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Abstract. A refinement of the rank 1 Abelian Stark conjecture has been formulated by
B. Gross. This conjecture predicts some p-adic analytic nature of a modification of the Stark
unit. The conjecture makes perfect sense even when p is an Archimedean place. Here we con-

sider the conjecture when p is a real place, and interpret it in terms of 2-adic properties of spe-
cial values of L-functions. We prove the conjecture for CM extensions; here the original Stark
conjecture is uninteresting, but the refined conjecture is nontrivial. In more generality, we

show that, under mild hypotheses, if the subgroup of the Galois group generated by complex
conjugations has less than full rank, then the refined conjecture implies that the Stark unit
should be a square. This phenomenon has been discovered by Dummit and Hayes in a parti-

cular type of situation. We show that it should hold in much greater generality.
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1. Introduction

Let k be a number field and O its ring of integers. The zeta function for k is defined by

an infinite series zkðsÞ ¼
P

a�OðNaÞ
�s which converges absolutely on the half plane

RðsÞ > 1. It is a classical result that the above definition has a meromorphic conti-

nuation to the entire complex plane, with only a simple pole at s ¼ 1. Moreover,

zk has a functional equation that relates zkðsÞ and zkð1� sÞ. Under this functional

equation, the formula for the residue at s ¼ 1 transforms into a simple form of

the leading coefficient of the Taylor series at s ¼ 0, namely

zkðsÞ ¼ �
hkRk

wk
sn þOðsnþ1Þ near s ¼ 0 ð1Þ

where hk is the class number, Rk is the regulator and wk is the number of roots of

unity in k. Also, n ¼ r1 þ r2 � 1, where r1 (respectively, r2) is the number of real

(respectively, complex) places of k. In particular, n is the rank of the unit group

O�, by Dirichlet’s unit theorem.

In a series of papers [11�13, 15] H. Stark developed a conjecture about the leading

coefficient of the Taylor series at s ¼ 0 of Artin L-functions. He conjectured that this

leading coefficient should have an analogous form, namely that it should be a pro-

duct of an algebraic number with a transcendental number (the ‘Stark regulator’).
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However, this information is subtle, and it is not fully understood, even conjec-

turally, the precise form this coefficient should have.

1.1. STARK’S CONJECTURE

In the case of Abelian L-functions, and especially when the order of vanishing is 1, a

more precise conjecture is available. In order to state the conjecture, we will intro-

duce some notations and conventions.

Let K=k be an abelian extension of global fields with Galois group G. Let S be a

finite set of places of k that contains all the Archimedean places and any places that

ramify in K. Suppose that #S5 2 and that S contains a place, p0, that splits comple-

tely in K. Also let P0 be one of the places of K lying over p0. The hypotheses on S

imply that for any character, w 2 Ĝ, the L-function LSðw; sÞ vanishes at s ¼ 0 (see

Proposition 4.1. below). Therefore we are interested in the coefficient of s1 in the

Taylor series of LSðw; sÞ, or equivalently, the value of L0
Sðw; 0Þ.

Let UK denote the SðKÞ-units of K, i.e. those elements of K that are units at every

place not lying over a place in S. If #S5 3, define

Uðp0Þ ¼ x 2 UK

�� jxjP ¼ 1 for allP not dividing p0

� �
;

but if #S ¼ 2, say S ¼ fp0; p1g, then choose a place, P1 of K lying over p1, and define

Uðp0Þ ¼ x 2 UK

�� jxgjP1
¼ jxjP1

for all g inG
� �

:

Clearly, this latter definition does not depend upon the choice of P1 of K lying

over p1.

CONJECTURE 1.1 (The rank 1 Abelian Stark conjecture). With the notation above,

there is e 2 Uðp0Þ such that

. L0
Sðw; 0Þ ¼ �

1

wK

X
g2G

wðgÞ log jegjP0
for all w 2 Ĝ, and

. Kðe1=wK Þ is Abelian over k.

The quantity e is called the Stark unit. The conditions imposed on it by Conjecture

1.1 determine its absolute value at every place of K. Therefore, e is uniquely deter-

mined, up to a multiple of a root of unity in K, and the truth of the conjecture is

independent of the choice of e. In general however, there seems to be no canonical

choice among the wK possibilities.

Conjecture 1.1 is known to be true when the base field k ¼ Q, where it amounts to

classical results of Stickelberger on the factorization of Gauss sums. Stark has also

proved it when the base field, k, is a quadratic imaginary field, by using the theory of

complex multiplication. These two cases form the foundation of theoretical evidence

in support of the conjecture. Conjecture 1.1 has also been verified numerically in

many cases, for example, see [5, 14].
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1.2. THE LOCAL STARK CONJECTURE

Benedict Gross has formulated a conjectural generalization of formula ð1Þ above,

where the regulator has been replaced by a determinant in a group ring. The group

elements are obtained as local reciprocity maps applied to various units. By analogy,

he formulates the ‘local Stark conjecture’, which predicts the value of a local recipro-

city map on a modified Stark unit. This can be viewed as an attempt to understand

the p-adic analytic nature of the Stark unit.

