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We derive a global higher regularity result for weak solutions of the linear relaxed
micromorphic model on smooth domains. The governing equations consist of a linear
elliptic system of partial differential equations that is coupled with a system of
Maxwell-type. The result is obtained by combining a Helmholtz decomposition
argument with regularity results for linear elliptic systems and the classical
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1. Introduction

The relaxed micromorphic model is a novel generalized continuum model allow-
ing to describe size effects and band-gap behaviour of microstructured solids with
effective equations ignoring the detailed microstructure [2, 6, 8, 21, 25, 28]. As a
micromorphic model it couples the classical displacement u : Ω ⊂ R

3 → R
3 with a

non-symmetric tensor field P : Ω ⊂ R
3 → R

3×3 called the microdistortion through
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2 D. Knees, S. Owczarek and P. Neff

the variational problem
∫

Ω

(〈
Ce sym(Du− P ), sym(Du− P )

〉

+
〈
Cmicro sym P, sym P

〉
+

〈
Lc CurlP,CurlP

〉
− 〈f, u〉 − 〈M,P 〉

)
dx −→ min w.r.t. (u, P ),

(1.1)

subject to suitable boundary conditions. The tensor Lc introduces a size-dependence
into the model in the sense that smaller samples respond relatively stiffer. The
existence and uniqueness in the static case follows from the incompatible Korn’s
inequality [13, 18–20, 27]. The constitutive tensors Ce, Cmicro and Lc are to be
found by novel homogenization strategies [23, 35–37]. Letting Cmicro → +∞ the
models response tends to the linear Cosserat model [9]. A range of engineering rel-
evant analytical solutions are already available for the relaxed micromorphic model
[34]. The solution is naturally found as u ∈ H1(Ω) and P ∈ H(Curl; Ω), thus the
microdistortion P may have jumps in normal direction. The implementation in the
finite element context needs standard element formulations for the displacement
u, but e.g. Nédélec - spaces for P in order to achieve optimal convergence
rates [33, 37–40].

However, it is sometimes preferred to circumvent the Nédélec - framework and
to work with H1(Ω) for the microdistortion tensor P . For these cases it is manda-
tory to clarify in advance whether the regularity of P allows for a faithful result.
In this spirit, we continue here the investigation of regularity in the static case
and we will be able to derive a global higher regularity result for weak solutions of
the relaxed micromorphic model (global as opposed to only interior regularity). It
extends the local result from [15] to smooth domains. The latter is formulated on a
bounded domain Ω ⊂ R

3 and the Euler-Lagrange equations to (1.1) read as follows
([2, 8, 25, 28, 29]): given positive definite and symmetric material dependent coef-
ficient tensors Ce : Ω→ Lin(Sym(3), Sym(3)), Cmicro : Ω→ Lin(Sym(3), Sym(3))
and Lc : Ω→ Lin(R3×3, R

3×3) determine a displacement field u : Ω→ R
3 and a

non-symmetric microdistortion tensor P : Ω→ R
3×3 satisfying

0 = Div
(
Ce sym(Du− P )

)
+ f in Ω,

0 = −Curl
(
Lc CurlP

)
+ Ce sym(Du− P )− Cmicro sym P + M in Ω (1.2)

together with suitable boundary conditions. Here, f : Ω→ R
3 is a given volume

force density, M : Ω→ R
3×3 a body moment tensor and σ = Ce sym(Du− P ) is the

symmetric force stress tensor while m = Lc CurlP is the non-symmetric moment
tensor.

The main result of the present contribution is theorem 4.1 which states that
on smooth domains and with smooth coefficients weak solutions of (1.2) are more
regular and satisfy

u ∈ H2(Ω), P ∈ H1(Ω) , σ ∈ H1(Ω) , m ∈ H(Curl; Ω) , Curlm ∈ H1(Ω),
(1.3)
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A global higher regularity result for the static relaxed micromorphic model 3

where the last regularity in (1.3) follows from equation (1.2). Moreover, if Lc has a
special block diagonal structure (see corollary 4.2), then we in addition have

m ∈ H1(Ω), CurlP ∈ H1(Ω). (1.4)

The results (1.3) are obtained by a combination of the Helmholtz decomposition
for the matrix field P , regularity results for linear elliptic systems of elasticity-
type and the classical Maxwell embedding recalled in theorem 2.4. The additional
regularity formulated in (1.4) relies on a weighted version of the Maxwell embedding
theorem, [42].

