5F-F 1)1} 0

The interpretation of this expression is very straightforward. The
quantity in the first curly brackets is just the power spectrum of the two
point source pattern if it were able to be imaged perfectly, while the double
integral (together with the % |2[|4 factor), is proportional to the transfer
function which we evaluated in the previous section — as defined by Eq. (18).
We can see that so long as we assume isoplanatism, [i.e., can assume the
validity of Eq. (23) ] , there is nothing significantly different in our analy-
sis of the Labeyrie speckle interferometry technique, whether we consider
the one point source or two point source case. In the next section, however,
we shall treat the two point source case dropping the assumption of isoplana-
tism, and will see how the results change in that case.

4. LABEYRIE SPECKLE INTERFEROMETRY: TWO POINT SOURCES:
ANISOPLANATISM

Our starting point for this case can be Eq. (22), presented in the last
section just before the assumption of isoplanatism was imposed. In this

section we shall not make that assumption, but rather shall allow
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anisoplanatism effects.

To accommodate anisoplanatism in our statistical treatment, we shall
make use of the hyper wave-structure function, 9 (3, ?) , which is defined

by the equation

-

D(S,p) = ([¢(3+3;;+;)-¢(3+3;?)]

x[o(8;T+9)-0(8;7)1) . (25)

This quantity has previously been studied!! and shown to be expressible as

2 -t - -
D(s, P) = 8.16(-%‘;—) PAj‘mdv C2 [di [ 1-exp(in- 7))

X w/3 [ exp(in -s3v)+texp(-in-3v)], (26)

where the v-integration is over the propagation path, with v = 0 at the
measurement, (i.e., the aperture) plane, and % is a three-dimensional

spatial frequency associated with the turbulence pattern.

By means of some algebraic manipulations and making use of the

stationarity of the wavefront distortion statistics, it can be shown that

([o(8,5F) - #(@y 5 TP - 2 ([8(5,5 %) - 08,5 DI®)

i
=

+1([0(8,:F) - 6@y ;P +AT)1%) +2 ([8(@, ) - 8(8,5F +2E)1°)

-+
hl-

([95(5.J ;T 1AT) - G ?)7% + 2 ([0(8,; ¥ +AT) - 9(8 5 717
= - ([8(8,; ) - ¢(@ )] (8@, D) - 8(8, 5 T
+5([0(@,57) - 68, ¥ +AT)] [8(8, 5 F) - 68,75 F +AF)])

+3 (06,5 ) - 8(8,; T +AD)] (865 ) - 0(8, 5T +AD)]y . (27)
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Making use of Eq. 's (25) and (27), together with Eq. (10) of course, we can

now rewrite Eq. (22) , (making allowance for anisoplanatism effects) as

- - =)

J(f) =2 |u | [[drdr W) W(T + \D) W(Z) W(Z + AT)
x JUAR) +(Ap2)12 exp(-(5(F - F)ts OLT)-315 - #iF) (3 F4a1)1))
+2(A2) (Ag®) cos[2n T (8, - §,)]
X eXp(-{:s)(é'J By, 77 ) +507) - 3096, -5, T-T - Af)

+:s>(?a'J -8y, T - ran ﬁ')]})}} . (28)

At this point it is useful to "focus' the anisoplanatism dependence in

a single term, Q , defined as

Q(8,-8,, T-¥, AT) = {[H(F-) - D (8, -8, T-F)]

1[H(R-B-AF) - D ( é‘ -2 -A1)]

01

-3 LAE-F +T) -2(8,- 6, T-F +2AD]).  (29)

Making use of this Q-term we can rewrite Eq. (28) as

2 (B =2 |u|®[rdrar’ W@ WE+aD) W) WE +aD)

{{E(AB)Q (A7) exp(-{5(F - F)t50T) -3 16 (F-7 AT J4p(F- 7 1111

+ Z(Adg)(Ajlz) cos[2nf (-é.J -‘é",') ]
(30)

x exp( -(H(F-2)1p(T)-3[8F-T A1)+ 5 (F-T+21)11+Q(E - By, F-F, M)
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If we compare Eq. (30) with Eq. (24) we can see that if Q were replaced by
zero, our results for the power spectrum would be identical to what we got
when we assumed isoplanatism. Anisoplanatism effects derive from the fact
that the Q-term is not sufficiently close to zero value over most of the inte-
gration range. Before we pursue the relationship between the value of Q
and the value of |-é.‘1 - ’é'J' | so as to establish an estimate of the size of the
isoplanatic patch; it is worth while to study Eq. (30) a bit so as to identify

the nature of the anisoplanatism effect.

