
2 
The effect of Lorentz and discrete 

transformations on helicity 
states, fields and wave functions 

In discussing experiments it is often necessary to refer a given physical 
situation to different reference frames, e.g. to the laboratory or centre­
of-mass system. Thus we need to understand how helicity states are 
affected by Lorentz transformations. The approach is quite similar to 
the discussion of rotations in Section 1.1 and we seek the analogue 
of eqn (1.1.17). However, because sequences of Lorentz transformations 
are more complicated than sequences of rotations the result will look a 
little less simple. We shall compare and contrast this situation with the 
transformation properties of fields and wave functions. 

2.1 Particles with non-zero mass 

Let us suppose that in a given reference system S an observer 0 sees a 
particle A in motion with momentum p and helicity A., i.e. the observer 
reports a state of motion specified by lp;A.). 

Let S1 be a reference frame obtained by carrying out a physical Lorentz 
transformation 1 on S. We wish to know how observer 0 1 describes the 
motion of A. 

By analogy with the rotational case (see eqn (1.1.21)) 0 1 will describe 
the state as 

(2.1.1) 

when U(1) is the operator effecting a Lorentz transformation 1. 
Let us denote by p' the momentum vector that 0 1 attributes to A, i.e. 

p' = 1-1p. Its components p'Jl are clearly the components of p as seen by 
0 1, i.e. (see eqns (1.2.14), (1.2.15)) 

(2.1.2) 

It is obvious that we must expect to find that lp;A.)sz = lp';A.') with p' 
given by (2.1.2). The only question is what values of A.' should appear. To 

18 
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2.1 Particles with non-zero mass 19 

answer this one writes 

(2.1.3) 

using the definition of helicity states ( 1.2.25). One then invokes the brilliant 
stratagem of multiplying eqn (2.1.3) by unity in the form 

U[h(p')] u-1 [h(p')] 

where h(p') is the helicity transformation that would be used to define a 
state IP'; A), i.e. h(p') is such that 

lp';A) = U[h(p')]lp;A). (2.1.4) 

One can now write (2.1.3) in the form 

(2.1.5) 

where f!lt is short for the product u-1[h(p')]U(l-1)U[h(p)]. Since the op­
erators U represent the various physical operations we can simplify and 
write 

(2.1.6) 

The crucial observation is that the sequence of physical operations in U is 
just a rotation no matter what l is. The simplest way to see this is to study 
the effect of the sequence of operations h-1(p')Z-1h(p) on the 4-vector 
p = (m, 0, 0, 0). We have 

(1) h(p) : p--+ p 
(2) z-1 : P --+ p' 
(3) h(p') is such that it takes p--+ p', thus h-1(p') : p'--+ p. 
Hence the sequence (1), (2), (3) takes p --+ p. From the form of p it is 
clear that only a rotation could have this property. Hence f!lt represents a 
rotation no matter what l is. Let us label this physical rotation as r(l, p), 
I.e. 

(2.1.7) 

We shall refer to this as the Wick helicity rotation for the transformation 
l of axes that takes p to p' = z-1p. (It is not the same as the Wigner 
rotation, as will be explained later.) 

Once it is recognized that f!lt corresponds to a rotation the completion 
of the evaluation of lp; A)sl becomes simple. From (1.1.18) and (1.1.19) we 
know what rotations do to particles at rest. Thus 

o ) (s) o ') f!ltlp;A = ~,t',t[r(l,p)]lp;A (2.1.8) 
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20 2 The effect of Lorentz transformations 

and since the f!2 )/;. are just numbers, substituting back into (2.1.5) and 
(2.1.1) and then using (2.1.4) gives 

lp;A)sl = f»~~[r(l,p)]U[h(p')]lp;A') = f»~~[r(l,p)]lp';A') (2.1.9) 

with p' = z-1p. 
This is the desired relationship between the description used in frames 

S1 and S for the motion of the particle. In the above form it is valid for 
an arbitrary Lorentz transformation from S to S1• The reason why IP; ).) 81 

and lp'; ).') are related by a rotation is that the helicity rest frame of the 
particle reached from Sis not the same as the one reached from S1. Indeed 
if we call these helicity rest frames SA and S~ respectively, then one can 
show that 

SA = r(l, p)S~ (2.1.10) 

It should be clear that for canonical states we have a result analogous 
to (2.1.9). The only difference is that r(l,p) is replaced by 

rwig(l, p) = z-1(v')!-1!(v) (2.1.11) 

where l(v) and l(v') are pure boosts corresponding to the momenta p and 
p' = z-1p. The rotation in (2.1.11) is known as the Wigner spin rotation. If 
S0 and s0' are the canonical rest frames reached from Sand S1 respectively, 
then analogously to (2.1.10) one finds 

0 0' S = rwig(l, p)S . (2.1.12) 

To gain some physical intuition for the rotations involved we shall look 
at a few cases of practical interest. 