2. Background from function space theory

2.1. Notation, assumptions

For vectors a, b ∈ R
3, we define the scalar product 〈a, b〉 :=

∑3
i=1 aibi, the

Euclidean norm |a|2 := 〈a, a〉 and the dyadic product a⊗ b = (aibj)3i,j=1 ∈ R
3×3,

where R
3×3 will denote the set of real 3× 3 matrices. For matrices P, Q ∈ R

3×3,
we define the standard Euclidean scalar product 〈P, Q〉 :=

∑3
i=1

∑3
j=1 PijQij and

the Frobenius-norm ‖P‖2 := 〈P, P 〉. PT ∈ R
3×3 denotes the transposition of the

matrix P ∈ R
3×3 and for P ∈ R

3×3, the symmetric part of P will be denoted by
sym P = 1/2(P + PT ) ∈ Sym(3).

Let Ω ⊂ R
3 be a bounded domain. As a minimal requirement, we assume in this

paper that the boundary ∂Ω is Lipschitz continuous, meaning that it can locally
be described as the graph of a Lipschitz continuous function, see [14] for a precise
definition. In a similar spirit we speak of C1 or C1,1-regular boundaries. For a
function u = (u1, u2, u3)T : Ω→ R

3, the differential Du is given by

Du =

⎛
⎝Du1

Du2

Du3

⎞
⎠ ∈ R

3×3,

with (Duk)l = ∂xl
uk for 1 � k � 3 and 1 � � � 3 and with Duk ∈ R

1×3. For a vector
field w : Ω→ R

3, the divergence and the curl are given as

div w =
3∑

i=1

wi
,xi

, curlw =
(
w3

,x2
− w2

,x3
, w1

,x3
− w3

,x1
, w1

,x2
− w2

,x1

)
.

For tensor fields Q : Ω→ R
3×3, CurlQ and Div Q are defined row-wise:

CurlQ =

⎛
⎝curl Q1

curl Q2

curl Q3

⎞
⎠ ∈ R

3×3, and Div Q =

⎛
⎝div Q1

div Q2

div Q3

⎞
⎠ ∈ R

3,

where Qi denotes the i-th row of Q. With these definitions, for u : Ω→ R
3 we have

consistently Curl Du = 0 ∈ R
3×3.
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4 D. Knees, S. Owczarek and P. Neff

The Sobolev spaces [1, 11] used in this paper are

H1(Ω) = {u ∈ L2(Ω) |Du ∈ L2(Ω)} , ‖u‖2H1(Ω) := ‖u‖2L2(Ω) + ‖Du‖2L2(Ω),

H(curl; Ω) = {v ∈ L2(Ω; Rd) | curl v ∈ L2(Ω)}, ‖v‖2H(curl;Ω) := ‖v‖2L2(Ω)

+ ‖curl v‖2L2(Ω),

H(div; Ω) = {v ∈ L2(Ω; Rd) | div v ∈ L2(Ω)}, ‖v‖2H(div;Ω) := ‖v‖2L2(Ω)

+ ‖div v‖2L2(Ω),

spaces for tensor valued functions are denoted by H(Curl; Ω) and H(Div; Ω).
Moreover, H1

0 (Ω) is the completion of C∞
0 (Ω) with respect to the H1-norm and

H0(curl; Ω) and H0(div; Ω) are the completions of C∞
0 (Ω) with respect to the

H(curl)-norm and the H(div)-norm, respectively. By H−1(Ω) we denote the dual
of H1

0 (Ω). Finally we define

H(div, 0;Ω) = {u ∈ H(div; Ω) | div u = 0},
H(curl, 0;Ω) = {u ∈ H(curl; Ω) | curl u = 0} (2.1)

and set
H0(div, 0;Ω) = H0(div; Ω) ∩H(div, 0;Ω),

H0(curl, 0;Ω) = H0(curl; Ω) ∩H(curl, 0;Ω).
(2.2)

Assumption A: We assume that the coefficient functions Ce, Cmicro and Lc

in (1.2) are fourth order elasticity tensors from C0,1(Ω; Lin(R3×3; R3×3)) and are
symmetric and positive definite in the following sense

(i) For every σ, τ ∈ Sym(3), η1, η2 ∈ R
3×3 and all x ∈ Ω:

〈Ce(x)σ, τ〉 = 〈σ, Ce(x)τ〉, 〈Cmicro(x)σ, τ〉 = 〈σ, Cmicro(x)τ〉,
〈Lc(x)η1, η2〉 = 〈η1, Lc(x)η2〉. (2.3)

