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Abstract

For any positive integer q > 2, let F9 be a finite field with q elements, F9((z~')) be the field of all formal
Laurent series x = YlT=v cni~n in an indeterminate z, I denote the valuation ideal z^'F^tU"1]] in the
ring of formal power series F9[[z~']] and P denote probability measure with respect to the Haar measure
on F9((z~')) normalized by P(/) = 1. For any x e I, let the series J27=\ l/(ai0Oa2(*) • • •«*(*)) be
the Engel expansion of Laurent series of*. Grabner and Knopfmacher have shown that the P-measure
of the set A(a) = {x e I : limn^oodegan(x)/n = a} is 1 when a = q/{q — 1), where degfln(;c)
is the degree of polynomial an{x). In this paper, we prove that for any a > 1, A(a) has Hausdorff
dimension 1. Among other things we also show that for any positive integer m, the following set
B(m) = [x € / : degan+i(;c) — degan(x) = m for any n > 1} has Hausdorff dimension 1.

2000 Mathematics subject classification: primary 11K55, 11T06; secondary 28A80.

1. Introduction

The most frequently applied operation of mathematics is series representation of
'numbers'. As a matter of fact, in all practical applications we replace arbitrary
'numbers' by their decimal expansions after a certain number of 'digits'. Recently
Knopfmacher and Knopfmacher [8, 9] introduced and studied some properties of
various unique expansions of formal Laurent series over a field F, as the sums of
reciprocals of polynomials, involving 'digits' ax, a2,... lying in a polynomial ring
F[z] over F. In particular, one of these expansions was constructed to be analogous to
the so-called Engel expansion of a real number, discussed in Galambos [5]. A number
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of famous expansions including those of Euler and the Rogers-Ramanujan identities
are, in fact, special cases of Engel expansions of formal Laurent series. Andrews,
Knopfmacher and Knopfmacher [1] and Andrews, Knopfmacher and Paule [2] have
shown how so called Engel expansions of formal Laurent series can be used to give
new and exciting proofs of the Rogers-Ramanujan and related identities.

Erdos, Renyi and Sziisz [3] (see also Renyi [11] or Galambos [5]) have studied
the metric properties for real Engel expansions, and similar metric results for Engel
expansions of Laurent series have been derived by Grabner and Knopfmacher [6]. The
aim of this paper is to discuss the fractal properties of sets related to Engel expansions
of Laurent series. The corresponding results for real Engel expansions have been
obtained by Liu and the author [10].

2. Engel expansions of Laurent series

In order to explain the conclusions, we first fix some notations and describe Engel
expansions to be considered.

Let _£? = FCCz"1)) denote the field of all formal Laurent series A = Y17=V
 c"z~n

in an indeterminate z, with coefficients cn all lying in a given field F. (We consider
F((z~')) rather than F((z)) as in [8] and [9] since it turns out to be more convenient
for stating our results.)

We also consider the ring F[z] of polynomials in z with coefficients in F.
If cv ^ 0, we call v = v(A) the order of A above, and define the norm (or valuation)

of A to be || A || = q~v(A), where initially q > 1 may be an arbitrary constant, but later
will be chosen as q - tt(F), the cardinality of F, if F is finite. Letting v(0) = -f oo,

= 0, one then has (see for example, Jones and Thron [7, Chapter 5]).

|| A || > 0 with \\A || = 0 if and only if A = 0,

|| A fi|| = || A | |- | | fi|| and

||aA +/3B || < max(||A||, ||fi||) for non-zero a, p e F

with equality when ||A|| ^ \\B\\.

From above, the norm || • || is non-Archimedean, and it is well known that J&? forms
a complete metric space under the metric p such that p(A, B) = \\A — B\\.

REMARK 1. Since the metric p is non-Archimedean, it follows that each point of a
disc may be considered its center and thus if two discs intersect, then one contains the
other.

For A = Ztv cnZ~n € if, let [A] = Zv<n<o cnZ~" e Hz], and refer to [A] the
integral part of A e £6'. Then — v = — v(A) is the degree deg[A] of [A] relative to z-
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Given A e -S?, now note that [A] = OQ e F[z] if and only if v(Ax) > 1, where
Ax = A — OQ. As in [8, 9], if An ^ 0 (n > 0) is already defined, we then let
an = [l/An] and put An+i = anAn — 1. If An = 0 or an = 0 for some n, this recursive
process stops. It was shown in [8, 9] that this algorithm leads to a finite or convergent
(relative to p) Engel series expansion of Laurent series.

THEOREM 1 ([8, 9]). Every x e J£ has a finite or convergent (relative to p) series
expansion of the form

(1) x == ao(x) + — - 4- + • • • + — + • • • ,
ax(x) ax(x)a2(x) ax(x)a2(x) • • • an(x)

where an(x) £ F[z], ao(x) = [x], and

(2) degan(x) > n and d eg (a n + i ( : c ) ) > d e g ( a n ( x ) ) + 1 for n>\.

