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PERTURBATION OF DIRECT SUM 
DIFFERENTIAL OPERATORS 

S. J. LEE 

0. Introduction. Let / be an interval, and let Ij C / for 1 ^ j ^ I < oo 
be abutted subintervals such that {jlj = I. Let r ; be a linear differential 
expression defined on / , . In this paper we study densely defined operators 
associated with 

(0.1) &y = Ty + By + x1\t)[A (ry|«) + iDV(y)] 

defined on the direct sum space 0 I £ ^ I ( T / , p, I,-) C Lp(I). Here r is the direct 
sum expression 0 i r 7 , B is an arbitrary given norm bounded operator defined 
everywhere in LP(I), A and D are given m X r and m X N constant matrices, 
x(0 and (/>(/) are given m X 1 and r X l finite column vector functions in 
(Lp(I))

m and (LQ(I))r respectively such that the rows of x and (/> are linearly 
independent. V(y) is an arbitrary but fixed TV X 1 "boundary" column vector 
functional of y which will be explained more precisely in § 1. The expression^ 
contains, as a special case, a class of linear differential expressions whose 
leading coefficients vanish identically on a subinterval of / . The form of (0.1) 
includes a wide range of interface problems (cf. the first paragraph in § 5). 
We shall make no special mention of those problems in what follows. 

This paper is a generalization of a paper by Kemp and Lee [17] where a 
special case of (0.1) is considered when r ; = n for all j , ^ 4 = 0 , and B is of 
m dimensional range. The introduction of the term (ry|<£) allows, among other 
things, the following: (i) the elements of the domain of densely defined adjoint 
operators generated by (0.1) may be nowhere differentiate (Theorem 3.9); 
(ii) the expression (0.1) contains, in some cases, a member which in turn con­
tains terms of the form 

f yia(t)*jt(t)dt (§4). 

There is a large literature on operators generated by linear differential expres­
sions plus some additional terms. For example, see the survey article by Krall 
[19]. Recently Coddington and Dijksma [7] investigated self-adjoint subspaces 
in llilbert space generated by a single formally self-adjoint differential expres­
sion (regular or singular). Honig ([13; 14] and, in particular, [15]) considered 
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PERTURBATION 601 

Volterra Stieltjes integral equations in general function space, with linear con­
straints . Krall [21] studied finite dimensional per turbat ions in a suitable Lp-
type space, generated by a single regular differential expression. Tv rdy ' [26 ; 27] 
and T v r d y ' and Vejvoda [28] also considered integrodifferential equations on a 
compact interval. 

We briefly summarize the contents of our paper. In § 2 we set up "reasonable 
boundary condit ions" to s tudy (0.1). This is done by introducing maximal and 
minimal operators, and adjoint expressions. These ideas are basically the same 
as in [17]. More specifically we do as follows: we define the maximal operator 
1\(J£, p, I) by (0.1) on the maximal domain, and its adjoint operator is found, 
but this adjoint may not have dense domain (Theorem 2.1). Our interest 
here is in densely defined operators. In order t ha t the domain of 7\*(j£f, p, I) 
be dense we assume through this paper tha t the matrix Ar is non-singular 
(Proposition 2.2). This assumption guarantees tha t T\(J£, p, I) is a closed 
operator (Theorem 2.3), and consequently we can define the minimal operator 
f o ( i ^ , q, I) = T?(<£, p, I) in Lg(I). We a t t e m p t to find densely defined 
closed operators T C T\{££, p, I). This leads us to define an expression <j£f in 
Lq(I) ( (2.11)) , and a corresponding maximal operator T\(J£, q, I) in Lq(I). 
We c h o o s e ^ so tha t J^7 and «if produce a suitable bilinear form, allowing us to 
define an adjoint expression (cf. Proposition 2.4), which in turn leads us to 
define the minimal operator T^^£,jé?, p, I) = Ti* (<&, q, I) in LP(I) (Theorem 
2.5). The main object of s tudy in § 3 is the operator T defined by (3.13.) 
This operator corresponds to an arbitrary closed linear operator between the 
minimal operator T0(J^, ££, p, I) and the maximal operator T\{S£, p, I) 
(Proposition 3.6). When the number of boundary conditions for T exceeds TV, 
then T becomes a non-densely defined operator (Proposition 3.8 and Remark 
after) . The adjoint of T is computed (Theorem 3.9). Each element of Se (T*) 
is the sum of two functions, one of which is smooth, and the other not. These 
phenomena occur also in Theorem 3.3 and Theorem 4.1 of Coddington and 
Dijksma [7] in their description of self-adjoint subspace extensions. However, 
the above mentioned phenomena do not appear if, in their theorems, we replace 
"self-adjoint subspace extensions" by "self-adjoint operator extension". The 
expression (0.1) can generate a symmetric operator in L2(I) only when it does 
not contain the term (r;y|<£) (Theorem 3.10), and under this circumstance we 
can give a necessary and sufficient condition for a given per turbat ion to be 
self-adjoint (Theorem 3.11 and Corollary 3.12). Theorem 3.11 in our paper 
coincides with Theorem 3 in [6] and Theorem 4.1 (regular case) in [7] provided 
tha t in our theorem we take / = 1, B of finite dimensional range and their 
extensions are taken to be operator extensions, i.e., H(0) = {0} in their nota­
tion. A necessary and sufficient condition is given for a per turbat ion generated 
by (0.1) to be symmetr ic wi thout using the Cayley Transform (Theorem 3.13). 
I t seems tha t such a characterization has not appeared in the l i terature even 
for the special case of / = 1, S£y = ny. The purpose of § 4 is to see how large 
is the class of expressions (0.1). In some cases (for instance, regular cases) 
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(0.1) contains an expression which in turn contains terms of the form 