(ii) There exists positive constants Ce, Cmicro and Lc such that for all x ∈ Ω, σ ∈
Sym(3) and η ∈ R

3×3:

〈Ce(x)σ, σ〉 � Ce|σ|2, 〈Cmicro(x)σ, σ〉 � Cmicro|σ|2 , 〈Lc(x)η, η〉 � Lc|η|2.
(2.4)

2.2. Helmholtz decomposition, embeddings, elliptic regularity

Based on the results from Section 3.3 of the book [11] (Corollary 3.4), see also [4,
Theorem 5.3], the following version of the Helmholtz decomposition will be used:

Theorem 2.1 Helmholtz decomposition. Let Ω ⊂ R
3 be a bounded domain with a

Lipschitz boundary. Then

L2(Ω; R3) = DH1
0 (Ω)⊕H(div, 0;Ω)

and hence, for every p ∈ L2(Ω; R3) there exist unique v ∈ H1
0 (Ω) and q ∈ H

(div, 0;Ω) such that p = Dv + q.
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It is worth mentioning that in the case of the L2-theory, theorem 2.1 holds for
any bounded domain Ω ⊂ R

3 without having a Lipschitz boundary, see e.g. [7]. An
immediate consequence of the Helmholtz decomposition theorem is

Proposition 2.2. Let Ω ⊂ R
3 be a bounded domain and let p ∈ L2(Ω) with p =

Dv + q, where v ∈ H1
0 (Ω) and q ∈ H(div, 0;Ω) are given according to the Helmholtz

decomposition. Then Dv ∈ H0(curl, 0;Ω).

Proof. Notice that it is sufficient to prove that

DH1
0 (Ω) ⊂ H0(curl, 0;Ω) .

For this, let us assume that v ∈ H1
0 (Ω) and let {vn} ⊂ C∞

0 (Ω) such that vn → v in
H1(Ω). Then, for all φ ∈ C∞

0 (Ω) we obtain∫
Ω

〈Dv, curl φ〉dx←
∫

Ω

〈Dvn, curl φ〉dx = −
∫

Ω

〈vn,div curlφ〉dx = 0

and Dv ∈ H(curl, 0;Ω). Moreover, {Dvn} ⊂ C∞
0 (Ω) ∩H0(curl, 0;Ω) and Dvn →

Dv in H(curl; Ω). As H0(curl, 0;Ω) is a closed subspace of H(curl; Ω) we conclude
that Dv ∈ H0(curl, 0;Ω). �

In an analogous way to proposition 2.2, we can prove the following lemma, from
which additional regularities will be derived for the solution of system (1.2) (see
corollary 4.2).

Lemma 2.3. For any bounded domain Ω ⊂ R
3 it holds

curlH0(curl; Ω) ⊂ H0(div, 0;Ω).

Proof. Let us assume that {En} ⊂ C∞
0 (Ω) such that En → E in H(curl; Ω). Then,

for all φ ∈ C∞
0 (Ω) we obtain∫

Ω

〈curl E,Dφ〉dx←
∫

Ω

〈curl En,Dφ〉dx = −
∫

Ω

〈div curlEn, φ〉dx = 0

and curlE ∈ H(div, 0;Ω). Moreover, {curl En} ⊂ C∞
0 (Ω) ∩H0(div, 0;Ω) and

curl En → curl E in H(div; Ω). As H0(div, 0;Ω) is a closed subspace of H(div; Ω)
we conclude that curlE ∈ H0(div, 0;Ω). �

The next embedding theorem is for instance proved in [11, Sections 3.4, 3.5] and
[16] (see [14] for properties of convex sets):

Theorem 2.4 Embedding theorem. Let Ω ⊂ R
3 be a convex domain or a domain

with a C1,1-smooth boundary ∂Ω. Then

H(curl; Ω) ∩H0(div; Ω) ⊂ H1(Ω), H0(curl; Ω) ∩H(div; Ω) ⊂ H1(Ω)

and there exists a constant C > 0 such that for every p ∈ H(curl; Ω) ∩H0(div; Ω)
or p ∈ H0(curl; Ω) ∩H(div; Ω) we have

‖p‖H1(Ω) � C(‖p‖H(curl;Ω) + ‖p‖H(div;Ω)) .
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A version of this result for Lipschitz domains showing H1/2(Ω)- regularity is given
in [5] (similar results for bounded strong Lipschitz domains with strong Lipschitz
boundary interface parts may be found in [31, 32]). In addition, it can be noted
that convex domains are strongly Lipschitz, cf. [14]. A proof for convex domains
including a family of relevant boundary conditions can be found in [30]. For the
previous embedding theorem there are also some versions with weights, and we
cite here Theorem 2.2 from [42] with k = 1 and � = 0. We assume that the weight
function ε : Ω→ R

3×3 for every x ∈ Ω is symmetric and positive definite, uniformly
in x.