We start by remarking that the Q-term will be non-positive., However,
we immediately call attention to the fact that although the Q-term appears in
the integral in Eq. (30) as an exp (Q) factor, the fact that Q is not equal to
zero does not necessarily reduce the magnitude of J(-f) . Depending on the
value of cos [2m ?-(EJ- EJ')] , @ nonzero value of Q could possibly increase
the value of J(f) . But this increase is not of any particular use to us.
What we need is the proper indication of the power spectrum associated with
the object and in practice we get this from the value of J(-f-’) measured when
viewing a complex object, by dividing by the value of J(f) obtained when
viewing a single point source. This ratio should yield the unbiased power
spectrum of the complex object — and indeed it does when essentially the

same degree of isoplanatism applies to both power spectrum.

However, when we have an significantly nonzero value of the Q-term
in Eq. (30), the single point source data does not incorporate the same at-
mo spheric turbulence effects as does the two point source data. Thus the
ratio does not represent a proper normalization of the power spectrum.,
High spatial frequency details can appear in the estimated object power
spectrum even though there is significant anisoplanatism. The effect of
anisoplanatism is not to '"'wash out' the high spatial frequency contribution

to the estimated power spectrum — but rather to simply render it invalid.
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The relationship of the measured high spatial frequency part of the power
spectrum to the actual object is questionable when anisoplanatism effects

are present.

To return now to the question of the relationship between the angular
spread |-e.'J - ‘é’Jll and the effective value of the Q-term in the integral in
Eq. (30), i.e., to the determination of the isoplanatic patch size for the
Labeyrie speckle imagery technique, we start by restricting our attention
to the case of high spatial frequencies, i.e., |f| significantly greater than
ro /A . We recall from our previous analysis that the value of the (%, )-
integral is dominated by the (T, ¥’)-region where |%, /| is less than or
about equal to the coherence diameter, r, . If we combine Eq.'s (29) and

(30) and collect terms,we can write the Q-term as

QF, 3, M) = i’nl,f k® [ dv C,° [d¥ n™1/2 exp (iX-7 )
PATH
x sin® (3 AT+ %) [ exp (iR - $v/2) - exp (- i¥ - $v/2)]7,
(31)
where P correspondsto T - T and 3 corresponds to 'e'J -63' - We know

that most of the wavefront distortion of significance comes from turbulence
spatial frequencies for which # is less than, or of the order of r, 71 .
This means, in view of the previously mentioned constraints on the inter-
esting range of f and of ;? (or rather of ® - 7/), that in Eq. (31) we can
with reasonable accuracy estimate the value of the #-integration by replac-

ing the exp (i3 - P)-term by unity and the sin2(% AT + %) - term by one-

half, This allows us to rewrite Eq. (31) as

Q (3, 7, 7\?) = - 8'26 k2 ‘J"dv CN2 j‘d;t’ n "11/3 sinz(;t’ -3v/2). (32)
m PATH

The z—integration in Eq. (32) can be carried out in closed form yielding
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the result that, for use in Eq. (30), we can write

QB, 7, \F) ~- (8/9,)5/® (33)
where
-3/6
8, = {2.91k2 [ dvve/3 ch} . (34)
PATH

Based on our current best estimates4+® for the vertical distribution of the
optical strength of turbulence, C*® , we have calculated that &, ~ 8.5 prad.
It is clear from the nature of Eq. (33) and our previous discussion of the
implications of the Q-term in Eq. (30) being significantly nonzero, that 4§,
is the outer limif of what we should consider to be the isoplanatic patch
size. The smallness of this number, as noted before, raises questions as
to either the validity of our data for C 2 or else the validity of our inter-
pretation of some of our speckle interferometry related results. At this
point, we feel unable to offer a definitive choice between these two possibil-
ities.

With the analysis of anisoplanatism effects for the Labeyrie speckle
interferometry technique complete we are now ready to take up consider-
ation of anisoplanatism effects in the Knox-Thompson speckle imagery
algorithim, In the next section we shall start this analysis by presenting
the relevant analysis, when isoplanatism is assumed. In the section after
that we shall extend our results to the case where anisoplanatism effects
are allowed. In both sections we shall work with a two point source object.