Let K=k and S be as above, and let L be an overfield of K that is Abelian over k

and unramified outside S. Let e be the hypothetical Stark unit for K=k. As noted

above, e is only determined up to a root of unity in K. Let l ¼ e1=wK , and consider

the extension LðlÞ=k. This is the compositum of the Abelian extension L=k with

the (conjecturally) abelian extension KðlÞ=k, and thus is (conjecturally) Abelian.

Let q be a place of k which is not in S, nor divides the number of roots of unity in

LðlÞ, and let jq be its Frobenius element in GalðLðlÞ=kÞ, which makes sense, as this

extension is abelian. Now define eq ¼ ljq�Nq: The quantity eq is called the modified

Stark unit. Its definition does not depend upon the choice of the Stark unit, e, nor
on the choice of its wKth root, l. Moreover, we claim that eq 2 K. To see this, let

t 2 GalðLðlÞ=kÞ be an arbitrary element, and note that ðltÞwK ¼ ðlwK Þ
t
¼

et ¼ e ¼ lwK . Thus, lt ¼ zl, where z is some wKth root of unity. Now, using the fact

that GalðLðlÞ=kÞ is Abelian, we have

etq ¼ ðljq�NqÞ
t
¼ ðltÞjq�Nq ¼ ðzlÞjq�Nq ¼ zjq�Nqljq�Nq ¼ ljq�Nq ¼ eq:

Therefore, eq is fixed by every t 2 GalðLðlÞ=kÞ, whence eq 2 K, as claimed.

Let y 2 C½GalðL=kÞ� be the ‘Stickelberger element’ for the extension L=k, with

respect to the exceptional set S. This element is characterized by the condition that

wðyÞ ¼ LSð�w; 0Þ for all w 2 dGalðL=kÞ:

A classical result of Siegel [10] shows that the coefficients of y are all rational.

Moreover, the denominators are bounded, as shown by Barsky [1], Cassou-

Noguès [2], and Deligne and Ribet [3], independently. Specifically, for any A 2

Z½GalðL=kÞ� that annihilates the module mðLÞ of roots of unity in L, they show that

Ay has integral coefficients. In particular, taking A ¼ wL gives the bound on the

denominator.

Here we will consider elements of the form A ¼ jq �Nq, where q is a place of k

that is unramified in L, and does not divide wL. It is easy to see that such an element

indeed annihilates mðLÞ. Furthermore, we even have

PROPOSITION 1.2. Let L=k be an Abelian extension of global fields, and S a finite

set of places of k that contains all Archimedean places, any places ramified in L, and

any places that divide wL. Then the annihilator of the GalðL=kÞ-module mðLÞ is gene-

rated as a Z-module by the elements jq �Nq, for all q =2S.
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Proof. See [16, Chapitre IV, Lemme 1.1]. &

Accordingly, let q be a place of k that is not in S and also does not divide wLðlÞ.

Thus ðjq �NqÞy has integral coefficients, so write it as
P

g nðgÞ � g. Since p0 splits

completely in the extension K=k, the decomposition group GP0
is contained in

H ¼ GalðL=KÞ. Let rP0
be the local reciprocity map at P0, for the extension L=K.

This is a map rP0
: K �

P0
! GP0

. Thus we can consider the composite map

K �,!K �
P0

�!GP0
,!GalðL=KÞ;

which we will also denote by rP0
.

We may now formulate the local Stark conjecture. See Gross’ paper [7] for the

original formulation, as well as Hayes [9] for a variant.

CONJECTURE 1.3. (The local Stark conjecture). With the preceding notation, we

have rP0
ðeqÞ ¼

Q
h2H hnðhÞ:

Conjecture 1.3 is an attempt to understand the Stark unit from a p-adic viewpoint.

However, as remarked above, the Stark unit is not uniquely determined. The

modified Stark unit is void of any such ambiguity, which explains its role in the

conjecture.

The local Stark conjecture is known when the base field k ¼ Q, (see [6]) from the

work of Gross and Koblitz [8]. It has also been proved by Hayes [9] in the function

field case.

1.3. CONNECTION TO HAYES’ FORMULATION

The original formulation of the local Stark conjecture predicts the value of the local

reciprocity map applied not only to the modified Stark unit, but also to all of its

Galois conjugates as well. We briefly indicate here its connection with Conjecture

1.3, which is apparently weaker. In fact, we show that 1.3 implies Hayes’ ‘slightly

stronger’ version [9, second form, (1.9)]. The equivalence to both of his versions,

as well as Gross’ original formulation is then clear.

We continue with the notation introduced above. Let ~L ¼ LðlÞ, ~G ¼ Galð ~L=kÞ,

and let A 2 Z½G� be an element that annihilates mðLÞ. From 1.2, A can be lifted to
~A 2 Z½ ~G�, which annihilates mð ~LÞ. Hayes’ stronger version of the conjecture is:

CONJECTURE 1.4. If ~A is any such lift, then

rP0
ðl

~A
Þ ¼

Y
h2H

hnðhÞ;

where Ay ¼
P

g2G nðgÞ � g.