The series (1) is unique for x subject to the preceding conditions on the 'digits' an(x).

From now on we assume q > 2 is a positive integer and F = \fq is a finite field with
exactly q elements. Let / denote the valuation ideal z~1F[[z~1]] in the ring of formal
power series Fg[[z-1]], then / is compact under the metric p. Let P denote probability
measure with respect to the Haar measure on ££ normalized by P(/) = 1. The Haar
measure on / is the product measure on fl^li <̂? defined by P({JC}) = q~x for each
factor and any element x e F^.

Analogous to Engel series representation for real numbers, Grabner and Knopf-
macher ([6]) have studied metric properties of Engel properties of Engel expansions
of Laurent series and proved the following result.

THEOREM 2 ([6]). For any x e I, let

1 1 1

ai(x) ax(x)a2{x) ax(x)a2(x) • • • an(x)

be the Engel expansion of Laurent series ofx. Then

(i) for almost all x 6 /,

(3) \\an(x)\\1/n -» qql(q-X) as n -> oo.

(ii) For almost all x € I,

(4) lim sup ° " ° = 1,
n-oo lOg^ «

(5) liminfdega«+1(x) -degan(x) = l.
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(iii) For almost all x e I,

(6) ||JC - pn/qn\\ = ^-(-?«2/2(«7-i))(i+O(D) as n-+ oo,

where pn/qn = X!Li l/(<*i(x)a2(x) • • • ak(x)), qn = al(x)a2(x) • • • an(x).

The definition of Hausdorff measure on / is the same as on IR". Given s > 0 and a
subset E of / , the Hausdorff s-measure is given by

J4?S(E) = lim

where the infimum is over all covers of E by discs Dj of diameter (in the metric p)

at most 8 and diam denotes the diameter of a set. The Hausdorff dimension of E is
defined by dim E = inf {s : jj?s(E) = 0}.

REMARK 2. From the definition of Hausdorff dimension, it is easy to see that for
any Borel subset E of / , if P(E) > 0, then dim E = 1.

Note that for any x e F9[z], ||JC || = <?de8\ thus for almost all x e I, the formula (3)

is equivalent to

(7) -deg<?„(*) -> as n —>• oo.
n g — 1

Also note that since deg an(jc) > n, it is natural to consider the following set

(8) A (a) = |JC e I : lim - degan(x) = a \

for any a > 1. In Section 3, we discuss the Hausdorff dimension of A (a) and obtain

the following result.

THEOREM 3. For any a > 1, dim A (a) = 1.

If a is an integer in Theorem 3, we can get the following quite strong result.

For any positive integer m, let

(9) B(m) = {x € / : deg<2,,+i(.x) — degan(x) — m for any n > 1}.

THEOREM 4. For any positive integer m, dim Z?(m) = 1.

As corollaries of Theorem 4, both the Hausdorff dimension of the set where (3),
(4) and (5) fail and the Hausdorff dimension of the set where (6) fails are 1.
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3. Proof of Theorem 3 and Theorem 4

The aim of this section is to prove the main results of this paper.
We first state the mass distribution principle [4, Proposition 4.2] that will be used

later.

LEMMA 1. Suppose E C I and [i is a measure with fi(E) > 0. If there exist
constants c > 0 and 8 > 0 such that IJL(D) < c(diam D)s for all disc D with diameter
diam D < 8. Then dim E > s.

PROOF OF THEOREM 3. For any n > 1, let Fj°[z] denote the polynomials in FJz]
with degree n, that is,

x e \fq[z] : x = ^2 c*z*' c< e F<7' (* - * - n ) ' a n d c«

For any n > 1 and &* € F^int(*a))[z], k = 1 , . . . , n, where int(a) denotes the integer
part for any real number a, define

J ( b u ... , b n ) = {x e I : a x ( x ) = b u ••• , a n ( x ) = b n ) .

We call J(b\, ... , bn) an n-order disc. Note that int((n + l)a) > int(na) + 1 for any
n > 1, by Theorem 1, we have J(bu . . . , bn) is a disc with center at Yll=\ l/(^i"" "bk)
and diameter q-EUiWW-W"")-* m Also by Theorem 1, we have

(i) I f ( * , , . . . ,bn)^(b\,... ,b'n),J(bu... ,bn)f]J(b'v... ,b'n) = 0.
(ii) J(bu... ,bn,bn+l) C J(bu... , ^ ) f o r a n y n > 1.

LctEn = \JJ(bu... ,bn), where the union is o v e r a l l ^ e Fjnt( to))[z], k = 1 , . . . ,n.

Then

(10) En = {x e I : degai(x) = int(a), . . . , degan(x) = int(na)},

and En consists of (q - l)nqZU »«(*«) disjoint discs with diameter $"£*=• int(te)-im(i.«)-i _

Define £ = f^ , £„. It is obvious that

(11) E = {JC € / : deg^(;c) = int(A:Q;) for any ^ > 1}.