2.2 Examples of Wick and Wigner rotations 

We here derive explicit expressions for these rotations for several cases of 
practical interest and we end with a discussion of the Thomas precession. 

2.2.1 Pure rotation of axes 

In frameS let p lie in the XZ -plane, p = (p, e, 0). Apply a rotation through 
angle f3 about OY to the frameS such that l = ry(/3). Then in sr we have 
l-1p = (p, e - /3, 0). One finds trivially r(l, p) = 1, i.e. there is no Wick 
helicity rotation. Thus, in this case, 

lp;A)sR = lp';).) 

For a general rotation r(rx,f3,y) 
(p, e', q/), one finds 

lp;A)sr = eiA(Ip';).) 

with I -1 p = ry p. (2.2.1) 

of S, with p = (p, e, cp) and r-1p = 

with (2.2.2) 
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2.2 Examples of Wick and Wigner rotations 21 

where 

r - cos fJ - cos 8 cos 8' 
COS<,- . 8 . 8, 

sm sm 
(2.2.3) 

(In the event that cos ( appears indeterminate it is simpler to use eqn 
(2.1.7) to determine the rotation involved.) 

Both the above results are in accord with the fact that A. is invariant 
under rotations. 

For the canonical spin states for l = ry({J), p in the XZ-plane, one 
finds rwig(l,p) = ry(-fJ). Here the spin transforms just as it would non­
relativistically (see eqn (1.1.17)). 

2.2.2 Pure Lorentz boost of axes 

To begin with, take the boost velocity p to lie along OZ so that l = lz(fJ). 
In the original and boosted frames we have: 

S: p = (p,8,cp),E speed v 

S1: p' = l-1p = (p',8',cp),E' speed v' 

and from eqn (1.2.22) 

h(p) = r(cp,8,0)lz(v) 

h(p') = r( cp, 8', O)lz( v'). 

The Wick helicity rotation is now 

(2.2.4) 

It is easy to see that this is just a rotation about the Y -axis: simply 
examine the effect of the sequence of operations in (2.2.4) on the unit 
vector in the Y -direction e(y) = (0, 0, 1, 0). It remains unchanged. Thus 

r [lz(fJ), p] = ry(8wick) 

so that 

(2.2.5) 

and the angle 8wick can be found most easily by checking the effect of 
rwick upon the unit vector e(x) = (0, 1, 0, 0). Carrying out the sequence of 
operations one ends up with 

e(x) = { 0, cos 8 cos 8' + y sin 8 sin 8', 0, -;(sin 8 cos 8'- y cos 8 sin 8')} 

where y = (1- {J 2)-112. 
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22 2 The effect of Lorentz transformations 

Comparing with (1.1.6) and (1.1.7) and using the relation between e 
and 8' we end up with 

y 
cos 8wick = 1 (p- [JE cos b) 

p 

sin ewick =-m y[J sin b 
p' 

(2.2.6) 

where b (0::;; b ::;; n) is the angle between p and p. (In this case b =e.) 
For the general case of a boost l(p) of the axes, with p = ([3, 8p, cpp), 

one has 

(2.2. 7) 

corresponding to rwick = r( 1J, 8wicb -11 ), where 1J is given by 

sin e cos e f3 - cos e sin e f3 cos( cp - cp f3) 
COSIJ = . ~ 

Slllu 

. sin e f3 sin( cp - cp f3) 
Sln 1J = . ~ . 

Slllu 

(2.2.8) 

As in (2.2.6), b is the angle between p and p, 0 ::;; b ::;; n. 
When both p and p lie in the XZ -plane the general result simplifies to 

(2.2.9) 

with 8wick given by (2.2.6); the ± correspond to P x p being along or 
opposite to 0 Y respectively. 

2.2.3 Boost along or opposite to p 

It is clear that if S 1 is boosted from S in a direction opposite to the 
momentum of p of the particle then 

(2.2.10) 

This holds also for boosts along p provided that the boost speed v 
satisfies v < pjE. For higher boost speeds along p the particle direction 
will have reversed in S1 and one finds 

(2.2.11) 
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2.2 Examples of Wick and Wigner rotations 23 

2.2.4 Transformation from CM to Lab 

A case of practical importance is the transformation from centre-of-mass 
frame (CM) to laboratory frame (Lab). Let the particle, mass m, have 
momentum p = (p, e, <p) in the CM and z-1p = PL = (pL, eL, <p) in the Lab. 
The boost is along the negative Z -axis with speed fhab (i.e. the speed of 
the Lab as seen in the CM frame). 