As Hayes elucidates, this formulation also provides the values of the local reci-

procity map on Galois conjugates of the modified Stark unit.
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PROPOSITION 1.5. Conjecture 1:3 implies Conjecture 1:4.

Proof. Let ~A be any lift of A to Z½ ~G� that annihilates mð ~LÞ. From 1:2; we may

write ~A ¼
Pt

i¼1 ciðjqi
�NqiÞ, where the qi’s are places of k, but not in a finite set

containing S. Then we find that rP0
ðl

~A
Þ ¼

Qt
i¼1 rP0

ðeqi
Þ
ci . Now 1.3 evaluates each

rP0
ðeqi

Þ. Specifically, write ðjqi
�NqiÞy ¼

P
g2G nqi

ðgÞ � g. Then 1.3 gives rP0
ðeqi

Þ ¼Q
h2H hnqi

ðhÞ, so that rP0
ðl

~A
Þ ¼

Q
h2H hmðhÞ, where the exponent mðhÞ ¼

Pt
i¼1 cinqi

ðhÞ.

Finally, 1.4 follows by noting that the coefficients of Ay ¼
P

g2G mðgÞ � g are also

given by mðgÞ ¼
Pt

i¼1 cinqi
ðgÞ. &

This argument also shows that in Conjecture 1.3, a finite number of q’s may be

omitted, without weakening the conjecture. This may be useful because, in practice,

one often does not know the field LðlÞ explicitly, and thus one does not know wLðlÞ,

but only an upper bound on it.

2. Statement of Results

THEOREM 2.1. Let L=k be a CM extension, i.e. k is totally real, L is totally complex

and is quadratic over its maximal totally real subfield, K. Let S be any finite set of

places of k that contains all the Archimedean places, and all places ramified in L. Let

1k be one of the real places of k, and 1K a place K lying over it. Then the local Stark

conjecture for L=K=k at 1k is true.

In this theorem, we can easily identify the Stark unit. In fact, in most cases, we can

take e ¼ 1. Thus, Stark’s original conjecture is not interesting in this situation. On

the other hand, the truth of the local conjecture relies on some delicate parity infor-

mation involving partial zeta functions. This is where the Deligne�Ribet congruen-

ces are used.

For any Abelian extension L=k of number fields with Galois group G, we can con-

sider the subgroup G1 � G generated by all ‘complex conjugations’. Since G is Abe-

lian, G1 is simply an elementary Abelian 2-group of rank 4 r ¼ ½k : Q�. For a

general ‘large’ Abelian extension, where k is totally real of absolute degree r, one

expects G1 to have full rank. In some cases, G1 will collapse; a CM extension is an

extreme example, where G1 has rank 1. We next consider the situation in which

G1 is ‘partially collapsed’, i.e. has rank strictly less than r. Here we generally cannot

determine the Stark unit. Nevertheless, we have the following consequence of the

local Stark conjecture.

THEOREM 2.2. Let k be a totally real field of absolute degree r ¼ ½k : Q�5 2, L=k

an Abelian extension with Galois group G, and suppose that #G1 4 2r�1: Let S be a

finite set of places of k that contains the Archimedean places and any places ramified in

L, and suppose also that #S5 3. Let 1k be one of the real places of k that ramifies in

L, K its decomposition field in the extension L=k, and 1K a place of K lying over it.
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Finally, let e 2 K� be the hypothetical Stark unit for K=k, chosen to be positive at 1K.

If the local Stark conjecture for L=K=k holds, then e is a square in K.

The theorem above generalizes a result of Dummit and Hayes to a much wider

class of situations. The significance of the result, as they already note, is that the

Abelian part of Stark’s conjecture holds automatically. It also simplifies the task

of ‘recognizing’ real numbers as elements of number fields, and simplifies some other

computations, as we’ll see in Section 5.

To describe the relation to the Dummit�Hayes situation, it is helpful to separate

the following ingredient that is implicit in their work.

THEOREM 2.3 (Dummit�Hayes [4]). With the notation of Theorem 2:2, suppose

that, for almost all primes q of k, the coefficients of ðjq �NqÞy are all even. Then the

local conjecture implies that the Stark unit e is a square in K.

In their situation, k is a totally real field of odd absolute degree r ¼ ½k : Q� > 1, S

is the set of Archimedean places, and L is the ‘narrow’ Hilbert class field. In this case,

they find that y ¼ 0, so the hypothesis in the above theorem holds trivially. In our

more general situation, we will use the Deligne�Ribet congruences to obtain the

necessary parity information.

In Theorem 2.2 above, we make an extra hypothesis that #S5 3. This excludes

two cases, namely k ¼ Q, S ¼ f1; pg, and k a real quadratic field, with S being its

two Archimedean places. In these two cases, the statement of Theorem 2.2 generally

fails; however, in both cases, Stark’s conjecture and the local conjecture both hold,

so this is better than our hypothetical theorem.

3. The 2-Adic Congruences of Deligne�Ribet

In this section, we review the 2-adic congruences of Deligne and Ribet. Their con-

gruences are much more far-reaching than what we give here; however, this will

suffice for our purposes.

