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ABSTRACT

The Jet Propulsion Laboratory of the California Institute of
Technology has been developing a radio-astrometric catalogue for use
in the application of radio interferometry to interplanetary
navigation and geodesy. The catalogue consists of approximately 100
compact extragalactic radio sources whose relative positions have
formal uncertainties of the order of 0"0l. The sources cover
nearly all of the celestial sphere above -40° declination. By using
the optical counterparts of many of these radio sources, we have tied
this radio reference frame to the FK4 optical system with a global
accuracy of approximately 0"l. This paper describes the status of
this work.

INTRODUCTION

Development of a radio-astrometric catalog is an essential
element in the application of radio interferometry to both spacecraft
navigation and geodesy. For this reason, the Jet Propulsion
Laboratory of the California Institute of Technology has been
developing a catalog of precise positions for compact extragalactic
radio sources, Our goal has been a catalog of approximately 100
sources, uniformly distributed over the celestial sphere., In order to
support the navigation of the Voyager mission, an accuracy in these
positions of approximately 0"01 is required in 1980. Further, it is
required that this catalog have negligible ( 0"1) mean offset in right
ascension relative to the FK4 system, since all interplanetary
navigation to date has been based on that system.

*¥This paper presents the results of one phase of research carried out
at the Jet Propulsion Laboratory, California Institute of Technology,
under Contract No. NAS 7-100, sponsored by the National Aeronautics
and Space Administration.
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INSTRUMENTATION AND DATA REDUCTION

The observations on which the results of this paper are based
were obtained over the period from 1971 to March 1980. Throughout
the nine years of this development, the interferometry
instrumentation has been steadily improved, so that the nine most
recent measurements employ dual frequency observations at S~ and X-
band (13 and 3.6 cm wavelengths, respectively), hydrogen maser
frequency standards, and a 4 Mbs data acquisition system. The data
were obtained during observing sessions of 8 to 24 hours in duration,
utilizing antennas of the Deep Space Network. These DSN facilities
provided an 8400 km baseline from Califonia to Spain, and a 10,600 km
baseline from Califonia to Australia. A total of 44 such observing
sessions are included in the results presented here, Altogether the
observations include 3941 independent measurements, of which 1844 are
measurements of delay and 2097 are of delay rate.

For convenience in processing this large amount of data, we have
separated the data into two time sequences, with each sequence
containing about half the data. Sequence #1 contains all data
obtained prior to January 1, 1979, while sequence #2 is all data
collected after that date. In the last step of this processing, we
fit all observations of a given sequence with an analytic model, using
a conventional least squares technique to adjust selected parameters
of that model. In sequence #1 we solved for the values of 431
parameters, including 136 parameters for source positions. In
sequence #2, 148 of the 273 solve-for parameters pertained to source
positions, The list of sources observed in sequence #2 was not
identical to that observed in sequence #1, as we were attempting to
expand the number of sources in our catalog. However, in sequence #2
we have reobserved 33 of the sources from sequence #1 so as to provide
overlap between the two parts of the catalog. In each sequence, the
sources observed were fairly well distributed over the entire
celestial sphere.

The delay model used in processing consisted of geometriec, clock,
ionospheric and tropospheric components. In the geometric component,
the adjusted parameters included baseline, source position, UT1 and
polar motion. Precession, nutation, solid earth tides and
gravitational bending were all modeled but no associated parameters
were adjusted. One of the major deficiencies in our model was the use
of the standard nutation series, which has known errors as large as
approximately 0"02 in magnitude. We also had to "patch in" an
improved precession rate in order to fit the data. Both of these
deficiencies will be corrected in the near future as we incorporate
better Earth models, With regard to the clock model, we typically had
to assign only one epoch offset and one rate offset to each baseline
for each observing session. On occasion, however, we had to introduce
discontinuities in epoch and rate within a session. In the case of the
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ionosphere, a simple diurnal model was used whenever we were observing
at only one radio frequency. For those observations involving dual
frequencies, the effect of the ionosphere, as well as all other
charged particle contributions to the measurements, were removed by
exploiting the dispersive character of a plasma at these frequencies.,
All of the data in sequence #2 were obtained on the basis of this
dual frequency technique. For the troposphere, a monthly-mean model
was used as a priori, but the zenith troposphere delay was adjusted
for each station under the constraint of that a priori.