f ya)(t)$^(t)dt 
J Ij 

((f)jk may be nowhere d i f fe ren t i a t e ) (Theorem 4.14). In t rying to convert the 
above integral into the form (y\gi) n + (riy\g2) n, we incidently generalize the 
second pa r t of Lemma X I I I . 2 . 9 of Dunford and Schwartz [10] (Par t I of 
Theorem 4.15). In § 5 we briefly discuss inhomogeneous regular boundary 
value problems in LP(I). In § G we find explicitly resolvents for self-adjoint 
operators generated by (0.1) in singular cases. In the case when / = 1 and B is 
of finite dimensional range, resolvents of self-ad joint subspace extensions were 
found by a different method in [7]. 

1. P r e l i m i n a r i e s a n d n o t a t i o n . Whenever possible we shall use the same 
notat ion as in [17]. If Q\{t) and Q2(t) are mi X m2, m2 X m3 matr ix functions 
in Lp(Ij) and Lq(Ij) respectively (l/p + l/q = 1, 1 ^ p, q ^ GO), then 
(QI\QÎ) ij will denote the m\ X m3 matr ix 

I Qi(t)Q2(t)dt 

(integrated componentwise) . If, in part icular, the interval I is used inside of 
which all of our analysis will take place, then we denote (Qi\Q2) i by (Q1IQ2). 
The interior and the closure of I j are denoted by 7 / and 7, respectively. The 
transpose and conjugate transpose of a matr ix Q are denoted by QT and Ç* 
respectively. If T is a densely defined operator in Lp(Ij) (1 ^ p < 00 ) then 
the operator adjoint of T is denoted by 7"*. In the case when p = 00 , the adjoint 
7̂ * of T is defined as in Rota [25]. For an operator T, & (T) denotes the domain 
of T. Suppose now tha t T0 and 7 \ are densely defined closed operators in 
Lp(Ij) ( U ^ o o ) such tha t J\ C 7 \ . Then the 7\- topology in 9{1\) is 
the topology generated by the T^-norm: 

IMk = lbl|P + \\Tiy\\p if 1 ^P<^, 

= max {\\y\\œ, \\Tiy\U if p = 00. 

Note tha t 7\-norm can be replaced by equivalent norms ( | M | / + \\T\y\\p
p)l/p 

and (|b||7;2 + 11 Tiy\ |7 ,2)1 / 2 when p ^ 00 . By a boundary value for 7 \ with 
respect to T0 we mean a TVcontinuous functional (i.e., cont inuous with respect 
to the TVtopology) on 3(1\), annihi lat ing 2)(J\). If p ^ GO then any 7 \ -
continuous func t iona l / on &(Ti) can be wri t ten as 

f(y) = (T1y\g2)Ij + (y\gi)ij 

with gk e Lq(Ij). In addit ion, if / annihilates @(T0), then g2 G @(T0*), 
T0*g2 = —gu and thus 

f(y) = (T1y\g2)Ij - (y\TQ*g2) Tj 
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(cf. Lemma 1.1 in [17]). For each j = 1, 2, • • • , /, let TJ be a differential 
expression of order ny. 

r,y= Z PAt)yini-k\ ta h 

where the pjk(t) are (rij — k) t imes continuously differentiable complex-valued 
functions defined on Ij and pjo(t) ^ 0 for every t Ç / / . Pjo(t) may or may not 
vanish a t end points of Ij. We assume tha t the right end point of Ij is the left 
end point of Ij+i. As usual the direct sum expression r = ®iTj is defined as 
(ry)(t) = {Tjj){t) if t G / / . The Lagrange adjoint of Tj is denoted by T*. 
Associated with each Tj there is in Lp(Ij) the maximal operator TI(TJ, p, Ij) 
and the minimal operator T0(TJ, p, Ij). These operators are closed operators 
satisfying T0(TJ} p, I j) C I\(TJ, p, Ij)- For detailed properties, see Kemp [16] 

or Rota [25]. For a Banach space X, the dual will be denoted by X*. 

