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VOLUME COMPARISON OF BISHOP-GROMOV TYPE

SUNGYUN LEE

Bishop-Gromov type comparison theorems for the volume of a tube about a sub-
manifold of a complete Riemannian manifold whose Ricci curvature is bounded
from below are proved. The Kahler analogue is also proved.

1. INTRODUCTION

In Riemannian geometry, it is a fundamental question to ask how the geometric
invariants of Riemannian manifolds are influenced by curvature restrictions. The volume
of a geodesic ball is one of the basic invariants, for which the Bishop-Gromov comparison
theorem is well-known (see [1, 6]).

In this article we prove Bishop-Gromov type comparison theorems for the volume of
a tube about a submanifold of a complete Riemannian manifold whose Ricci curvature
is bounded from below. The Kéhler analogue is also proved.

To be more specific let M be a complete Riemannian manifold of dimension n
and let P C M be a topologically embedded connected submanifold of dimension g
with compact closure. For r > 0 let VM (r) denote the n-dimensional volume of a
tube of radius » about P and let A¥(r) denote the (n — 1)-dimensional volume of its
boundary. Let A be a constant which may be positive, negative, or zero and let K™(})
denote the n-dimensional space of constant curvature A.

THEOREM 1. Let P C M and suppose that the Ricci curvature pM of M satis-
fies pM > (n—1)A = pK"(M) | Let P denote a g-dimensional totally geodesic subman-
ifold of K™()) such that volume (P) = volume (P).

() Hq=dimP =0, then VM(t) < VX V(1) and VM(t)/VE V(1) isa
nonincreasing function of t for 0 < t £ e.(m). Here P is a point m € M
and e.(m) is the minimal distance to the cut locus of m.

(i) 1< qg< n-—2, then for any ¢ > 0 there is small ¢, > 0 depend-
ing on ¢ and P C M such that VM(t,t) < (1 +e)C(to)V-”¥"(A)(t,to)
for ty < t < e.(P), where VM(t, 1) = V},"(t) - V}y(to) and C(tp) =
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Agnu)(to)/A_"K_‘.n(A)(to). Moreover V},”(t,to)/Vg“(A)(t,to) is a nonin-
creasing function of t for ty < t < e.(P). Here e.(P) is the minimal
focal distance of P in M.

(i) I ¢ = n—1 and P is minimal, then VM(t) < Vi (1) and

V},”(t)/V;"(A)(t) is a nonincreasing function of t for 0 < t < e (P).

REMARK. Observe that the right-hand sides of inequalities in (i), (ii), (iii) do not
depend on the embedding of P into M. (i) is just the Bishop-Gromov comparison
theorem for geodesic balls.- If dim P > 1, then for sufficiently small » > 0, V(r)
depends strongly on P as the power series expansion in [5] shows. This fact forces
us to consider VM (t,19) in (ii). Even though ¢, > 0 depends on ¢ and P C M
in (ii), sufficiently small ¢, always satisfies the inequality. Also observe that t —
vHM(t)/ Vgﬂ (A)(t) is nonincreasing for 0 < t < e.(P) in (ii). When P is a hypersurface
of M, an additional assumption on P (that is, P is minimal) is needed to get the
global volume comparison in (iii), since the principal curvatures of P strongly affects
M (r) for relatively large r.

Next, to state the Kahler analogue of Theorem 1, let M be a complete Kahler
manifold of real dimension 2n. Let KM (KM ) denote the holomorphic (antlholomor-
phic) sectional curvature of M. The antiholomorphic Ricci curvature pM of M is
the sum of antiholomorphic sectional curvatures (see for example (2]). Let P C M be
a topologically embedded connected complex submanifold of real dimension 2q with
compact closure.

THEOREM 2. Let P C M and suppose that KM > 4X and pM > (2n - 2)).
Let P denote a totally geodesic complex submanifold of real dimension 2g of KP(X)
such that voiume (P) = volume(P), where KP()) is a Kahler manifold of complex

dimension n with constant holomorphic sectional curvature 4).

(i) Ifq =0 (thatis, P is a point m € M), then VM(t) < (A)(t)
VM) /v "(x)(t) is & nonincreasing function of t for 0 < t < e.(m).

(ii)) If1 < q < n-—2, then for any € > 0 there is small t > 0 depend-
ing on € and P C M such that VM(t,t0) < (1 +€)C(to)Vier M1, t0)
for ty < t < ec(P), where C(to) = Amr(to)/AmF *(to). Moreover
V},"(t,to)/Vgx(n(t,to) is a nom'ncreasmg function of t for t9 < t <
e(P).

(i) If g =n—1 (thatis, P is a complex hypersurface of M ), then V;¥(t)

Ve O (e) and VR0V
t < e.(P).