Theorem 2.5. Let Ω ⊂ R
3 be a bounded domain with a C2-smooth boundary and

let ε ∈ C1(Ω, R
3×3) be a symmetric and positive definite weight function. Assume

that p : Ω→ R
3 belongs to one of the following spaces:

p ∈ H0(curl; Ω) and ε p ∈ H(div; Ω) (2.5)

or

p ∈ H(curl; Ω) and ε p ∈ H0(div; Ω) . (2.6)

Then p ∈ H1(Ω) and there exists a constant C > 0 (independent of p) such that

‖p‖H1(Ω) � C
(
‖p‖H(curl;(Ω) + ‖div(εp)‖L2(Ω)

)
.

Remark 2.6. Assuming higher regularity on the weight function ε and the smooth-
ness of ∂Ω (i.e. ε ∈ Ck(Ω, R

3×3) and ∂Ω ∈ Ck+1), Theorem 2.2 from [42] guarantees
a corresponding higher regularity of p.

In the proof of theorem 4.1 we will decompose the microdistortion tensor P as
P = Dq + Q and apply theorem 2.4 to Q. The regularity for the displacement field
u and the vector q then is a consequence of an elliptic regularity result that we
discuss next.

Let us consider the following auxiliary bilinear form: for (u, q) ∈ H1
0 (Ω; R3+3)

and (u, v) ∈ H1
0 (Ω; R3+3) we define

ã

((
u
q

)
,

(
v
w

))
=

∫
Ω

〈A(x)
(

sym Du
sym Dq

)
,

(
sym Dv
sym Dw

)
〉dx, (2.7)

where A : Ω→ (Lin(Sym(3), Sym(3)))4 is defined by the following formula

A(x) =
(
Ce(x) −Ce(x) − Ce(x) Ce(x) + Cmicro(x)

)
. (2.8)

Corollary 2.7. Let Assumption A(ii) be satisfied. Then, there exists a positive
constant CA such that for all x ∈ Ω and σ = (σ1, σ2) ∈ Sym(3)× Sym(3) we have:

〈A(x)σ, σ〉 � CA|σ|2 . (2.9)
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Proof. Fix x ∈ Ω and σ = (σ1, σ2) ∈ Sym(3)× Sym(3), then

〈A(x)σ, σ〉 = 〈Ce(σ1 − σ2), σ1 − σ2〉+ 〈Cmicro(σ2), σ2〉 .
Assumption A(ii) implies

〈A(x)σ, σ〉 � Ce|σ1 − σ2|2 + Cmicro|σ2|2 � min{Ce, Cmicro}
(|σ1 − σ2|2 + |σ2|2

)

� 2
9

min{Ce, Cmicro}
(|σ1|2 + |σ2|2

)
=

2
9

min{Ce, Cmicro}|σ|2

and the proof is completed. �

Now, for all (u, q) ∈ H1
0 (Ω; R3+3) we have

ã

((
u
q

)
,

(
u
q

))
� CA

(‖ sym Du‖2L2(Ω) + ‖ sym Dq‖2L2(Ω)

)

� CA CK

(‖u‖2H1
0 (Ω) + ‖q‖2H1

0 (Ω)

)
, (2.10)

where the constant CK is a constant resulting from the standard Korn’s
inequality [22]. This shows that the bilinear form (2.7) is coercive on the space
H1

0 (Ω; R3+3). The form (2.7) defines the following auxiliary problem: for (F1, F2) ∈
L2(Ω; R3+3) find (u, q) ∈ H1

0 (Ω; R3+3) with

ã
(
( u

q ) , ( v
w )

)
=

∫
Ω

〈(
F1
F2

)
, ( v

w )
〉

dx (2.11)

for all (v, w) ∈ H1
0 (Ω; R3+3). Modifying the results concerning the regularity of

elliptic partial differential equations, it would be possible to obtain the existence of
a solution for system (2.11) with the regularity (u, q) ∈ H1