5. KNOX-THOMPSON SPECKLE IMAGERY ALGORITHIM: ISOPLANATISM
ASSUMED

The Knox-Thompson speckle imagery algorithim starts at the same
point as the Labeyrie speckle interferometry technique, i.e., with the

spatial frequency fourier transform of the recorded intensity pattern. For
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a pair of point sources Eq. (19), originally stated for speckle interferometry,
represents the starting point for speckle imagery as well. However, the
Knox-Thompson speckle imagery algorithim calculates from this not only

the power spectrum, J(-f-.) , which we have just been considering, but also

the bispectrum
J(E,T) = (s¥EA)s @)y . (35)

From the phase shifts in the bispectrum the Knox-Thompson algorithim cal-
culates the phase shift to be associated with each spatial frequency compon-
ent of the objects spectrum. We shall be concerned here to see under what
conditions the phase shift of the bispectrum, o/ (F , -f’) , is equal to the
difference in the phase shift to be associated with the two spatial frequency
components of the object at f and I’ — as it is the assumption of equality
that allows the phase shift of each component to be calculated. In this sec-

tion we shall assume there are no anisoplanatism effects,

If we substitute Eq. (19) into Eq. (35) and interchange the order of
integration and ensemble averaging after first rewriting the product of

integrals as a double integral, we get
JE.T) =2 ||t [[ & & WE) WENE) WE) WEHT )

—_>

X ({{(AJSF exp [-2mi (f -T)-8,] exp {i[®(G,:T) - ¢ (8, ;T+T)
+ Qj;('é'J E4Af ) - gb('é’J ;_1"')]}
+ AJB AJP e xp [—Zni(f_’-'é's '?'63')] exp {(b(_e'J i T)

- ¢ (5, THA) + ¢ (6'5,;?’+x_f'") - ¢ ('9’5,;?')]}

+ AJEJ AJ}" exp [-Zni(_f'-'e’y - £ _é:)] exp {i[¢(§’y;_r>)

- 3 (8, ;T + ¢ (8, Feaal) - ¢ (8,57 )1}
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t(A2R exp [-2mi {198 ] exp {(i[¢(,:T) - ¢ (6, ;7T
-¢ @70 - ¢(é'5,;?')]}}}> . (36)

Assuming isotropy, and making use of the gaussian nature of the statistics

of the phase fluctuations, we can recast Eq. (36) in the form

JET) =1 ||t [[ &F a8 WE) WEHT) WE*) WE )
X exp ‘H% (HOF) + pOT %) + pE-T°) + p[T-T ([ -T7)]
- pE-21\T) - pE-T - x’f’*)}}}
x {{(A2)exp (-ZniI"-FJ) +(A,2) exp (—Zni?-‘é'a,]

x [(A@2) exp @i -§) + (A 2) exp 2nif’-B)]) . (39

Making use of Eq. (12), and introducing various approximations based on
the facts that, 1) we are only interested in spatial frequencies large enough
that |-f'.| and |?'| are much gre-ater than r, /A , and that, 2) on the basis
of our experience in evaluating a nearly equivalent integral in Eq. (24), we
know that the significant part of the contribution to the value of the integral
will come from the region where "17 - /| is less than or about equal to

r, , we can write in place of Eq. (37)

o

sET) >3 |u|e [[ dF &F - WE) WENT) WE*) WEHT )
X exp {-3.44 ro-5/3[|?-‘i~"|5/3+ | 2-F+ AME-T)(572])

x {{(A3) exp (-2nif B)+ (A 2) exp (-2miT-F,))

X [(A2) exp (2mif” -8)) + (A 3) exp @nif”-§,)]} .  (38)
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L d
If the two frequencies in the bispectrum, f and T’ are close enough to-

gether, this result reduces to

SET) >y Jult [[ & @ WE) WEHT) WE*) WE HE)
x exp [-6.88 (|?-—f'| /ro)5/3]
x {[(A2) exp (_Znif’-@;) + (A2) exp (-zni‘f’-ﬁy)]
x [(A2) exp (2mif F)+ (A,2) exp (Zni?-gj,)]} . (39)
In this case, the integral is the same one we evaluated in Eq. (17) to obtain