In (2.2.8) and (2.2.7) we have i5 = n- 8, <pp = 8p = n and thus 1J = n 
so that 

where 

lp;A_)Lab = (-1),1-A'd,1',1(8wick)lpL;A') 

= d;n(ct)lpL;A') 

COS ct = YLab (p + fhabE COS 8) 
PL 

. myLab/hab · (} s1nct = sm 
PL 

Another convenient expression for sin ct is 

sin ct = _!I!_ (sin (} cos (}L - YLab cos (} sin 8L) 
EL 

(2.2.12) 

(2.2.13) 

(2.2.14) 

For an elastic reaction A+ B ---+A+ B, with B the target in the Lab, 
one finds for the final state B particle 

ctB = (}R = Lab recoil angle. (2.2.15) 

For elastic scattering of equal-mass particles, e.g. pp ---+ pp, in addition 
one finds for the final state A particle, which is scattered through (}L in 
the Lab frame, 

etA = (}L =Lab scattering angle. (2.2.16) 

2.2.5 Non-relativistic limit of CM to Lab transformation 

For a non-relativistic collision we have YLab ---+ 1, EL ---+ m, and from 
(2.2.14) we find 

(2.2.17) 

which is what we would expect non-relativistically given that the helicity 
is the spin projection along the direction of motion. 
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24 2 The effect of Lorentz transformations 

2.2.6 Ultra high energy collisions 

Consider a very high energy collision in the Lab, which produces particles 
all of which are highly relativistic in the CM. Then /hab ~ 1, E ~ p and 
PL ~ YLabE(1 +cos 8), provided that 8 =/= 180°. Then from (2.2.13) 

sinti ~ ~ C :i~:s e) =~tan(~). (2.2.18) 

For a two-body reaction A + B ~ C + D we have Ec ~ Ev ~ JS/2 
where JS is the total CM energy. Thus 

. 2m (e) sm Ci ~ JS tan 2 , (2.2.19) 

showing that Ci ~ 0 as s ~ oo at fixed e or at fixed momentum transfer 
to the scattered particle. 

Hence follows the important result that a particle for which m/ JS ~ 0 
does not undergo a Wick helicity rotation in the transformation CM to 
Lab. 

2.2.7 Massless particles 

The transformation of the helicity state for a massless particle can be 
deduced from the previous results by putting m = 0. Thus, under an 
arbitrary rotation, (2.2.2) continues to hold but under an arbitrary boost 
l(p), ewick = 0 and instead of (2.2.7) we have 

lp;,A.)si(Pl = ll-1p;,A.), (2.2.20) 

so that the helicity label is unaltered by a boost. 

2.2.8 The Thomas precession 

We shall give what we hope is an intelligible derivation of this famous 
effect, which so baffled physicists at the time of the discovery of intrinsic 
spm. 

Let s be the expectation or mean value of the spin operator s for an 
electron of charge -e. The electron's intrinsic magnetic moment 11 is given 
in Gaussian units by 

ge 
11 = --s (2.2.21) 

2mc' 

where g is the gyromagnetic factor, which is very nearly equal to 2. For 
non-relativistic motion we expect s to obey a classical equation of motion. 

0 

In particular, for a magnetic field in the rest frame of the particle, B, we 
expect to have 

ds o ge o 
- = 11 x B = --s x B. 
dt 2mc 

(2.2.22) 
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2.2 Examples of Wick and Wigner rotations 25 

Consider an electron that at time t has velocity v in some fixed reference 
frame, in which there is an electric field E. If we Lorentz-transform to the 
electron's comoving canonical rest frame Sf at that instant we shall find 

0 

a magnetic field B that, to order v / c, is given by 

0 v 
B =--X E. 

c 
(2.2.23) 

It was originally supposed that a correct description of the motion of s 
was thus given by 

ds p ge 
dt = -cs x (v x E) = 2mc2 s x (v x E), (2.2.24) 

but this leads, in hydrogenic-type atoms, to a spin-orbit interaction that 
is too large by a factor of 2. 

To see that (2.2.24) is incorrect, imagine a situation in which there is 
no torque acting on Jl or s in the canonical rest frame. We shall use the 
canonical definition of the spin, so that s(t) is the non-relativistic spin 
vector in the canonical rest frame Sf reached from our reference frame, 
the Lab SL, say, at time t when the electron has velocity v. Thus s(t) is the 
spin vector in 

(2.2.25) 

In the following we ignore time dilatations since they turn out to be 
irrelevant to our accuracy. 