0 (Ω; R3+3) ∩H2(Ω; R3+3)
(see for example [10, Theorem 9.15, Section 9.6]). However, system (2.11) fits
perfectly into the class considered in [26]. There, the global regularity of weak
solutions to a quasilinear elliptic system with a rank-one-monotone nonlinearity
was investigated. As an application of the result from [26] we obtain

Lemma 2.8. Let Ω ⊂ R
3 be a bounded domain with a C1,1-smooth boundary ∂Ω. Let

furthermore (F1, F2) ∈ L2(Ω; R3+3) and Ce, Cmicro ∈ C0,1(Ω; Lin(R3×3; R3×3)).
Then the problem (2.11) has a unique solution (u, q) ∈ H1

0 (Ω; R3+3) ∩H2(Ω; R3+3).

Proof. Coercivity (2.10) of the bilinear form (3.1) and the Lax-Milgram theorem
imply the existence of exactly one weak solution (u, q) ∈ H1

0 (Ω; R3+3). In order to
prove higher regularity of this solution we will use Theorem 5.2 of [26].

Let us introduce B : Ω× R
(3+3)×3 → R

(3+3)×3 as the unique x-dependent linear
mapping satisfying

〈
B

(
x,

(
A1
A2

) )
,
(

B1
B2

)〉 = 〈A(x)
(

sym A1
sym A2

)
,

(
sym B1
sym B2

)〉
(2.12)

for all A1, A2, B1, B2 ∈ R
3×3 and x ∈ Ω. Then for every x ∈ Ω, A = (A1, A2) ∈

R
(3+3)×3, ξ = (ξ1, ξ2) ∈ R

3+3 and η ∈ R
3 we have thanks to the positive
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definiteness of A

〈
B

(
x,

(
A1
A2

)
+ ξ ⊗ η

)

− B

(
x,

(
A1
A2

) )
, ξ ⊗ η

〉
� CA

(‖ sym(ξ1 ⊗ η)‖2 + ‖ sym(ξ2 ⊗ η)‖2) .

(2.13)

Since ‖ sym(ξi ⊗ η)‖2 = 1/2(‖ξi‖2‖η‖2 + ‖〈ξi, η〉‖2), this ultimately implies that B

is strongly rank-one monotone/satisfies the Legendre-Hadamard condition. Due to
the Lipschitz continuity of Ce and Cmicro the remaining assumptions of Theorem 5.2
of [26] can easily be verified. Hence, [26, Theorem 5.2] implies (u, q) ∈ H2(Ω; R3+3).

�

3. Weak formulation of the relaxed micromorphic model

For u, v ∈ H1
0 (Ω, R

3) and P, W ∈ H0(Curl; Ω) the following bilinear form is
associated with the system (1.2)

a
(
(u, P ), (v,W )

)
=

∫
Ω

(〈
Ce sym(Du− P ), sym(Dv −W )

〉

+
〈
Cmicro sym P, sym W

〉
+

〈
Lc CurlP,Curl W

〉)
dx

≡
∫

Ω

〈A
(

sym D
sym P

)
,

(
sym Dv
sym W

)
〉+ 〈

Lc CurlP,Curl W
〉)

dx

(3.1)

where the tensor A is defined in (2.8). Here, homogeneous boundary conditions
u
∣∣
∂Ω

= 0 and (P × n)
∣∣
∂Ω

= 0 are considered.

Theorem 3.1 Existence of weak solutions. Let Ω ⊂ R
3 be a bounded domain with a

Lipschitz boundary and assume that Ce, Cmicro, Lc ∈ L∞(Ω; Lin(R3×3; R3×3)) com-
ply with the symmetry and positivity properties formulated in (2.3)–(2.4). Then
for every f ∈ H−1(Ω) and M ∈ (H0(Curl; Ω))∗ there exists a unique pair (u, P ) ∈
H1

0 (Ω)×H0(Curl; Ω) such that

∀(v,W ) ∈ H1
0 (Ω)×H0(Curl; Ω) : a

(
(u, P ), (v,W )

)
=

∫
Ω

〈f, v〉+ 〈M,W 〉dx.

(3.2)

Proof. For a bounded domain Ω ⊂ R
3 with Lipschitz boundary ∂Ω the incompatible

Korn’s inequality [12, 19, 20, 27] implies that there is a constant c̃ > 0 such that

‖P‖2L2(Ω) � c̃
(‖ sym P‖2L2(Ω) + ‖Curl P‖2L2(Ω)

)
(3.3)

for all P ∈ H0(Curl; Ω). Positive definiteness of the tensors A and Lc entail

a
(
(u, P ), (u, P )

)
� CA(‖ sym Du‖2L2(Ω) + ‖ sym P‖2L2(Ω)) + Lc‖Curl P‖2L2(Ω).

