J. Austral, Math. Soc. (Series A) 31 (1981), 269—275

A CLASS OF 9-EXTREME
MINKOWSKI-REDUCED FORMS

D. W, TRENERRY

(Received 16 September 1980)
Communicated by A. J. van der Poorten

Abstract

Barnes (1978, 1979) introduced the concept of a D -extreme form, which is a Minkowski-reduced
positive definite quadratic form having prescribed diagonal coefficients a;, a5, . . . , a, and providing
a local minimum of the determinant of the form over all such forms. Here a class of forms which are
&) -extreme for all a and all 7 is described.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 10 E 25; secondary 10 E 20.

1. Introduction

A positive definite or semidefinite quadratic form f(x) = 2} a;x;x; is reduced in
the sense of Minkowski if, for all j=1,...,n and for all integral x =
(X X0 o+ oy X)),

(1.1) if g.cd. (x; X415 - - - » X,) = 1, then f(x) > a;.

In the 3n(n + 1)-dimensional space @ of positive definite and semidefinite
forms, the set M of reduced forms is defined by a finite number of inequalities,
and is therefore a polyhedral cone. Among these inequalities are those de-
termined by the set
(1.2) x=z¢ (1<j<n) *(e,-¢) (1<i<j<n)
where e; denote the unit vectors. For these and other properties of Minkowski-
reduced forms see Lekkerkerker (1969, §10) or Van der Waerden (1956).

Forreala = (a,, a5, . . ., a,) with

(1.3) 0<a,Ray<---<a,
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the set 9 (a) of (necessarily) positive definite reduced forms is defined as the
intersection of 9N with the hyperplanes

(14) a; = q (i=1...,n).
Thus % (a) is the set of all reduced forms with prescribed diagonal coefficients
a,, a,, . . ., a,. Since the finite set of inequalities determining 9N include

|2¢)| <a; (1 <i<j<n),

%) (@) is bounded and therefore a convex polytope.

A form in 9 (a) for which the determinant D(f) is a local minimum over all f
in 9D (@) is called (Barnes (1978, 1979)) a D -extreme form. If the determinant is
an absolute minimum over all f in ) («) the form is absolutely ) -extreme. Here
we show

THEOREM 1. The form
-’;l(x) = 2“-”‘.‘2 + 2 al i _]’
1 1<i<j<n

where a satisfies (1.3), is D -extreme for all n and all such «.

The form f,(x) is absolutely %)-extreme for n =2 and 3 and is a natural

generalization of Voronoi’s principal perfect form (see Voronoi (1907))
2 x; + 2 X; ;.
1<i<j<n

Since the region D(f) > constant is strictly convex within &, any ) -extreme
form is a vertex of % (a). In general, however, not all vertices are D -extreme.

For f in D(a) denote by =m, (k =1,...,¢) all those x other than unit
vectors for which equality holds in (1.1). Then f is called D -eutactic if its adjoint
F is expressible in the form

n t n
F(x) = 3 A,;xx; = 2 p(mx)” + X o,x2,
1 1 1

where p,, 0, arerealand p, > 0(k=1,...,0).
Theorem 1 is proved using

THEOREM 2 (Barnes 1979). A form f in D (a) is D-extreme if and only if it is a
vertex of D(a) and is D-eutactic.

We show f, is a vertex of %(a) in Section 2 and that it is D-eutactic in
Section 4, thus proving Theorem 1. Section 3 contains some necessary lemmas

on determinants.
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2. f, is a vertex of ) (a)

We can express f,(x) in the form
LX) = a;8,(xy, . .., x,) + (g — a)g,_ (X - . .5 X,)

+ (a3 — a)go(x5 - x,) + -+ (4, — @y y)gi(x,),
where g, (1, . . . » V) = ST ¥} + Z1icj<m ¥ is the principal perfect form of
Voronoi (1907). This has the property that, for all integral (y,,...,»,) #*
©,...,0), g,(y) » 1, with equality if and only if y= *¢, (1 <i <m) or
y==( —-¢e)(1<i<j<m).

Suppose g.cd. (x, X4y, ..., x,) =1, then (x;,...,x)#(@©,...,0) (1<
< j), so that

gn—i+l(xi""’ n) > 1 (1 <i<j)v
and hence
2.1) L) Za+(g—a)+ - + (e~ a_y) = a; = a
Thus f, lies in ) (a).

Also, if equality holds in (2.1), then g,(x) = 1, so that x lies in the set (1.2).
Conversely, if x lies in the set (1.2), then equality holds in (2.1). Hence f, satisfies
the 3 n(n + 1) equalities given by equality in (1.1) at the vectors (1.2) and is thus
on an edge of the cone I and a vertex of 9 (a).

Moreover the set of the vectors =m, (k = 1, ..., ) other than unit vectors
for which equality holds in (1.1) is the set

(2.2) x=*(e —¢) (1<i<j<n).