As viewed from the canonical rest frame Sf, the electron is at rest at 
0 

time t but has accelerated to some infinitesimal velocity dv at time t + dt. 
The motion is wholly non-relativistic and there is no physical torque, so 
the mean spin vector in Sf at time t + dt should still be s(t). But this is 
equivalent to saying that s(t) is the mean spin vector in the canonical rest 
frame S~dt reached from Sf by the infinitesimal boost l(dv) (see Fig. 2.1), 

dV -----
-----

s~ 

Fig. 2.1. 0 0' Boost from St to St+dt· 
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26 2 The effect of Lorentz transformations 

I.e. 

(s(t + dt)) 0, = s(t) 
s,+dr 

(2.2.26) 

We now have the following situation at time t+dt. The mean spin vector 
is s(t + dt) in the canonical rest frame S~dt reached from SL; it is s(t) 

in the canonical rest frame S~dt reached from the Lorentz-transformed 
frame Sf = l(v)SL. 

From our earlier discussion we know that S~dt and S~dt are not 
generally the same rest frame and are related by a Wigner rotation. From 
(2.1.12) 

0 ~ St+dt = rwig[l(v), v + dv]St+dt· (2.2.27) 

It follows that 

s(t + dt) = rw}g (s(t + dt))so' = rw}gs(t). (2.2.28) 
t+dt 

Thus, even in the absence of a physical torque, s(t + dt) =/= s(t). To find 
the intrinsic rate of change of s we study the Wigner rotation, taking into 
account that dv is infinitesimal. 

We have from (2.1.11), since d~ = [z-1(v)J (v + dv), 

rwig[l(v), v + dv] = z- 1 (d~)Z- 1 (v)Z(v + dv). (2.2.29) 

To identify the rotation involved we evaluate the matrix A(rwig), using 
(1.2.13) and working to first order in dv. Note that to this order 

0 2 
dv = y dv 11 + ydv _1_ (2.2.30) 

where II and j_ are relative to the direction of v andy= (1- v2 jc2)-112. 

We find eventually 

s(t + dt) = [r- 1(d9)] s(t) (2.2.31) 

where 

d.9 = _t_ (v x dv) . 
1 + y c2 

(2.2.32) 

From this follows 
ds 
dt = Wy X S, (2.2.33) 

where the Thomas angular velocity is 

WT = _t_ (ax v) ~!(ax v), 
1 + y c2 2 c2 

(2.2.34) 

a = dv I dt being the electron's acceleration at time t. 
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2.3 The discrete transformations 27 

Thus owing to the interpretation of s(t) as a vector in the canonical rest 
frame we find that s(t) rotates even when no physical torque acts on it in 
the rest frame. Clearly, then, in the presence of a magnetic torque (2.2.24) 
should be modified to 

ds ge 
-d = ~2 2 S X (v X E)+ WT X S. 

t me 

For a one-electron Coulombic atom, with potential V(r), 

1dV 
(-e)E = ---r 

and 

leading, via (2.2.34), to 

r dr 

eE 
a=--, 

m 

ds = g - 1 (! dV) L x s 
dt 2m2c2 r dr · 

(2.2.35) 

(2.2.36) 

We see that for g = 2 the Thomas term just halves the strength of the 
spin-orbit interaction. 

In Section 3.4 we shall introduce a covariant mean spin 4-vector and in 
subsection 6.3.1 derive relativistically covariant equations for its motion. 
They will offer a more direct derivation of the above results. 

2.3 The discrete transformations 

We now consider how helicity states transform under space inversion and 
time reversal. These results are crucial to an understanding of the physical 
consequences of these symmetries in specific reactions. We also briefly 
discuss charge conjugation. 

2.3.1 Parity 

Under space inversion, s ~ s:!l' = l:!l'S such that X ~ x' = (t, -x). The 
Hilbert space operator U(l;i/) is usually written as f!JJ and has the following 

effect on the Lorentz generators J = {Ji} ,K = {ki}, see (1.2.1): 

f!}J-1 Jf!JJ = J 
9-1 Kf!JJ = - :K:. 

(2.3.1) 

(2.3.2) 

The operator f!JJ is unitary and taken to satisfy 9 2 = 1. Under S ~ S:!l' we 
have, as in (2.1.1), 

(2.3.3) 
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28 2 The effect of Lorentz transformations 

Consider the action of f?J on the helicity state of a massive particle with 
spm s 

we have 

lp;Jc) = lp,8,cp;Jc) = U[h(p)]lp;Jc) 

= U[r(cp,8,0)lz(v)]lp;Jc); 

f?l>lp,8,cp;Jc) = U[r(cp,8,0)l2 (-v)]f?Jip;Jc). 

The intrinsic parity 1'/!Y' is defined by 

with 11~ = 1. After some manipulation, using 

lz(-v) = ry(-n)lz(v)ry(n) 

we find 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

For massless particles we have already defined the intrinsic parity in 
(1.2.31). For the operator for reflections in the XZ-plane, !f!l = ry(n)f?J, we 
have 

(2.3.8) 

which is consistent with (1.2.31) since there Jc = s and cp = 0. 