(3.4)
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Hence, by (3.3) and Korn’s inequality the bilinear form (3.1) is coercive on H1
0 (Ω)×

H0(Curl; Ω) and the Lax-Milgram theorem finishes the proof. �

Thanks to the Helmholtz decomposition, weak solutions can equivalently be
characterized as follows:

Lemma 3.2. Let the assumptions of theorem 3.1 be satisfied, f ∈ H−1(Ω) and M ∈
(H0(Curl; Ω))∗. Let furthermore (u, P ) ∈ H1

0 (Ω)×H0(Curl; Ω) and let (q, Q) ∈
H1

0 (Ω; R3)×H(Div, 0;Ω) such that P = Dq + Q. Then the following (a) and (b)
are equivalent:

(a) (u, P ) is a weak solution of (1.2) in the sense of (3.2).

(b) For all (v, W ) ∈ H1
0 (Ω)×H0(Curl; Ω) the triple (u, q, Q) satisfies

∫
Ω

〈A
(

sym Du
sym Dq + sym Q

)
,

(
sym Dv
sym W

)
〉dx

+
∫

Ω

〈Lc CurlQ,Curl W 〉dx =
∫

Ω

〈f, v〉+ 〈M,W 〉dx. (3.5)

Proof. (a) =⇒ (b) : Assume that (u, P ) ∈ H1
0 (Ω)×H0(Curl; Ω) is a weak solution

of (1.2) in the sense of (3.2). Then theorem 2.1 implies that for i = 1, 2, 3 there
exists unique qi ∈ H1

0 (Ω) and Qi ∈ H0(Div, 0;Ω) such that Pi = Dqi + Qi, where Pi

denotes the rows of the matrix P . Inserting P = (∇q1 + Q1, ∇q2 + Q2, ∇q3 + Q3)T

into (3.2) we obtain (3.5), where Q = (Q1, Q2, Q3)T .

(b) =⇒ (a) : Let for all (v, W ) ∈ H1
0 (Ω)×H0(Curl; Ω) the triple (u, q, Q) ∈

H1
0 (Ω; R3)×H1

0 (Ω; R3)×H(Div, 0;Ω) satisfy (3.5). Then (3.5) can be written in
the form

∫
Ω

〈A
(

sym Du
sym Dq + sym Q

)
,

(
sym Dv
sym W

)
〉dx

+
∫

Ω

〈Lc Curl(Dq + Q),Curl W 〉dx =
∫

Ω

〈f, v〉+ 〈M,W 〉dx (3.6)

and the function (u, Dq + Q) satisfies (3.2) for all (v, W ) ∈ H1
0 (Ω)×H0(Curl; Ω).

Uniqueness of a weak solution of the problem (1.2) implies that P = Dq + Q. �

4. Global regularity on smooth domains

The aim of this section is to prove the following regularity theorem

Theorem 4.1. Let Ω ⊂ R
3 be a bounded domain with a C1,1-smooth boundary.

Moreover, in addition to the assumptions of theorem 3.1 let Ce, Cmicro, Lc ∈
C0,1(Ω; Lin(R3×3; R3×3)). Finally, we assume that f ∈ L2(Ω) and M ∈ H(Div; Ω).
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Then for every weak solution (u, P ) ∈ H1
0 (Ω)×H0(Curl; Ω) we have

u ∈ H2(Ω), P ∈ H1(Ω), Lc CurlP ∈ H(Curl; Ω) (4.1)

and there exists a constant C > 0 (independent of f and M) such that

‖u‖H2(Ω) + ‖P‖H1(Ω) + ‖Lc CurlP‖H(Curl;Ω) � C(‖f‖L2(Ω) + ‖M‖H(Div;Ω)).
(4.2)

The proof relies on the Helmholtz decomposition of P , the embedding theorem
2.4 and theorem 2.8 about the global regularity for the auxiliary problem (2.11).