Let k be a totally real number field of absolute degree r ¼ ½k : Q�, and let f be an

ideal of k. Let f1 be the (formal) product of all the infinite places of k, and let Sðff1Þ

be the ray class group modulo ff1. For any function e: Sðff1Þ ! C, the function

Lðe; sÞ ¼
X
a

eð½a�ÞNa�s

converges for Rs > 1 and extends to a meromorphic function on all of C. If e takes

its values in Q, then the previously mentioned result of Siegel shows that Lðe; nÞ is

rational for every integer n4 0. For a prime q not dividing f, let eq denote the func-

tion on Sðff1Þ defined by eqðxÞ ¼ eð½q�xÞ. By class field theory, we may identify

Sðff1Þ with the Galois group Galðkðff1Þ=kÞ, where kðff1Þ is the ray class field

modulo ff1. Via this identification, we may consider complex conjugations of

kðff1Þ as elements of Sðff1Þ.
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THEOREM 3.1 (Deligne�Ribet [3]). Suppose that e is an odd function, i.e. eðcxÞ ¼

�eðxÞ, for every complex conjugation c, and suppose that e takes values in Z. Then for

any prime q not dividing 2f, DqðeÞ ¼ Lðe; 0Þ � NqLðeq; 0Þ is an integer divisible by 2r�1.

Moreover, it is divisible by 2r, except in the exceptional case, in which all of the fol-

lowing conditions are satisfied:

. the finite part of the conductor, f, is trivial,

. all units of k have absolute norm þ1 down to Q,

. the extension k0=k obtained by taking square roots of all totally positive units of k

is a quadratic extension,

. the prime q is inert in k0, and

. the sum dðeÞ ¼
P

x2Sðff1Þ=C eðxÞ is odd, where C � Sðff1Þ is the subgroup gen-

erated by all complex conjugations. Note that for x 2 Sðff1Þ=C, the parity of

eðxÞ is well-defined.

In the exceptional case, DqðeÞ is not divisible by 2r.

4. Proofs

First we concern ourselves with the order of vanishing of L-functions at s ¼ 0. This is

handled by the following.

PROPOSITION 4.1. For a character w of GalðK=kÞ, the order of vanishing of LSðw; sÞ
at s ¼ 0 is given by

ords¼0LSðw; sÞ ¼
#S � 1; if w ¼ w0; and
the number of places in S
that split completely in Kker w; otherwise:

8<:
Proof. See [16, Chapitre I, Proposition 3.4] for a more general formula which

gives the order of vanishing of Artin L-functions. &

We now show that Stark’s conjecture holds (relatively easily) for K=k in the situa-

tion of Theorem 2.1.

PROPOSITION 4.2. Let k be a totally real field of absolute degree r ¼ ½k : Q� > 1,

and K=k be an Abelian extension, with K also totally real. Then Stark’s conjecture ð1:1Þ

holds for K=k with respect to any appropriate set S. Moreover, the Stark unit can be

taken as e ¼ 1, unless r ¼ 2, and S contains only the two Archimedean places.

Furthermore, in this case, we may take e ¼ uhk=d as the Stark unit, where u is a totally

positive fundamental unit of k, and d ¼ ½K : k�.

Proof. Each of the r Archimedean places splits completely in K. Therefore, if w is

a nontrivial character, LSðw; sÞ vanishes to order at least r, so that L0
Sðw; sÞ ¼ 0. For

the trivial character, LSðw; sÞ vanishes to order #S � 1. Therefore, if #S5 3, then we

have L0
Sðw; sÞ ¼ 0 for all characters w, so we may take e ¼ 1 as the Stark unit.

THE LOCAL STARK CONJECTURE AT A REAL PLACE 81

https://doi.org/10.1023/A:1023688207824 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023688207824


If #S ¼ 2, this forces r ¼ ½k : Q� ¼ 2, and S must consist only of the two Archime-

dean places of k. In this case, we have L0ðw; sÞ ¼ 0 for nontrivial characters, while

L0ðw0; sÞ ¼ �hkRk=wk, from formula (1) of the introduction. Thus we may take

e ¼ uhk=d, where u is a fundamental unit of k satisfying jujP0
> 1. Note that, in this

case, K=k is everywhere unramified, so that d ¼ ½K : k� divides hk.

The Abelian condition in (1.1) is also satisfied. If e ¼ 1, this is clear. Otherwise, note

that wK ¼ 2, since K is totally real. Then e ¼ uhk=d, so that Kð
ffiffi
e

p
Þ � Kð

ffiffiffi
u

p
Þ. which is

the compositum of K and kð
ffiffiffi
u

p
Þ, both of which are Abelian extensions of k. &

PROPOSITION 4.3. Let k be totally real of absolute degree r > 1, L=k an Abelian

extension with Galois group G, and suppose that G1, the subgroup generated by com-

plex conjugations, has order 4 2r�1. Let S be any finite set of places of k, containing

all the Archimedean places, as well as any ramified in L, and let y 2 Q½G� be the

Stickelberger element, relative to the set S. If q is any prime of k, not in S, nor dividing

wL, then all coefficients of ðjq �NqÞy are even, unless

ð1Þ r ¼ 2,

ð2Þ S contains only the 2 Archimedean places of k,

ð3Þ k has a fundamental unit, u, that is totally positive,

ð4Þ hk=d is odd, where d ¼ ½LG1 : k� is the degree over k of the fixed field of G1 ðnote

that LG1 is everywhere unramified, so that d divides hkÞ; and

ð5Þ q is inert in the extension k0 ¼ kð
ffiffiffi
u

p
Þ.

