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Abstract. A new solution of the force free field equation is presented
in cylindrical coordinates.

1. Introduction

The concept of magnetic configurations producing no effect on ionised matter
was introduced in astrophysics by Liist and Schliiter (1954) in order to interpret
an eruption on the Sun. The explicit solution of the governing equation

'J I\B = aB (1)

was given by Chandrasekhar (1956), Chandrasekhar and Kendall (1957) in terms
of the Hansen (1935) solution of the vectorial Helmholtz equation:

(2)

The rotation of (1) leads to (2) for divergence free fields. It follows that all
solutions of the force free field equation should be members of the family of
solutions to the vectorial Helmholtz equation, although the reverse is not true.
Following previous work where the integral of energy is presented for Arnold's
solution (Arnold 1965) of the force free equation (Evangelidis, Vaughan, & Botha
2000), a cylindrical formulation of Hansen's solution is given here.

2. The solution for cylindrical magnetic tubes

The vectorial Helmholtz equation (2) has vector solutions (Hansen 1935) in the
form

L = \J'l/J, M = \J 1\ ('l/Ja), N = \J 1\ 'J 1\ ('l/Ja)

subject to the scalar function 'l/J satisfying the scalar equation

\J2'l/J + k2'l/J = o.

(3)

(4)

It is noticed that the gradient solution L in (3) is not a solution of equation (1)
although it is a solution of B 1\ \J 1\ B = o. Although the constant vector a can
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Cylindrical Force Free Fields

Figure 1. Contour plots of the magnetic field and its components at
position z = 3 along the cylindrical axis. The minimum value of -3 is
coded in black, while the maximum is +3 and is coded in white. Zero
is coded in grey.

Figure 2. Tracing a magnetic field line from (ro, 9o, zo) = (8, 1.5, 7)
at t = 0 until t fin = 267 when it approaches r = O. The field line is
presented in Cartesian space to correspond with Figure 1.
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be any arbitrary direction in Cartesian coordinates, we have found that this
freedom of choice in cylindrical coordinates is reduced to a single direction: that
of ez . We have also found that this method of constructing solutions fails com-
pletely in toroidal coordinates. For divergence free magnetic fields, the solution
is given by the combination

B = \} /\ ('l/;a) + k-1
\}/\ \}/\("pa). (5)

A similar description of the magnetic field was used to interpret simulations of
solar prominence eruptions in spheromacs (Bellan & Hansen 1998).

Consider the disturbance exp z(koz + mlJ) in cylindrical coordinates. The
radial dependence of equation (4) then gives the Bessel equation with solutions
the Bessel functions Jm(Kr) and Ym(Kr), where K 2 = k2 - kfi. Results are
presented for the interior solution only, with Cm the constants of integration.
Analogous expressions can be obtained for the exterior solution by replacing the
symbols Jm with the symbols Ym .

s, = -Kto c; [; (1 + ~) i; - ~ Jm+1] sin(koz-mO)

n, -Ktoc; [:r (1 + ~) i: - Jm+1] cos(koz - mO) (6)

K2 00

s, = T L c;»; cos(koz - mO)
m=O

Solutions (6) of the force free magnetic fields in cylindrical coordinates, are
drawn in Figure 1 for the axial value z = 3 and Cm = 1 for m = 1,2,3, ... 10.
A contour plot of each component of the field is shown, as well as the total

field size B = JB~ + Bi + B;. The magnetic field lines can be traced by using
solutions (6) in

dt = dr = rdO = dz . (7)
s; Bo s,

An initial value in the cylinder is chosen and the field line is followed numerically
using a fourth order Runge-Kutta method to integrate (7). Some typical results
are shown in Figure 2. The direction as well as the speed at which the field line
is traced vary during the simulation.
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