Proof. Let (u, P ) ∈ H1
0 (Ω)×H0(Curl; Ω) satisfy (3.2) with f ∈ L2(Ω) and M ∈

H(Div; Ω).
We first show that (u, P ) ∈ H2(Ω)×H1(Ω). Let P = Dq + Q, where q ∈

H1
0 (Ω; R3) and Q ∈ H(Div, 0;Ω) are given according to the Helmholtz decomposi-

tion. By proposition 2.2 it follows that Q ∈ H(Div, 0;Ω) ∩H0(Curl; Ω) and thanks
to the assumed regularity of ∂Ω, theorem 2.4 implies that Q ∈ H1(Ω). Next, choos-
ing W = Dw for w ∈ C∞

0 (Ω; Rd), the weak form (3.5) in combination with a density
argument implies that for all v, w ∈ H1

0 (Ω) we have
∫

Ω

〈
A

(
sym Du
sym Dq

)
,

(
sym Dv
sym Dw

)〉
dx

=
∫

Ω

〈Ce sym Q, sym Dv〉dx−
∫

Ω

〈(Ce + Cmicro) sym Q, sym Dw〉dx

+
∫

Ω

〈f, v〉+ 〈M,Dw〉dx.

(4.3)

Since Q ∈ H1(Ω) and M ∈ H(Div; Ω), by partial integration the right hand side
of (4.3) can be rewritten as

∫
Ω
〈F1, v〉+ 〈F2, w〉dx with functions F1, F2 ∈ L2(Ω).

theorem 2.8 implies that u, q ∈ H2(Ω) and hence P = Dq + Q ∈ H1(Ω).
Let us next choose v = 0 and W ∈ C∞

0 (Ω) in (3.1). Rearranging the terms we
find that∫

Ω

〈Lc CurlP,CurlW 〉dx =
∫

Ω

〈M,W 〉dx

+
∫

Ω

〈Ce sym Du− (Ce + Cmicro) sym P , sym W 〉dx

which implies that Curl(Lc CurlP ) ∈ L2(Ω) and Lc CurlP ∈ H(Curl; Ω). �

If we additionally assume that Lc has a block-diagonal structure, we may also
achieve Curl P ∈ H1(Ω) by applying the weighted embedding theorem 2.5.

Corollary 4.2. In addition to the assumptions of theorem 4.1 let Lc ∈
C1(Ω; Lin(R3×3, R

3×3)) be of block diagonal structure, meaning that there exist Li ∈
C1(Ω; R3×3), 1 � i � 3, such that for every W ∈ R

3×3 we have (LcW )i-th row =
Li(Wi-th row). Then Lc CurlP ∈ H1(Ω) and CurlP ∈ H1(Ω).
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Proof. We focus on the i-th row P i of P . Let ε = (Li)−1. Then ε ∈ C1(Ω; R3×3)
and ε(x) is symmetric and uniformly positive definite with respect to x ∈ Ω.

We know that P i ∈ H0(curl; Ω), hence lemma 2.3 implies immediately that

ε Li curl P i = curlP i ∈ H0(div, 0;Ω) .

The weighted embedding theorem 2.5 implies Li curlP i ∈ H1(Ω), and since ε = L
−1
i

is a multiplyer on H1(Ω), we finally obtain curlP i ∈ H1(Ω). �

Remark 4.3. The previous result may be applied to the simple uni-constant
isotropic curvature case L2

c ‖Curl P‖2.
Remark 4.4. It is clear that the same higher regularity result can be established
for the linear Cosserat model [9].

5. Global regularity for a gauge-invariant incompatible elasticity model

The method presented above for obtaining regularity of solution for the static
relaxed micromorphic model can be directly applied to the following gauge-invariant
incompatible elasticity model [17, 24]

0 = −Curl[Lc Curl e]− Ce sym e− Cc skew e + M, (5.1)

where the unknown function is the non-symmetric incompatible elastic distortion
e : Ω→ R

3×3 while M : Ω→ R
3×3 is a given body moment tensor. The constitutive

tensors Ce, Lc are positive definite fourth order tensors (fulfilling the Assumption A)
while Cc : so(3)→ so(3) is positive semi-definite. The system (5.1) is considered
with homogeneous tangential boundary conditions, i.e.

ei(x)× n(x) = 0 for x ∈ ∂Ω, (5.2)

where × denotes the vector product, n is the unit outward normal vector at the
surface ∂Ω, ei (i = 1, 2, 3) are the rows of the tensor e. Problem (5.1) generalizes
the time-harmonic Maxwell-type eigenvalue problem [3, 43] from the vectorial to
the tensorial setting. On the other hand, equation (5.1) corresponds to the second
equation of (1.2) upon setting Cmicro ≡ 0, assuming Cc ≡ 0, identifying the elastic
distortion e with e = Du− P and observing that