<
(t) is a nonincreasing function of t for 0 <
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REMARK. (i) is the result essentially due to Nayatani [7] (see also [4, page 194]). In
() V() Vi

We shall prove these theorems following the ideas in [4]. In Section 2 we review

some preliminary results. The proofs of theorems are given in Section 3.

(t) is also a nonincreasing function of ¢ for 0 < t < e.(P).

2. PRELIMINARIES (3, 4]

Let M be a complete Riemannian manifold of dimension n and let P C M bea
topologically embedded submanifold of dimension ¢ which is relatively compact.

Let t — +(t) be a unit speed geodesic in M normal to P with y(0) = p € P.
Assume that ¢ > 0 is less than or equal to the distance between P and its nearest focal
point. Denote by S(t) the second fundamental form at the point v(t) of the tubular
hypersurface at a distance ¢ from P. Also let R(t): M ) — M, be the symmetric
linear transformation defined by (R(t)z,y) = R,I:,'(,)z,y,(,)y, where ( , ) and RM are
the metric and the Riemannian curvature tensor field of M respectively, M, denotes
the tangent space to M at 4(t), and z, y € M.(,). Then S(t) satisfies the differential

equation
(1) 5'(t) = S(t)* + R(z).

Let w be the Riemannian volume form of M, and let (z,,...,z,) be a system of

Fermi coordinates such that
7] 8
—— Aer e A — t .
w(azlz\ Aazn)('y( ) >0

For u € P;- with |lu|| =1, put

0u(t) = (5 Ao+ A 5 ) (O

Then 6,(0) =1 and

(2) z&g; =— (" —i- L trS(t)).

Let VM (r) = n-dimensional volume of {m € M | d(m,P) < r} and A¥(r) = (n - 1)-
dimensional volume of {m € M | d(m,P) =r}. Then

M _ n—g-1 s
3) AM(3) = /P /sn_q_l(l)t 8.(¢) dudP
and
(4) Vi) = [ a¥ee,
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where §™777%(1) is the unit sphere in P;-. If P c K™() is a totally geodesic sub-
manifold,

K™y 27" 9/2 [sinty/X n—g—1 .
(5) AF (t) = 1‘(!.'2:!) ( VA ) (COSt\/X) VOlume(f)’

and if P C KP(X) is a totally geodesic complex submanifold,

In (5) and (6) we interpret (sin t\/X) /VX as (sinhtv/=X)/v/=X (respectively t) when
A < 0 (respectively A =0).

3. PROOF OF THEOREMS

We will use many results of [4]. The proof of Theorem 2 is similar to but a little
more complicated than that of Theorem 1.

ProoF OF THEOREM 1: (i) This is just the Bishop-Gromov volume comparison
theorem for geodesic balls (see (1, 4, 6]). Observe that the proof of case (ii) gives us
(i) easily.

(ii) Let 1< ¢g=dimP <n—2,and 0 <t<e(P).

n-1
Then t — 0u(t)/(smt\/—/t\/—/‘:) t? is nonincreasing (see [4, p. 181]).
For any ¢ > 0, there is small ¢, > 0 depending on ¢ and P C M such that

n—g—1
0.(t0) < (1+e)(sinto\/X/to\/X) ? (costo\/X)q since tlimoo,‘(to) = 1.
0—.

Then we have for 0 <ty < s <t

(7) s"TIT04(s) < (1+e)t3_q—l<silot:/—\«\/x) - (COsto\/X)q/(Sin\t))X\/——'\) _

and

(8) =914, (¢) (—Si“ \;X‘/X) < s™9716,(s) (Si‘i;x‘/x)

Integrating (7) over the unit sphere $”~971(1) in P;" and using (3), (5), we obtain

FLY)

9) () < (1402 ) ey

AL V(1)
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Then integrating (9) with respect to s from to to ¢ and using (4) we get
(10) VA (t,te) < (1+€)C(t0) Ve Pt ta),

where C(to) = A% (to)/AE" M(to). Similarly from (8) we obtain
(11) VR (t,to) AR V(t) > VX (e, t0) AY (8).

But (11) implies that

i V;],w(t,to) — 1 X
dt | VE" M (g,10) | (VE"V(t,10))2

(ViE" D (1, 80) 44 (1) - VH(1,10) 45 P(8)) <.

(i1) Let P be a minimal hypersurface of M and 0 <t < e.(P). Then Lemma 8.28
in [4, page 181] shows that

(12) 8. (t) < (cost\/i)"'l

and

(13) 0,,(t)(coss\/i)n—1 < 8u(s) (cos t\/X)"_l.
Integrating (12) and (13) we get

(14) V() < Ve D)

(:;) V(1) AS P(t) > A¥ (VD).