Eq. (18) . It follows from this that the normalized bispectrum, which the

Knox-Thompson algorithim calculates, can be written as

"’l

U, ? l - N[A2)exp(-2m-8,) +(Ag2) exp (-2mi T §,)]
f) ]1/2 J J J

<
L7 (
x [(A2) exp (Znif'-aj) +(A%) exp (2nif )], (40)

where N is a real constant of proportionality of no particular concern to us
here. Clearly this result has the desired phase shift corresponding to the

difference of the phase of the two components of the object pattern at fre-

-/

quencies f and T

If we do not make the assumption that the two spatial frequencies T

-/

and T' are very close together, i.e., K\-f..— f | is smaller than r but

o 4

rather assume that it is larger than r, , then instead of obtaining Eq. (39)

o]

from Eq. (38), we get

SO 1) = exp [-3.44 (\|T

x [[df dT* exp [-3.44 (IF-F|/r B
x WE) WEHT) WE*) WE-+L”)
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x {[(A2) exp (-2mif -F) + (A 2) exp (-2niT -)]

x [(A2) exp (2mif*-T) + (A 2) exp (2nif*-§,)]} . (41)

With some minor changes the integral evaluation proceeds essentially the

same way as before. This time we obtain for the normalized bispectrum

iy

- 7 _ T .8/3
) = {2.30 exp [-3.44 (”-f ! !> J}
o -

X N [(A2) exp (-2 if-8) +(A%) exp (-2n i T-8,)]
x [(A2Z) exp 2niT - 8,) +(Af) exp(2nif - 8,)] . (42)

We see that in this case also the phase shift of the normalized bispectrum
is a valid measure of the difference of the phases to be associated with the
two components of the object at spatial frequencies f and T . However,
the quantity in the curly brackets represents an attenuation factor in the
magnitude of the bispectrum value we can work with. If we let |.f-' - -f-.’l be
too large in our calculations the bispectrum magnitude will be reduced —
but the validity of the calculated phase shift will not be impaired, (except
perhaps by additive noise). Clearly we must work with a value of |? - f’|
which is less than r, /A , in order to obtain a full strength signal. This

1 based on some com-

fact was originally developed by Knox and Thompson
puter simulation results. Assuming a smooth transition in the strength of
the normalized bispectrum from the value in Eq. (40), when |_f' - .f'"| is
much smaller than r, /\ , to the value in Eq. (42), 4when |-f-. - f'] is
much larger than r, /A , our results suggest that there is a factor of two

loss in the strength of the normalized bispectrum when

ME - T7|, = 0.427 r, : (43)
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Accordingly, we suggest that in application of the Knox-Thompson algorithim
for speckle imagery, the bispectrum be calculated for pairs of spatial fre-

quencies whose separation is less than about 0.2 r, /A

This completes our analysis of the Knox-Thompson speckle imagery
algorithim for the case where there are no anisoplanatism effects, and set
the stage for our evaluation of anisoplanatism effects in speckle imagery.
We take this up in the next section.

6. KNOX-THOMPSON SPECKLE IMAGERY ALGORITHIM:
ANISOPLANATISM EFFECTS

Our analysis of anisoplanatism effects in the Knox-Thompson speckle
imagery algorithim can start with Eq. (36), the bispectrum for a pair of
point sources. In this case when we make use of the fact that the wavefront
distortion obeys gaussian statistics, and express our results in terms of the

wave-structure function and the hyper wave-structure function, we get

SET) =3 |yt [[ &F &7 W(F) WEHT) WE?) WE )

X {[(AJBP exp [-2nmi (?-f") °_9:]+(AJ,3)3 exp[-2mi €-T*) -6’3']]

X exp (-3 (BOEWSOT 1HBF-F *Wp[F-F 41 -F))

-BE-T ) -p(E-T -2\ T> )}>

J—

(A ZA ) (e [-211 -8, - §,)) 4 exp [ -2ni (-5, T+ . 8)]]
X exp (%— (BOD)+p0T) +9(@, -8,,;7-7*) +2[F, -8, F-TAE-T))
-0(8, -¥,,;T-F ) -9, -33,;?-?'—x?")}>} (44)

We can rewrite this as

SO T) =3 Jup [[ aF d&F* W) WEHTD) WE?) W(rif)
X exp <% (pOD)+5(T)+8(F-T )+ F-F 41 -17)]

_HE-ZH)T) - pE-T-2F*)) )
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X ((Aja)aexp [-2mi-T°) "e: -8, 1+ (A PPexp[-2mi €-7*)8,.]