−Curl Lc CurlP = Curl Lc Curl(−P ) = Curl Lc Curl(Du− P ) = Curl Lc Curl e .
(5.3)

Smooth solutions of (5.1) satisfy the balance of linear momentum equation

Div(Ce sym e + Cc skew e) = Div M. (5.4)

Gauge-invariance means here that the solution e is invariant under

Du→ Du + Dτ , P → P + Dτ (5.5)

which invariance is only possible since Cmicro ≡ 0 (Cmicro > 0 breaks the gauge-
invariance). Here τ is a space-dependent (or local) translation vector. The elastic
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energy can then be expressed as

∫
Ω

〈
Ce sym e, sym e

〉
+

〈
Lc Curl e,Curl e

〉− 〈M, e〉dx (5.6)

in which the first term accounts for the energy due to elastic distortion, the sec-
ond term takes into account the energy due to incompatibility in the presence of
dislocations and the last term is representing the forcing.

For e, v ∈ H0(Curl; Ω) the following bilinear form is associated with the system
(5.1)

b(e, v) =
∫

Ω

〈
Lc Curl e,Curl v

〉
+

〈
Ce sym e, sym v

〉
+

〈
Cc skew e, skew v

〉
dx .

(5.7)

Let us assume that M ∈ H(Div; Ω). Coercivity of the bilinear form (5.7) (the gen-
eralized incompatible Korn’s inequality (3.3)) and the Lax-Milgram theorem imply
the existence of exactly one weak solution e ∈ H0(Curl; Ω) of the system (5.1). The
Helmholtz decomposition yields that e = Dq + Q, where q ∈ H1

0 (Ω; R3) and Q ∈
H(Div, 0;Ω). By proposition 2.2 it follows that Q ∈ H(Div, 0;Ω) ∩H0(Curl; Ω)
and theorem 2.4 implies that Q ∈ H1(Ω). Inserting the decomposed form of the
tensor e into the weak form of system (5.1), we obtain

∫
Ω

〈Ce sym(Dq + Q), sym W 〉dx +
∫

Ω

〈Cc skew(Dq + Q), skew W 〉dx

+
∫

Ω

〈Lc Curl(Dq + Q),Curl W 〉dx =
∫

Ω

〈M,W 〉dx (5.8)

for all W ∈ H0(Curl; Ω). Again, choosing W = Dw for w ∈ C∞
0 (Ω; R3), the weak

form (5.8) in combination with a density argument implies that for all w ∈ H1
0 (Ω)

we have

∫
Ω

〈Ce sym Dq, sym Dw〉dx +
∫

Ω

〈Cc skew Dq, skew Dw〉dx

=
∫

Ω

〈M,Dw〉dx−
∫

Ω

〈Ce sym Q, sym Dw〉dx−
∫

Ω

〈Cc skew Q, skew Dw〉dx

(5.9)

Since Q ∈ H1(Ω) and M ∈ H(Div; Ω), by partial integration the right hand side
of (4.3) can be rewritten as

∫
Ω
〈F2, w〉dx with functions F2 ∈ L2(Ω). Note that

the auxiliary problem (??) obtained this time is a problem from standard linear
elasticity. Thus, in this case we do not need to go through lemma 2.8: just from
the standard theory of regularity in the linear elasticity we obtain that q ∈ H2(Ω)
([41]). The result is that on smooth domains and with smooth coefficients the weak

https://doi.org/10.1017/prm.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.63


A global higher regularity result for the static relaxed micromorphic model 13

solution of (5.1) is more regular and satisfies

e ∈ H1(Ω), Lc Curl e ∈ H(Curl; Ω), Curl(Lc Curl e) ∈ H1(Ω), (5.10)

where the last regularity in (5.10) follows from equation (5.1). Moreover, if Lc has
a special block diagonal structure, then we have

Lc Curl e ∈ H1(Ω), Curl e ∈ H1(Ω). (5.11)
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37 J. Schröder, M. Sarhil, L. Scheunemann and P. Neff. Lagrange and H(curl, B) based Finite
Element formulations for the relaxed micromorphic model. Comput. Mech. 70 (2022),
1309–1333.

38 A. Sky, M. Neunteufel, P. Lewintan, A. Zilian and P. Neff. Novel H(sym Curl)-conforming
finite elements for the relaxed micromorphic sequence. Comput. Methods. Appl. Mech. Eng.
418 (2023), 116494.
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