2.3.2 l'ir.ne reversal 

The time-reversal operator :T is an anti-unitary operator (i.e. :T is anti­
linear with :T-1 = :Tt), which has the following action on the Lorentz 
generators: 

:T-1.J:T = -J 
:T-1K::T = K:. 

Because of the anti-linearity these imply 

:T-1r:T = r 

:T-1l:T = l-1 

for any rotation r and pure boost l. 

(2.3.9) 

(2.3.10) 

1 Of course the vector (p, n - e, cp + n) is just -p, but we are loth to use that notation since e.g. 
I- (-p);).) of lp;).). Indeed, with -p = (p, n- e, cp + n) 

1- (-p);).) = lp,B,cp + 2n;).) = (-1)2slp,8,cp;.lc) 
=±lp;).), 

the plus sign corresponding to bosons and the minus sign to fermions. 

https://doi.org/10.1017/9781009402040.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.002


2.3 The discrete transformation 29 

Because of its anti-linearity care must be exercised when using ff inside 
matrix elements, and it is safer to revert to a Hilbert-space notation for 
these rather than the Dirac notation. We recall that for any operator 0 

(2.3.11) 

For a linear operator L the hermitian conjugate L t is defined by 

(2.3.12) 

so that, as usual, 

(2.3.13) 

For the anti-linear operator ff the hermitian conjugate s-t has to be 
defined by 

(2.3.14) 

It is therefore safer to use the notation Iff a) rather than ?/Ia) for the 
time-reversed state of Ia). Thus, under S ~ s.r = l.rS such that x' = 
l§-1x = (-t,x), 

lp; A.) ~ lff(p, A.)) (2.3.15) 

We follow the convention used by Jacob and Wick (1959) and take, for 
a particle at rest, 

lff(p,A_)) = (-l)s-Aip;-A). 

Note that with this convention s-2 = (-1)2s. 

It follows from (2.3.16) and (2.3.10) that 

lff(p, 8, <p; A.)) = e-inAip, n- 8, <p + n; A.) 

and the same result holds for massless particles. 
Note that for any linear operator L one has 

(?/a ILiff p) = (?/a, Lff fJ) = (a, s-t Lff fJ)* 
= (alfft LfflfJ) • 

= (fJifft Lt ?/Ia), 

the last step following since s-t Lff is a linear operator. 

(2.3.16) 

(2.3.17) 

(2.3.18) 

Time-reversal invariance is usually taken to mean that, for transition 
amplitudes or S-matrix elements, 

From (2.3.18) we see that time-reversal invariance implies 

s--lss- = st 

(2.3.19) 

(2.3.20) 
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30 2 The effect of Lorentz transformations 

in contrast to all linear invariances, where there would be no dagger 
symbol on the right-hand side. 

2.3.3 Charge conjugation 

The charge conjugation operator '?! ('?12 = 1) changes particles into anti­
particles and vice versa. For a particle A at rest 

(2.3.21) 

where Yf'(? = ±1 is the charge parity of the particle. Since '?! has no effect 
on the kinematic variables, we have also 

'?l[A;p,Jc) = Yf'(j[A;p,Jc). (2.3.22) 

Note that Y{'(? = + 1 for pions and nucleons, -1 for photons. 
We remind the reader that some care must be exercised when dealing 

with multiplets of an internal symmetry. For example, if protons and 
neutrons are regarded as forming an isotopic spin doublet of the nucleon 
N, so that 

[N;/2 = 1/2) = [p), [N;Iz = -1/2) = [n), (2.3.23) 

then the antinucleon multiplet that transforms like an isospin doublet is 

[N;Iz = 1/2) =-In), [N;Iz = -1/2) = [p). (2.3.24) 

This is explained in subsection 2.4.2. 

2.4 Fields and wave functions 

On the one had we saw in Section 2.1 that under Lorentz transformations 
the state vector in a relativistic theory transforms in a complicated way, 
the transformation matrix depending upon the Wick helicity rotation or 
the Wigner rotation. 

On the other hand, in setting up a field theory it is customary to use 
fields that transform simply under Lorentz transformations. Thus if a 
Lorentz transformation l acting on the reference frame S takes it to S1, 

s~s1 , 
so that X-----+ x' = z-1x, then the fields <f>n(x),n = 1, ... ,N, are taken to 
undergo the transformation <f>n(x) -----+ </>~(x') where 

(2.4.1) 

here Dnm is an N -dimensional representation of the homogeneous Lorentz 
group (see Appendix 2). Note that the matrices depend only on l. 