Thus E c A(a). Now we estimate the Hausdorff dimension of E.
Let jxbea mass distribution supported on E such that for any n > 1 and

(12) int(to)
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For any s > 0, choose n0 large enough such that for any n > n0,

(13) n2-3n + 2> (n2 + 3n + 2)(1 - e).

For any x e I and m > int(a) -I- int(2a) + • • • 4- int(no«), choose k > nQ such that

int(a) H h int(ka) <m< int(a) f- int((& + l)a).

This implies

(14) - i n t ( a ) int((* + l)a)

< - m < - int(a) int((k - l)a) - int((£ - l)a) - 1,

thus B(x, q~m) := {y 6 / : \\y - x\\ < q~m) can intersect at most one (k - 1)-
order disc. In fact, if there exist bt, Vt e Fjnt('a))[z], 1 < / < k - 1 such that
(bx,b2,... ,**_,) ^ (b\,b'2,... ,b'k_,), B(x,q-m)f]J(bub2,... %bk-\) * 0and
fl(jc,^-m)n^(^i,^2.--- ' ^ - i > ^ 0, then B(x,q-m) C J(bub2,... , bk.x) and

^ - m ) C J(b\, b'2,..., Uk_x). Thus by Remark 1,

J(b\,... ,b'k_x) C 7 ( £ , , . . . , ^ _ , ) or

and this contradicts J(bu... ,bk-i)(~]J(b\,... ,b'k_x) = 0. Therefore, by (13)
and (14),

fJL(B(x, q~m)) <(q~ l)-(*-»9-int(a)-int(2a)-...-int((t-l)a)

< -int(a)-int(2o) int((*-l)a) < -(k(k-\)/2)a+k-\ K -(k(k-\)/2)a+(k-l)a

By Lemma 1, we have dim E > 1 — e. Since s is arbitrary, we have dim E = 1.
Note that £ c A (a), thus dim A (a) = 1. The proof of Theorem 3 is finished. •

PROOF OF THEOREM 4. For any positive integer m, let a = m and En, E be con-
structed in the same way as in the proof of Theorem 3. Then E c B{m) and
dim£" = 1 by the proof of Theorem 3. Thus dim Z?(m) = 1 and we complete the
proof of Theorem 4. •

By Theorem 4, we can get the following corollaries immediately.

COROLLARY 1. The Hausdorff dimension of the set where (3), (4) and(5)fail is 1.

COROLLARY 2. For any positive integer m, let

C(m) = {x el : \\x-pjqj = q-w»+W»+W for any n > 1} .

Then dim C(m) = 1. In particular, the Hausdorff dimension of the set where (6) fails
is 1.

https://doi.org/10.1017/S1446788700003438 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003438


[7] Engel series expansions of Laurent series 7

Acknowledgement

The author thanks the referee for his (her) helpful suggestions.

References

[1] G. E. Andrews, A. Knopfmacher and J. Knopfmacher, 'Engel expansions and the Rogers-
Ramanujan identities', J. Number Theory (2) 80 (2000), 273-290.

[2] G. E. Andrews, A. Knopfmacher and P. Paule, 'An infinite family of Engel expansions of Rogers-
Ramanujan type', Adv. Appl. Math. (1) 25 (2000), 2-11.

[3] P. Erdos, A. Renyi and P. Sziisz, 'On Engel's and Sylvester's series', Ann. Univ. Sci. Budapest,
Sectio Math. 1 (1958), 7-32.

[4] K. J. Falconer, Fractal geometry, mathematical foundations and applications (John Wiley, New
York, 1990).

[5] J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Math. 502
(Springer, Berlin, 1976).

[6] P. J. Grabner and A. Knopfmacher, 'Metric properties of Engel series expansions of Laurent series',
Math. Slovaca (3) 48 (1998), 233-243.

[7] W. B. Jones and W. J. Thron, Continued fractions (Addison-Wesley, 1980).
[8] A. Knopfmacher and J. Knopfmacher, 'Inverse polynomial expansions of Laurent series', Constr.

Approx. (4) 4 (1988), 379-389.
[9] , 'Inverse polynomial expansions of Laurent series, II', J. Comput. Appl. Math. 28 (1989),

249-257.
[10] Y. Y. Liu and J. Wu, 'Hausdorff dimensions in Engel expansions', ActaArith. (1) 99 (2001), 79-83.
[11] A. Renyi, 'A new approach to the theory of Engel's series', Ann. Univ. Sci. Budapest, Sectio Math.

5 (1962), 25-32.

Department of Mathematics
Wuhan University
Wuhan, Hubei, 430072
People's Republic of China
e-mail: wujunyu@public.wh.hb.cn

https://doi.org/10.1017/S1446788700003438 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003438