When all five conditions are satisfied, then the coefficients of ðjq �NqÞy are odd.

Proof. Let G2 be the subgroup of G generated by products of pairs of complex

conjugations, s1s2. Clearly, ðG1 : G2Þ ¼ 1 or 2. If this index is 1, then there is a

relation s1s2 � � � st ¼ 1, where t is odd. In that case, if w is any character of G, then

wðsÞ ¼ 1 for some complex conjugation s. Thus Lðw; 0Þ ¼ 0 for all w, whence y ¼ 0.

Therefore, all coefficients of ðjq �NqÞy are even, as claimed. Also, conditions

(1)�(5) cannot all hold in this case.

So now suppose that ðG1 : G2Þ ¼ 2. By Fourier inversion, the Stickelberger ele-

ment is y ¼
P

g2G mðgÞ � g, where the coefficient mðgÞ ¼ ð1=#GÞ
P

w2Ĝ wðgÞLðw; 0Þ.
Let g0 2 G be an arbitrary element. The coefficient of g0 in ðjq �NqÞy is

nðg0Þ ¼ mðg0j�1
q Þ �Nqmðg0Þ ¼

1

#G

X
w2Ĝ

wðj�1
q Þ �Nq


 �
wðg0ÞLðw; 0Þ:

Since Lðw; 0Þ ¼ 0 unless w is odd, i.e. wðsÞ ¼ �1 for every complex conjugation s, we

need only consider odd w in the above sum. Therefore,

nðg0Þ ¼
1

#G

X
wodd

ðwðj�1
q Þ �NqÞwðg0ÞLðw; 0Þ:

Let f be an ideal of k that is divisible by the finite part of the conductor of L=k, as

well as every finite prime in S, but not by any place not in S. Let f1 be the formal
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product of the Archimedean places of k, and Sðff1Þ the ray class group modulo ff1.

Class field theory provides an isomorphism Sðff1Þ ! Galðkðff1Þ=kÞ, and we have a

natural projection Galðkðff1Þ=kÞ ! G. Define a function e : G ! Z by

eðxÞ ¼
1 if x 2 g�1

0 G2;
�1 if x 2 sg�1

0 G2;
0 otherwise;

8<:
where s is an arbitrary complex conjugation, so that sG2 is the nonidentity coset of

G2 in G1. We may also consider e as a function on Sðff1Þ by composing with the map

Sðff1Þ ! G. By construction, e is an odd function. Furthermore, we claim that

e ¼
1

ðG : G1Þ

X
wodd

wðg0Þw: ð2Þ

To see why, note that every odd character is trivial on G2, and thus is inflated from a

character on G=G2. Of those characters inflated from G=G2, exactly half are nontri-

vial on the nonidentity coset of G2 in G1. These are precisely the odd characters, so

there are 1
2 ðG : G2Þ ¼ ðG : G1Þ of them. It is now clear that ð2Þ holds, when applied to

any element in g�1
0 G2 or in sg�1

0 G2. So suppose that g is some element not in g�1
0 G1.

Then there is a character c, trivial on G1, but not on the element g0g. Multiplication

by c permutes the odd characters, so we haveX
wodd

wðg0ÞwðgÞ ¼
X
wodd

cwðg0ÞcwðgÞ ¼ cðg0gÞ
X
wodd

wðg0ÞwðgÞ:

Since cðg0gÞ 6¼ 1, the sum is 0 and therefore Equation ð2Þ holds on all of G. In a simi-

lar way, we have

eq ¼
1

ðG : G1Þ

X
wodd

wðj�1
q g0Þw: ð3Þ

By the Deligne�Ribet theorem, DqðeÞ ¼ Lðeq; 0Þ �NqLðe; 0Þ is divisible by 2r�1,

and is divisible by 2r if we’re not in the exceptional case. From Equations ð2Þ and

ð3Þ, we calculate

DqðeÞ ¼ Lðeq; 0Þ �NqLðe; 0Þ

¼
1

ðG : G1Þ

X
wodd

wðj�1
q g0ÞLSðw; 0Þ �

Nq

ðG : G1Þ

X
wodd

wðg0ÞLSðw; 0Þ

¼
#G1

#G

X
wodd

wðj�1
q Þ �Nq


 �
wðg0ÞLSðw; 0Þ

¼ #G1nðg0Þ:

Thus, if we’re not in the ‘exceptional case’ of the Deligne�Ribet theorem, then nðg0Þ

is divisible by 2r=#G1, and is therefore even, as claimed.