We consider here some aspects of the relationship between the two 
approaches. 
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The fields </Jn(x) are generally not irreducible, in the sense that they 
have more components (N) than are needed to describe quanta of some 
given spin s, i.e. N > 2s + 1. As a consequence the representation D(N) 

may be reducible under pure rotations, as, for example, when massive 
spin-1 quanta are described by a Lorentz 4-vector, or they may even be 
reducible under all homogeneous Lorentz transformations, as in the case 
when spin-1/2 quanta are described by a four-component Dirac field. (In 
the latter case the representation becomes irreducible if the operation of 
space inversion is included.) 

In order to construct Lorentz-invariant lagrangians etc. it is useful to 
deal with conjugate fields (j)n(x). These may be just the hermitian conjugate 
fields </JX(x) or some fixed linear combination of these (e.g. 'l'(x) = 'l't(x)/) 
in the Dirac theory) so designed that (j) transforms contra-grediently to ¢, 

i.e. under s ~ S1, (j)n(x) ~ (j)~(x') where 

(2.4.2) 

Thus in matrix notation, regarding ¢ as a column vector and (j) as a row 
vector: 

so that ¢¢ is a scalar, i.e. 

</J'(x') = D-1(1)</J(x) 

(j)' (x') = (/)(x)D(l), 

(j)'(x')</J'(x') = (/J(x)</J(x). 

(2.4.3) 

(2.4.4) 

The use of <P and <P makes it quite simple to construct quantities with 
definite transformation properties under Lorentz transformations. But 
some price has to be paid for the redundant components; this price is the 
existence of field equations that must be satisfied even by non-interacting 
fields. These equations are nothing more than invariant conditions of 
constraint upon the unwanted components. In a series of elegant papers 
Weinberg (1964a, 1964b) showed how one may construct irreducible fields 
<P .~c with only 2s + 1 components. These satisfy no field equations (other 
than the Klein-Gordon equation, which just imposes the correct relation 
between energy and momentum) but they do not transform simply under 
Lorentz transformations. They shed an interesting light upon the whole 
question of fields and field equations and we therefore give a brief discus­
sion of this approach in Appendix 3. Here we continue to deal with the 
usual fields </Jn(x ). 

The fields </Jn(x), (j)n(x) are Fourier expanded in terms of creation and 
annihilation operators (at, a for particles and bt, b for antiparticles), which 
create and annihilate quanta of spin s with definite momenta and helicity. 
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32 2 The effect of Lorentz transformations 

Thus one writes 

c/Jn(x) = ;;= J (2n~331~2p0 [un(p,Jc)a(p,Jc)e-ip·x +vn(p,Jc)bt(p,Jc)eip·x] (2.4.5) 

(/)(x) = ;;= j (2n~:1~2p0 [un(p,Jc)at(p,Jc)eip·x +vn(p,Jc)b(p,Jc)e-ip·x] (2.4.6) 

where the u and v are 'wave functions' for the quanta (in the Dirac case 
they just correspond to the Dirac 4-spinors u, v ). 

Since at(p, Jc) creates the state lp; Jc) from the Lorentz invariant vacuum, 
it follows from eqn (2.1.9) and the unitarity of the representations of the 
rotation group that 

U(l)a(p, Jc)U(l- 1) = .@~1,(r)a(lp, A'), (2.4.7) 

where r = r(l, p) is the Wick rotation defined in eqn (2.1.7). 
For free fields or fields in the interaction representation and with particle 

states such that 

(2.4.8) 

where the operators satisfy commutation or anticommutation relations 

one has 

and for antiparticles 

Un(P, Jc)e-ip·x 
(Oic/Jn(x)lp; Jc) = (2n)312 

(01~ ( )I-. Jc) = Vn(P, Jc)e-ip·x 
lf'n X p, (2n)3/2 

(2.4.9) 

(2.4.10) 

(2.4.11) 

The set of wave functions un(P, Jc) will be said to correspond to the state 
lp; Jc): 

lp;Jc) ~ Un(p,Jc). (2.4.12) 

Clearly the un(P, Jc)e-ip·x satisfy the same free-field equations as do the 
c/Jn(x). Thus the Un are usually obtained by solving those equations, but 
care must be exercised in order to have consistent phase conventions. 
Thus if 

lp;Jc) ~ Un(p,Jc) 

and 
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2.4 Fields and wave functions 33 

then from (1.2.25) and (2.4.1), using the Lorentz invariance of the vacuum, 

(01</Jn(x)lp,A) = (01</Jn(x)U[h(p)]lp;A) 

= (01 u-1 [h(p)]</Jn(x)U[h(p)] lp; A-) 

= Dnm[h(p)](OI</Jm(h-1x)lp;A-), 

which leads, via (2.4.10), to the requirement that 

Un(p,A) = Dnm[h(p)]um(p,A). 