One of our goals is to provide a catalog with the smallest
possible rotation in right ascension relative to the FK4 system. Thus,
we employed the following two-step process in the final reduction of
our data:

(1) A preliminary multiparameter adjustment was performed. In this
adjustment the right ascensions of those sources that had
suitably measured optical counterparts were statistically
constrained to the FK4 system on the basis of the apriori
errors in the right ascensions of these counterparts, This
procedure is mathematically equivalent to adding to our
observations a set of measurements of right ascension specific
to the subset of sources with optical counterparts. This
parameter adjustment step resulted in an uncertainty in right
ascension alignment given approximately by:

N 1 -%
%) —_—
Oam(z 2)
i=1 9

1

where O is the uncertainty in right ascension of the ith
optical counterpart, and where the summation is over the N
optical counterparts.

(2) A final multiparameter adjustment was then made. In this step
all constraints on the source positions were removed except for
the constraint on the right ascension of a "mean reference"
source. The reference source was tightly (0"0000002)
constrained to the right ascension obtained for that
particular source in the previous estimation step. The
selection of this source was relatively arbitrary, although
it appears that a source at about 30° declination was best for
the particular baselines involved in these experiments.
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This procedure produces a global minimization of the right
ascension offset between the FK4 system and the radio reference
system. Currently, we believe the accuracy of this alignment is
approximately O0"1, Another advantage of this procedure is that the
intrinsic precision (i.e. relative position error) is directly
printed out in the final fit as the right ascension error of each
source, At this point in the analysis of the data, we have executed
this procedure only for sequence #l1 of the data, and have chosen NRAO
140 as the "mean reference" source. In the subsequent processing of
the data in sequence #2, we adopted this reference position without
resorting to another preliminary fit. However, for the final analysis
of this data, the procedure outlined above eventually will be
performed for the entire data set as a single unit.

RESULTS

The position catalog we have obtained has been designated JPL
1980-1 and is listed in Table I. In presenting this catalog, we have
excluded all sources that were observed fewer than 3 times. One
source was observed 67 times, though more typically each source was
observed 10-40 times. The source positions are given in 1950.0 solar-
system-barycentric coordinates while the position errors are the
formal uncertainties obtained by adjusting chi-square for the fit
residuals to 1.0. For convenience, we have listed the "elliptical
aberration"™ terms that must be added to our results to obtain the
coordinates conventionally used in optical catalogues. In all, 109
sources are listed, with most of the positions having formal
uncertainties less than 0"01. One check on the quality of the data is
to compare common source positions between the two sequences of data.
When the 33 common sources were compared, almost all of the
differences were less than about 0"03, with the larger differences
resulting primarily from inadequate observations in one of the two
sequences. As a test of the formal uncertainties, these position
differences were compared with the errors obtained from the formal
uncertainties. We found that an additional error of about 0"0l had to
be root-sum-squared with the formal uncertainties in order to make the
total errors statistically consistent with the position differences.

SUMMARY AND PLANS FOR THE FUTURE

Radio~astrometric positions have been obtained for 109 extra-
galatic radio sources. The formal uncertainties in these positions
fall primarily in the range 0.003~0.02 while the accuracy is presently
estimated to be approximately 0"01 - 0%02. This work is part of an
ongoing effort to develop an astrometric catalog of extragalactic
radio sources distributed over the entire celestial sphere with
positional accuracies of 0"0O1 or better. Improvements in the hardware
and modeling scheduled for 1981 should allow us to improve the
accuracy of the current catalog to the level of 0"003-0"005 within
the next year or two.
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