In the exceptional case, DqðeÞ is exactly divisible by 2r�1. We claim that #G1 ¼ 2 in

the exceptional case. Firstly, the finite part of the conductor of e is trivial, i.e. f ¼ 1.
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In particular, this means that S contains only Archimedean places. Secondly, the

units of k have all possible signatures that have norm þ1 down to Q. We have an

exact sequence

1�!Uþ
k �!Uk �! �1f gr �!Sðf1Þ�!Sð1Þ �! 0

where Uk is the unit group of k, Uþ
k is the subgroup of totally positive units,

Uk ! �1f gr is the ‘signature’ map, and SðmÞ is the ray class group modulo m.

The condition on the signatures says that the cokernel of the signature map has order

2. Thus the kernel of Sðf1Þ ! Sð1Þ also has order 2. However, this kernel corre-

sponds exactly to G1, under the reciprocity map of class field theory. This proves

the claim.

Therefore, nðg0Þ is even, unless r ¼ 2 and we’re in the ‘exceptional case’ of the

Deligne�Ribet theorem, in which case it is odd. In this situation, the finite part

of the conductor, f, is trivial. Therefore, S contains only the 2 Archimedean pla-

ces of k. Secondly, all units of k have norm þ1 down to Q. This means that k

has a fundamental unit, u, that is totally positive. Moreover, q is inert in the

extension k0 ¼ kð
ffiffiffi
u

p
Þ. Lastly, dðeÞ is odd. To interpret this condition, we must

consider e as a function on Sðf1Þ. From the exact sequence above, we see that

#Sðf1Þ ¼ 2hk, so that Sðf1Þ ! G is an hk=d to 1 map. Now it follows that

dðeÞ ¼ hk=d mod 2. Therefore, we have shown that nðg0Þ is even, unless conditions

(1) through (5) all hold, in which case it is odd. &

Now we are in a position to prove our main results.

Proof of Theorem 2:1. We place ourselves in the context of 2.1. So let k be

totally real of absolute degree r > 1 and L=k a CM extension with maximal totally

real subfield K. Let G ¼ GalðL=kÞ and H ¼ GalðL=KÞ ¼ f1; sg. Let S be a finite set

of places of k, which includes all r Archimedean places, and any others ramified in

L. Also let 1k be one of the real places of k, 1K a place of K lying over it, and

1L the unique place of L over 1K. Finally, let q be a place of k that is not in S,

and also does not divide wL.

Let e be the Stark unit for K=k, with respect to the set S, which is known to exist,

from 4.2, and eq the modified Stark unit. Let y be the Stickelberger element for the

extension L=k, with respect to S, and write ðjq �NqÞy ¼
P

g nðgÞg. Then the local

Stark conjecture (1.3) predicts that r1K
ðeqÞ ¼

Q
h2H hnðhÞ: Since H ¼ f1; sg, the

right-hand side simplifies to snðsÞ, which is either 1 or s, depending on the parity

of the coefficient nðsÞ. The left-hand side, r1K
ðeqÞ is either 1 or s, depending on

the sign of eq, with respect to the real embedding corresponding to 1K. Thus we

must show that sgn1K
ðeqÞ ¼ þ1 if and only if the coefficient nðsÞ is even.

First suppose that #S > 2. Then 4.2 shows that e ¼ 1, whence eq ¼ 1. Also, 4.3

shows that nðsÞ is even, so we are done in this case.

Now suppose that #S ¼ 2, which requires k to be real quadratic, and S to consist

only of the two Archimedean places. Moreover, k has a totally positive fundamental
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unit, u. This is only determined up to inversion, so we choose u by requiring it to be

greater than 1 with respect to the real embedding corresponding to 1k. Then we may

take e ¼ uhk=d, where d ¼ ½K : k�, so that eq ¼ ½ð
ffiffiffi
u

p
Þ
jq�1uð1�NqÞ=2�hk=d: Now

ð
ffiffiffi
u

p
Þ
jq�1

¼ �1, depending upon whether q splits or is inert in the extension

k0 ¼ kð
ffiffiffi
u

p
Þ. Also, sgn1K

ðuÞ ¼ þ1, so the power of u can be ignored. Therefore,

sgn1K
ðeqÞ ¼ þ1, unless q is inert in k0 and hk=d is odd. However, these are precisely

conditions ð4Þ and ð5Þ of 4.3 (conditions ð1Þ; ð2Þ and ð3Þ are already satisfied), so nðsÞ
is even precisely when sgn1K

ðeqÞ ¼ þ1. Thus we have proven the refined Stark con-

jecture for CM extensions. &

Proof of Theorem 2:2. We place ourselves in the context of 2.2. Let k be totally real

of absolute degree r5 2, and let L=k be an Abelian extension with Galois groupG. Let

S be a finite set of places of k that contains all the archimedean places, and any ramified

inL.We also assume that #S5 3. Let1k be an archimedean place of k that ramifies in

L; let s be the corresponding complex conjugation, K its fixed field, and1K one of the

places of K over 1k. Let e 2 K� be the hypothetical Stark unit for the extension K=k,

with respect to the exceptional set S. We choose e so that it is positive at 1K.