But (15) implies that d(V},"(t)/VFK“(A)(t)) /dt < 0. This completes the proof of The-
orem 1. 0

PROOF OF THEOREM 2: Let {ej,ej+,...,€n,es+} be an orthonormal basis of the
tangent space M, such that e;s = Je; and e;,€;0,...,€q,64+ are tangent to P. Let +(t)
be a unit speed geodesic with v(0) = p and ¥'(0) = v = e, . Extend ej,ej+,...,en,ens
to orthonormal vector fields Ej(t), E1+(t),..., En(t), En+(t) along v so that E,(t) =
7'(t) and the other E;(t) diagonalise S(t). Consider the functions

(16) fit) = (S()E:(2), Bil2)), i # .
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Taking the derivative of both sides of (16) and using (1) and the Cauchy-Schwarz
inequality, we get

(7 fi(t) = (S'Es, Ei) = (S*Ei+ RE, Ei) = ||SE:|* + (RE:, Ey)
> (SEi, E))" + (RE, E) = f(t) + (R()Ei(t), Ei(t))-
Let
(n—1)*
(18) =55 2 50

Since pM = (2n — 2)f(t) > (2n — 2)X and KM > 4), we have

(19) HORFRHOES
and
(20) Fre (1) 2 FR () + 4.

The differential inequalities (19) and (20) can be solved explicitly (see for example [4,
pp-174-175)).

(i) This is the result essentially due to Nayatani [7]. Observe that the proof of case
(ii) gives us (i) easily.

(ii) Let 1< ¢=dimP/2<n—2 and 0 <t < e (P). Since f(0) = fa+(0) = —o0
we have from (19) and (20)

f(t) > —VAcottvVA and  fne(t) > —2VA cot 2tVA.
Summing the functions f;(t), we find that
(21) tr S(t) > —(2n — 2)VA cot tvVA — 2vA cot 2tVA.
From (2) and (21) we obtain

d 2n—2¢-1

d
o) = -0 e 5(1) < 2 inald),

where

. 2n-2¢-1 2
at) = (SI:\;\X/X) (sint\/X) ! cos V.

Then d(In (64(t)/a(t)))/dt < 0, and 8,(t)/a(t) is a nonincreasing function of t. For
any € > 0, there is {¢ > 0 depending on € and P C M such that 8,(t) <
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d+e) (Sin (to\/x)/(to A))zn—zq-l (costo\/X)z‘”’l since J,ii‘ioo“(“’) = 1. Then

we havefor 0 <ty < s < ¢

2n—2g-1 AK"(A)(S) 2n-2¢-1 [ sintavA e 2q+1

(22) 8 é (8) < (1 + E)T"(T)(—)t ('—t(;\/_—A) (COS to\/x)
and 4
(23) t”'"‘l-lo,‘(t)(sm‘;_\/—) (cosa A)

< 82n72071g, (5) (———Sh:}x\/x) (cos t\/X) .
Integrating (22) using (3) we obtain

B (to)

(24) AHO <0+ T F0a).

Integrating (24) with respect to s from ¢y to ¢t we get

(25) ~ VH(t,10) < (1+€)Clta)Vmr (1, 0),
where C(t) = A— (A)(t )/AK;“(A)(to). Similarly, from (23) we obtain
(26) VM(2,10) AN (1) > AM() VIRV (1, 1,).

But (26) implies that d(V,’,"(t to)/Vir "(A)(t to )) /dt <
(i) Let P be a complex hypersurface of M and 0 < t < e.(P). Then f;(0),

1 <1i < (n—1)*, are finite and f(0) = 0 since the mean curvature vector fields of a
Kahler submanifold of M vanishes. Hence we obtain from (19) and (20)

f(t) 2 VAcottVA and fae(t) 2 -2V cot 2tV/A.
Summing the functions f;(t), we find that
(27 tr S(t) 2 2(n — 2)VA cot tvVX — 2V A cot 2tV/A.

From (2) and (27) it follows that

d 1
Slnbu(t) = -2 —tr S(t) < lnﬂ(i),
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where A(t) = (sint\/i / tﬁ) (cost\/X)zn_l. Then dln (6.(t)/B(t))/dt < 0, and

6.(t)/B(t) is a nonincreasing function of ¢, whose value for t =0 is 1, whence

(28) 6() < A(t)
and
(29) 10, (8) A (s) < 20 (s) A V(1)

for 0 < s < ¢, follows. Integrating (28) using (3), (4), we get

(30) V() < Ve Oy).

Similarly integrating (29), we obtain

K2 (%) K*(A

(31) 7OV OB PO alglOF

But (31) implies that V2(t)/ sz( )(t) is a nonincreasing function of ¢{. This completes

the proof of Theorem 2. 0
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