A similar argument, for antiparticles, leads to 

(2.4.13) 

(2.4.14) 

(2.4.15) 

Consider now the effect of an arbitrary Lorentz transformationS~ S1• 

Using eqns (2.1.3), (2.1.9) and (2.4.1) in (2.4.10), we have the correspon­
dence 

lp;A_) ~ Un(p,A) 

and 

U(l-1 )lp; A-) ~ Dnm(l-1 )um(P, A-) 

= Un(l- 1p, A').@~~(r) (2.4.16) 

where r = r(l,p). 
In a similar way one finds for antiparticles 

and 

U(l- 1 )lp; A-) ~ vm(P, A-)Dmn(l) 

= Vn(l- 1 p,A').@~~(r) (2.4.17) 

and, in addition, 

(p, AI ~ un(p, A-) 

(p, A-I U(l) ~ um(P, A-)Dmn(l) (2.4.18) 

= Un(l-1p, A').@yl,(r-1) 

and for antiparticles 

(p, AI ~ Vn(P, A) 

(p, A-I U(l) ~ Dnm(l-1 )vm(P, A) (2.4.19) 

(l-1 1')1'M(s) ( -1) = Vn p, A ;;g U' r . 
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34 2 The effect of Lorentz transformations 

2.4.1 The discrete transformations of the fields 

Consider the discrete transformations. Under space inversion 

l&' [JjJ 
S ----+ S = lq;S 

with x ----+ x' = lf3Px = (t, -x), one takes </Jn(x) ----+ </J~(x') with (see Section 
2.3) 

(2.4.20) 

where P is an N x N matrix (P 2 =I) chosen so that </J~(x') satisfies the 
space-inverted field equations. This does not fix the absolute phase of P. 
However, using eqn (2.3.7) we have for a particle of spin s 

(01</Jn(x)~lp, 8, q;; A) = tff3Pe-ins (01</Jn(x)lp, n - 8, q; + n; -A). 

= (01~- 1 </Jn(x)~lp,B,cp;A) 

= Pnm(OI</Jm(t, -x)lp, 8, q;; A) (2.4.21) 

from which, via (2.4.10), we have that P must be chosen such that 

PnmUm(P, 8, q;; A) = tff3Pe-insun(P, n- 8, q; + n; -A). 

For antiparticles one has, since P 2 =I, i.e. p-l = P, 

vm(P, 8, q;; A)Pmn = 1Jf3Pe-insvn(p, n - 8, q; + n; -A) 

where lJf3P is the intrinsic parity of the antiparticle. 

(2.4.22) 

(2.4.23) 

We also have the following correspondence between states and wave 
functions: 

~lp; A) ~ Pnmum(p, A) 

~lp;A) ~ Vm(p,A)Pmn· 

(2.4.24) 

(2.4.25) 

As an example, in the Dirac case it is conventional to choose P = y0 . 

For the particle at rest, the use of (2.4.24) and (2.4.25) in (2.3.6) and its 
analogue for antiparticles shows that we must then choose t/f3P = 1 and 
lJ[JjJ=-1. 

Consider now the anti-unitary time-reversal operation 

S ~Sy = [yS 

(see subsection 2.3.2) with X----+ x' = l:y1x = (-t,x). One takes </J~(x)----+ 
<Pf: (x') with 

(2.4.26) 

where Tis anN x N matrix with T*T = (-1)251, chosen such that </Jf:(x) 
satisfies the time-reversed equations. Its phase is fixed as follows. Using 

https://doi.org/10.1017/9781009402040.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.002


2.4 Fields and wave functions 35 

eqns (2.3.16), (2.3.18) and (2.4.26) we find 

(OI¢n(x)l5'(p, 8, cp; A)) = e-in-t(OI¢n(x)lp, n- 8, cp + n; A) 

= (015'-1¢n(x)5'1p, 8, cp; A)* 

= r;m (OI¢m( -t, x)lp, e, cp; A)* (2.4.27) 

from which we have the requirement 

T * * ( e . 1) - -in}. ( e . 1) nmum p, , qJ, A - e Un p, n - , qJ + n, A (2.4.28) 

or 

(2.4.29) 

Similarly, for antiparticles 

Vm(p,8, cp;A)Tmn = einJ.v~(p,n- 8, qJ + n;A). (2.4.30) 

Note that one has the correspondence between states and wave functions 

(2.4.31) 

and for antiparticles 

15'(p, e, qJ; A)) ~ e-inAVn(P, n- e, qJ + n; A). (2.4.32) 

With the conventions (1.2.22), for the Dirac case one has T = y3y1 if 
we use the standard representation of the y-matrices, given for example 
in Bjorken and Drell (1964), in which y3 and y1 are real. 