Suppose that G1, the subgroup of G generated by all complex conjugations does

not have full rank, i.e. has order less than 2r. We must show that e is a square in

K. Let Q be any place of K having degree 1 over k, and which also does not lie over

any place in S, nor divide wL. Note that the set of such Q has density 1. Let q be the

place of k under Q. We are assuming that the local Stark conjecture holds, so that

r1K
ðeqÞ ¼

Q
h2H hnðhÞ, where H ¼ GalðL=KÞ ¼ f1; sg, and ðjq �NqÞy ¼

P
g2G nðgÞg.

Since H has order 2, the product simplifies to snðsÞ. Moreover, the coefficient nðsÞ
is even, from 4.3. Thus eq is positive at 1K. However, eq ¼ ð

ffiffi
e

p
Þ
jq�1eð1�NqÞ=2: The

factor ð
ffiffi
e

p
Þ
jq�1 is �1, depending on whether Q splits or is inert in the extension

K0 ¼ Kð
ffiffi
e

p
Þ. Also, e was chosen to be positive at 1K, so the second factor does

not affect the sign. Therefore, Q splits in K0, and since the set of such Q has density

1, this means that the extension K0=K has degree 1, i.e. e is a square in K. The proof of

Theorem 2.2 is complete. &

Here we have used the same argument as Dummit and Hayes [4]. In their situa-

tion, y ¼ 0, in fact, they are in the situation that ðG1 : G2Þ ¼ 1, in the notation of

(4.3). Thus, the evenness of the coefficients of ðjq �NqÞy is trivial in their situation,

whereas, in our more general setting, we needed the 2-adic congruences of Deligne

and Ribet.

5. A Computational Example

Let k be the totally real cubic field QðaÞ where a3 � a2 � 4aþ 3 ¼ 0. It has discrimi-

nant 257 (and thus is not normal over Q), its ring of integers is Z½a�, it has class

number 1, and its unit group is generated by a� 1; a� 2 and �1. The three real

places 11;12 and 13 correspond to the real embeddings
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a 7! 2:19869124351 . . . a 7!0:71353793496 . . . a 7! � 1:91222917848 . . .

respectively.

The rational prime 907 splits completely in k as pp0p00. We only concern ourselves

here with p ¼ ð�2a2 þ aþ 16Þ. The ray class group modulo p111213 is ðZ=6ZÞ�

ðZ=2ZÞ; let L be the corresponding ray class field and G ¼ GalðL=kÞ ffi

Sðp111213Þ. The ray class group modulo p1213 is cyclic of order 6; let K be

the corresponding ray class field. Therefore, 11 ramifies in L, and K is the fixed field

of the corresponding complex conjugation. Let G1 be the subgroup of G generated by

all complex conjugations. Since #G is not divisible by 8, G1 does not have full rank; in

fact, SðpÞ has order 3, so G1 has order 4.

Let 1k be the Archimedean place 11, and let 1K be one of the places of K lying

over 1k. Let e 2 K� be the hypothetical Stark unit for K=k, chosen to be positive at

1K. We are in the situation of Theorem 2.2, so e should be a square in K.

The quadratic subfield of K=k can be determined more or less by inspection. In

fact, the ray class group Sð1213Þ has order 2, so the corresponding ray class field

is this intermediate quadratic field. Then we find that it is kð
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ: this extension is

unramified at 2 because ða2 þ aþ
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ=2 is an algebraic integer. We also note

that p splits in this extension.

The ray class group Sðp1213Þ is generated by c, the class of ða2 � 3Þ. Let

s 2 GalðK=kÞ be the corresponding generator of the Galois group, and let w be a gene-

rator of dGalðK=kÞ such that wðsÞ ¼ epi=3. Using Pari/GP functionality, we computed

to 70 decimal places the values

L0
Sðw; 0Þ ¼ �13:9915206850602194828711 . . .� i16:4340680794801847538473 . . . ;

L0
Sðw

5; 0Þ ¼ �13:9915206850602194828711 . . .þ i16:4340680794801847538473 . . . ;

where S ¼ fp;11;12;13g. The corresponding values for w0; w
2; w3 and w4 are 0,

from 4.1 above; for w3, we use the observation that p splits in kð
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ. Then, by

Fourier inversion, we compute

jes
j

j1K
¼ expð�ðz�jL0

Sðw; 0Þ þ zjL0
Sðw

5; 0ÞÞ=3Þ;

where z ¼ epi=3. This gives

jej1K
¼ 11245:0179055784041314196980109142293968697496997336795371021 . . . ;

jesj1K
¼ 1400099:4922060985114287168762610205589025535118451986628069 . . . ;

jes
2

j1K
¼ 124:5084271063312569081984544703408130256152673256111727629 . . . ;

jes
3

j1K
¼ 0:000088928271026044535287783093461948435705330453989476067 . . . ;

jes
4

j1K
¼ 0:000000714234956563213465291341915531598285235532586548534 . . . ;

jes
5

j1K
¼ 0:008031584875343349131218767103184149317367849380542708958 . . . :
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We have chosen e to be positive with respect to the embedding defined by 1K. In

fact, we claim that e is totally positive. To see this, let t 2 GalðK=kÞ be an arbitrary

element, and write e1�t ¼ ðl1�~t
Þ
2, where l ¼

ffiffi
e

p
and ~t is any lift of t to GalðL=kÞ.