3. Lemmas on determinants

For0<ay<a, <a,< ... let D, = Di(a,,...,aqa,) be the determinant of
the k& X k matrix with elements

4 = 2a, i=}j,
¥\ @ i%j, m = min(i, ).

Similarly let G, = G, (a,, . . ., a;) be the determinant of the k X k matrix with

elements
2a, i=j+*k,
g = a, i =J = k’
a,, iF#j, m=min(i,j)
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, @) be the determinant of the k X k matrix with

and let Hk = Hk(ao, Ay, ...

elements
201 — Qg i =_] = 1,

2a,, i=j#1,

h; =1 -a, j=i+1

—‘ai_ 1 j = i - 1,

0, otherwise.

LEmMMA 1.
D, =aD,_,+ G, (k > 2),
G.=aD,_,—a;_D,_, (k > 3)
and

D,>0, G >0 fork>1

PrROOF. We observe G, = a;, >0, D, = 2a, > 0, G, = a,a;, + a)(a, — a)) >

0 and D, = a,D, + G, = 3a,a, + a(a, — a)) > 0.
The result then follows by induction, since

2a, a, a, a,
a, 2a, o a, a,
G, =
a a; 2a, _, A1
a, a 1 G
2a, a, a, 0
a, 2a, a, 0
a, a, 2q,_, —G_
0 0 -a,_, a,

- 2
=aDy_, — a;_Dy_,
= &G+ a_,Dy_s(a, — a_,) >0,

on assuming the induction hypothesis for £ — 1.
Simﬂarly Dk = 2aka_l - a,%__le__z = aka_l + Gk > O.
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LEMMA 2.
Hy = 2a,H,_, — a;_\Hy_, (k> 3)

Gt~ aG_He_,>0 (k>3)

and
H >0 fork > 1.

PRrROOF. We observe
Hl =al+(al'_ao)>0,
H, = aja, + 2a,(a, — ap) + a\(a, — a;) > 0,
ayH, — aiH, = ay(a) — ap)(a; — @) + a,a5(a, — ap)
+aa)a; — a)) + ajax(a; — a)) > 0
and
Hy=2a,H, — alH, = (a,H, — a?H,) + a;,H, > 0.
Expanding similarly to Lemma 1 we have
Hy=2a,H,_, — a;_\H,_,
= aH,_, + (a,H,_, — a;_ H,_))
Also
aH,_, — al%-lHk—2 = ak(ak—lHk—2 - af~sz—3) + a_Hy_)(a, —a_,) >0,

on assuming the induction hypothesis for k — 1. Hence H, > 0.
4. f, is ) -eutactic

By (2.2) the condition that f, be 9 -eutactic is that its adjoint F,(x) satisfy
n n
F(x) = 2 Ayx;x; = 2 pij(xi - -"j)2 + 2 oixiz
1 1<i<j<n 1
with all p; > 0(1 <i <j <n).

Equating coefficients gives p; = ~A4; (1 < i <j < n). Hence f, is &) -eutactic if
all the off-diagonal cofactors 4;; of its matrix are negative. For convenience we
show that the matrix B of 2f, has this property. B has elements

2o, i=},
a,, i#j, m=min(i ).

i

For 1 < i <j < n the cofactors of B are

~

’

B; = (-1)"*/ det

QO
(Wl %N
NN®

’
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where the matrices P, Q, R, S, T, U, V have elements

20, 1<k <i—1,m=k,
Pim=1% 1<k<m<i-1
a, 1<m<k<i—1
Qe = O 1<k<i—-L1<m<j—i
T = O, I<k<i—-L1<m<Kn-—j
Gopoy 1<m<k<j—i
Sm =120, 1<k<j—i-lm=k+1,
s 1<kLj—i—-2,k+2<m<j—i
bom = O 1<k<j—-1L1l<m<n—j
Uy = Q415 1<k<n—j,1<m<j—i
205, 1<k<n-jm=k,
Om =1 %4k 1 <k<m<n-—}j

UGy 1<m<k<n-—j

By applying successive row and column operations then row operations, we

get

. > P W *
B;=(-1)"detl x v |
0O 0 Z

where the O are suitably sized zero matrices, the elements in * are unim-
portant, Y is an upper triangular matrix with diagonal elements

Oy =gy =gy oo o5 0y

and W, X, Z have elements

Com 1 SkLi—-L2<m<Kj—|

a,, 1<m<i-1Lk=1,
Xiem = : - . ..
0, 1<m<i—-1,2<k<j—i

{ak, 1<k<i-1l,m=1,
Wi =

(20—, k=m=1,
205, 4, 2<k<&n—-jm=k,

Zim =~ o> 1<k<n—-—j—-1lm=k+1,
Q4 s 1<m<n—j—-lLk=m+1,
L0, otherwise,

for some ¢,
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Hence

s = (G, a)(ay) - (o) Hy ()
= -0 1%42 - G Glay, ..., a)H, (..., &)

By the results of Lemmas 1 and 2 and (1.3), we then have B; <0 for
1 <i <j < n, and hence f, is D -eutactic.

=]
]
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