+(A2)(A 3) (exp[-2ni ([ T, -T 8 )]+exp (-2ni({-F,-T-F)])

x exp (49 @ -8,,F-F* M, ¥)]}) : (45)
where
0@, 8, -, AT, \T") = ([BE-F*) -9, -8,,:#-7]

Jl

t{plT-TE-17)] - o[, -§.:F-F+AE-T)])
- [pE-T0T) - 98, -8,,;7-F*+1))

- [B(F-F2T°) - 96, -‘é’d,;?-?'-x?")]> : (46)

A comparison of Eq. (45) with Eq. (37), makes it quite clear that if
the anisoplanatic turbulence effects are not to influence the apparent phase
of the bispectrum value, then the Q-term in Eq. (45) must have a negligible
value over significant range of the (T, T/) - integration. We recall that for
the higher spatial frequencies, i.e., for >\|?| and )\|‘f”| both much great-
er than r, , (and }\lf- -f-"| much less than r, ), the significant portion of
the (T, T’) range of integration is the region where |'i" - 'i"’| is less than

or about equal to r,

Making use of the definition of the value of the hyper wave-structure
function provided by Eq. (26) , we can rewrite the Q-term as defined in
Eq. (46) as

16.32
2

{)(3, _Ss >\-f-’: )\?') = k= j‘ dv CNB "r d';-z n-11/3

PATH

X cos {ﬁ"[b"Jr%)\(f_’—?')]}{l-Z sina[%;-)\(f-—f-")]}

T

x sin?(® -3 v/2) . (47)
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In view of the above mentioned constraints and equating p with T - 7’

we can make use of the same sort of approximations as were used to ob-

tain Eq. (32) from Eq. (31). This allows us to write

0(3, 7.07,27) = - L2532 «2 [ av G2 [ &t w73 sin2( v/2), (48)

m PATH

with the understanding that this quantity must have a value lesser in mag-
nitude than minus two, [recall the factor of one-half in the exponent in
Eq.(4) and not included in the definition of Q], if anisoplanatism effects are
not to influence the measured phase of the bispectrum, and thus the accu-
racy of the phase shifts calculated for the spatial frequency components of
the object. Exactly the same sort of calculations can now be performed to
evaluate Eq. (48), as were performed to obtain Eq. (33) from Eq. (32), so
that we obtain the result that, for use in evaluation of Eq. (45), we can

write
20 (3, 3, AT, AT ~- (8/8,)58 (49)

where ¢, is defined,' as for speckle interferometry, by Eq. (34) .

We may consider ¢, to be the isoplanatic patch size, though the na-
ture of our results suggest that it is more of an outer bound than an allow-
able extent. It is to be noted that, if the isoplanatic condition is violated
and we apply the Knox-Thompson speckle imagery algorithim, the calcu-
lated bispectrum will have a phase shift, seemingly indicative of the dif-
ference of phase shifts for the two spatial frequency components of the ob-
ject at spatial frequencies f and T/ — only it will not be a true indication
of the value of this difference of phase shifts! According to how badly the
isoplanatism conditions are violated the resulting image, obtained with the

Knox-Thompson algorithim, may be only slightly distorted or totally mean-

ingless. While we may get an indication of this from the image, we would
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get no warning of a violation of isoplanatism conditions from the calculated

bispectrum.
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DISCUSSION

D. Korff: 1Is the rolloff of <t(f;0)t*(£f;6)> for £ > ro/A frequency

independent?

D. L. Fried: Yes. There are two parts to <tt*>, one which is frequency

independent and @-independent, and the other which is frequency dependent
and 6-dependent. Though the frequency and 6-dependence of this latter part
of <t1*> ig factorable, for the sum of the two parts, I don't think we can
say that the frequency and 6 dependencies are separable. This is true a
fortiori when we consider objects more complex than just a pair of point

sources.

D. Korff: Wouldn't speckle still be possible for an extended object if the

isoplanatic patch angle were greater than the seeing angle?

D. L. Fried: Possibly. Nisenson and Stachnik's results for solar

granulation suggest that masking to reduce the effective field of view is
possible. I would have thought that introducing a mask in the focal plane
would result in spurious data, but Nisenson and Stachnik's results suggest

otherwise.

W. Waller: What can you say concerning the speckle observation of

extended objects whose size exceeds that of the isoplanatic patch?

D. L. Fried: It may be possible if focal plane masking is used.

P. Connes: May I again make a plea for the turbulence specialists to turn

some of their attention towards the so far unfashionable problem of small
apparent stellar motion detection. The potential scientific returns are
much greater than the ones expected from apparent diameter measurements.
The problem is different; speckles and isoplanatic patch size are
irrelevant. What one would like is to predict anomalous refraction

differential fluctuations within a field of the order of 1°.
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