One shows that l1�~t
2 K, by a calculation similar to that which shows that the modi-

fied Stark unit is in K. Thus, for any t, we have e1�t 2 ðK�Þ
2, which shows that e is

totally positive.

Let sm be the mth symmetric function of the values above. Using Pari/GP, we were

able to identify the numeric values as elements of k:

s1 ¼ s5 ¼ 231185a2 þ 277121a� 315439;

s2 ¼ s4 ¼ 2607530650a2 þ 3125624158a� 3557840132;

s3 ¼ 321096877176a2 þ 384896014993a� 438120010876;

s6 ¼ 1:

Thus e is a root of the symmetric sextic polynomial

fðXÞ ¼ X6 � ð231185a2 þ 277121a� 315439ÞX 5þ

þ ð2607530650a2 þ 3125624158a� 3557840132ÞX 4�

� ð321096877176a2 þ 384896014993a� 438120010876ÞX 3þ

þ ð2607530650a2 þ 3125624158a� 3557840132ÞX 2�

� ð231185a2 þ 277121a� 315439ÞX þ 1:

Over k, fðXÞ is irreducible, but f ðX 2Þ factors as gðXÞgð�XÞ, where

gðXÞ ¼ X6 � ð213a2 þ 256a� 292ÞX 5þ

þ ð22930a2 þ 27484a� 31286ÞX 4�

� ð231611a2 þ 277633a� 316021ÞX 3þ

þ ð22930a2 þ 27484a� 31286ÞX 2�

� ð213a2 þ 256a� 292ÞX þ 1:

(If we had worked with
ffiffi
e

p
instead, 40 decimal places of accuracy would be sufficient

to identify the symmetric functions of its Galois conjugates, and we would have

found the above polynomial directly.)

Now Z ¼
ffiffi
e

p
þ 1=

ffiffi
e

p
is a root of the cubic polynomial

hðXÞ ¼ X 3 � ð213a2 þ 256a� 292ÞX 2 þ ð22930a2 þ 27484a� 31289ÞX�

� ð231185a2 þ 277121a� 315437Þ:

A root of this equation should define the ray class field modulo p over k. It behooves

us to find a simpler defining polynomial. Take the product of hðXÞ with its Q-con-

jugates to get a degree 9 polynomial for Z over Q :
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X 9 � 1297X 8 þ 135361X 7 � 913746X 6 � 4958790X 5 � 2179354X 4þ

þ 14965024X 3 þ 22396167X 2 þ 9433638X þ 386839:

In Pari/GP, we compute a simpler defining polynomial for the field QðZÞ, which is

X 9 � 3X 8 � 8X 7 þ 32X 6 � 14X 5 � 32X 4 þ 24X 3 þ 4X 2 � 6X þ 1:

It is worth emphasizing that the corresponding calculation for the minimal poly-

nomial of eþ 1=e is dramatically more complex, because the height of the polyno-

mial is much larger. Over k, the 9th degree polynomial above factors as a product

of an irreducible cubic and sextic, the cubic being

X3 � ða2 � 2ÞX2 þ ða2 � 5ÞX þ 1:

Let b be a root of this polynomial. The discriminant of the polynomial is

ð�2a2 þ aþ 16Þ2, which shows that the extension kðbÞ=k is Galois, cyclic of order

3. Moreover, it is unramified outside of p: it is unramified at other finite places

because they don’t divide the discriminant, and unramified at Archimedean places

because it is a normal extension of odd degree. This proves that kðbÞ is the ray class

field modulo p, and the composite field kðb;
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ is K, the ray class field modulo

p1213. Finally, the Stark unit is

e ¼
a2b

2
þ a1bþ a0 þ b2b

2
þ b1bþ b0

�  ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p

2

 !2

where the coefficients are

a2 ¼ 31a2 þ 37a� 42; a1 ¼ �15a2 � 18aþ 20; a0 ¼ �a2 � a;

b2 ¼ 22a2 þ 26a� 31; b1 ¼ 11a2 þ 12a� 17; b0 ¼ �18a2 � 20aþ 27:

The action of the Galois group is given by

sð
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
and sðbÞ ¼ b2

� ða2 � 2Þbþ ða2 � 4Þ:

The numerical values of e and its conjugates, under this action, all agree with the

values computed above, to within 10�66.

To complete the entire picture of fields involved, it remains to identify the field L.

There are three quadratic subfields of L=k; one is kð
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
Þ, which is contained in K.

For either of the other two, its composite with K is L. They are unramified outside of

S, so it is straightforward to find them. We find that kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 � a� 16

p
Þ is unramified

outside of S: it is unramified at 2, since ða2 þ aþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 � a� 16

p
Þ=2 is an alge-

braic integer. Therefore, this gives one of the quadratic fields, and the other is

kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 � 7aþ 10

p
Þ, since ða� 1Þð2a2 � a� 16Þ ¼ �a2 � 7aþ 10. Thus we have the

following diagram of fields.
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