Finally, under charge conjugation (see subection 2.3.3) we have from 
eqns (2.3.22) and (2.4.10) 

Un(P, A) ( ) 
(2n)312 = Ol¢n(O)Ip;A 

= '7<6(01¢n(O)~Ip; A) 

= '7<6(01~-1 ¢n(O)~Ip; A), (2.4.33) 

which is only possible, via (2.4.11), if 

-1 -
~ ¢n(x)~ = 1]'6Cnm¢m(x), (2.4.34) 

where ~2 =I. 
Substituted into (2.4.33) this implies that 

Un(p,A) = CnmVm(p,A). (2.4.35) 

For the Dirac case, in the standard representation of they-matrices one 
has c = iy2y0 , with C2 = -1. 
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2.4.2 lsospin multiplets for antiparticles 

We mentioned in subsection 2.3.3 that if protons and neutrons are regarded 
as forming a doublet under isotopic spin rotations, 

(2.4.36) 

then the antiparticle doublet that transforms as an isodoublet is 
- 1 -
IN;Iz = 2) =-In) (2.4.37) 

The source of the minus sign or, for a general isospin multiplet, of 
certain phase factors can be understood as follows. 

Let IA;Iz) be an isospin multiplet of particles of type A. Under an 
isospin rotation r, in complete analogy to ordinary rotations (see (1.1.18) 
and (1.1.19)) one will have 

U(r)IA;Iz) = .@}~} (r)IA;I~) (2.4.38) 
z z 

where U(r) is the unitary operator that represents the isotopic spin rotation 
acting on the state vectors and the _@(J) are the S U(2) representation 
matrices, whose properties are discussed in Appendix 1. 

If the creation operators for the particles are labelled at then (2.4.38) 
is tantamount to having 

( ) t -1 ( ) (I) ( ) t U r a1 U r = .@1,1 r a1, 
z z z z 

(2.4.39) 

where we do not display arguments such as momentum, helicity etc. that 
are irrelevant to the discussion. 

Consider now the set of usual fields <1>1z(x) corresponding to the set of 
particles of type A and isospin I. They ought to transform analogously 
to (2.4.1), except that there is here obviously no effect on the space-time 
coordinates. So we wish to have 

(2.4.40) 

Now the field <I>J2 (x) contains the annihilation operator a1z as in (2.4.5), 
so we have to check that (2.4.39) and (2.4.40) are compatible. Indeed they 
are, since taking the hermitian conjugate of (2.4.39) yields 

1 (J) * 
U(r)alz u- (r) = .@Iilz (r)ali 

= [.@(J)t(r)J a1, 
lzli z 

which, using the unitarity of the matrices _@(I), gives 

U(r)aiz u-1(r) = .@ei(r-1 )aJi, (2.4.41) 

as required for (2.4.40). 
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2.4 Fields and wave functions 37 

However, the field <Diz(x) also contains the creation operators bt, which 
create the states IA,/2 ) corresponding to the antiparticles of the particles 
A1z. For consistency with (2.4.40) they will have to transform as follows: 

U(r)bj u-1(r) = f0V},(r- 1)bj, 
z z z z 

which, as before, via the unitarity nature of f0(I) gives 

U(r)bt u-1(r) = f0~~}!(r)bt 
(/)* t = f01,1 (r)b1,. 

z z z 
(2.4.42) 

Comparing with (2.4.39) and (2.4.38) we have, for the isospin multiplet 
made up of particles, 

(2.4.43) 

and, for their antiparticles, 
-- (/)* --

U(r)IA;Iz) = f01,1 (r)IA;Ii). 
z z 

(2.4.44) 

In other words the set of antiparticles states IA;Jz) does not transform as 
a standard isospin multiplet. 

However, for the group of isospin rotations SU(2) the representations 
f0(I) and f0(I)* are equivalent, i.e. there exists a unitary matrix c(Il, inde­
pendent of r, such that 

(2.4.45) 

for all r. 
Then the antiparticle multiplet IA;Jz) that transforms as a standard 

isospin multiplet is clearly 

IA;Iz) = c~n IA;Ii), (2.4.46) 
z z 

Le. 
- (I) - I 

U(r)IA;Iz) = f01,1 (r)IA;Iz). 
z z 

(2.4.47) 

In fact the matrix c(Il is very simple. It can be taken, conventionally, 
as 

C(I) = (-1)/-is:, . 
lJ Uz,-J• (2.4.48) 

As an example of (2.4.46) and (2.4.48), for the nucleon isodoublet one 
finds just the results (2.4.36) and (2.4.37). (Of course the overall sign in 
(2.4.37) is irrelevant and sometimes the opposite convention is used.) 
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