Throughout this paper we assume^ that the essential resolvent set for T0(T ,, p} Ij) 
is not empty for each] = 1, 2, • • • , /. 

The above assumption implies tha t dim \2) \{j j , p, IJ)/@O(TJ} p, Ij)]* is 
finite (call it Nj) and Nj ^ 2n5 (see Rota [25]). Here 2 \(T j , p, Ij) = 
2){T\{jj, p, Ij)), &O(TJ, p, IJ) = &(TQ(TJ, p, IJ)). The above assumption is 

not necessary if either Tj = T* and p = q = 2, or r ; is regular. Because of the 
above assumption there exists an Nj X 1 column vector function Vj(y) such 
tha t the Nj rows of Vj(y) form a basis for the space of boundary values for 
TI(TJ, p, Ij) with respect to TQ(TJ} p, Ij). The dimension of the space of the 

boundary values for 7 \ ( r / , q, I j) with respect to T0(T*, q, Ij) is also Nj and 
there exists an Nj X 1 column vector function Vj(y) whose Nj rows form a 
basis for the space of boundary values for 7\(r7*, q, Ij) with respect to 
^ O ( T / > q, Ij). These functions satisfy the following relation: 

(y\z^j,p,ij = (^J^P^M^ij - {y\Ti{Tj¥,qJj))I] 

= LVj*(z)Cj(Tj)Vj(y) 

for every y £ 2 x(j h p, I j) and z 6 ^ i ( r / \ q, I j) = 9(fl\{r*, q, Ij)). Here 
CJ(TJ) is an Nj X Nj non-singular matr ix depending only on rj. 

Throughout this paper we shall assume that if either r; is regular, or r j = r ;* 
and p = q = 2, then Vj = Vj. 

This is not a restrictive condition. Let 

N = N l + N2 + . . . + N h VT(y) = (Vl
T(y), V2

T(y), • • • , VT(y))t 

VT(z) = ( P ^ s ) , V2
T(z),---, V,T(z)). 

Thus F(;y) and V(z) are TV X 1 column vectors and 

friz)*.,./ = (ry|z) - Cv|r*z) = î T * ( 2 ) C ( r ) F ( y ) 

fThis assumption is not necessary if p = œ. See E. A. Coddington and A. Dijksma, Adjoint 
subspaces in Banach spaces with applications to ordinary differential subspaces, Ann. Mat. Pura 
Appl., to appear. 
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for every y G © i ^ i ( r . „ P, Ij) and z G © ^ i ( r / , g, 7 ; ) . Here C(r ) is a iV X iV 
nonsingular matr ix © I C ^ T , ) (matrix direct sum) . 

We also assume throughout this paper that the rows of (/> are linearly independent 

mod &I(T). 

T h u s (0.1) must contain terms involving ( ry |0) , unless A vanishes identi­
cally. We define the direct sum operators T0(T, p, 7) , 7 \ ( r , p, 7) , 7"0(T*, g, 7) 
and 7\(r*, g, I) as follows: 

TO(T, P, I) - © TO(TJ, p, IJ), 7 \ ( T , p,I) = © ^ ( r , , £, / , ) , 
l l 

7^„(r*, < ? , / ) = © T0(T*, q, Ij), l\{r*, q, I) = © I '^r /* , ç, / , ) . 
1 1 

Then clearly the following are satisfied: 

r 0 ( r , p, I) C 7 \ ( r , p , 7) , T0(T*, q, I) C 7\(r*, g, / ) , 

7 V ( T , £, 7) = 7\(r*, g, I ) , r !*( r f £, I ) = r o ( r * , g, 7) , 

7V( r* , g, I ) = 7 \ ( r , £, I ) , 7\*(r*, q, I) = r 0 ( r , £, I ) , 

< 3 ^ > ^ , 7 = ( 7 \ ( r , ^ , 7 h | S ) - H ^ ^ . g J W 

for every 3; G ^ i ( r , £, 7) = ^ ( 7 \ ( r , p , 7)) and z G ^ i ( r * , g, 7) = ^ ( 7 \ ( r * , 
g, 7 ) ) . Using 7 \ ( r , />, 7) we can interpret (0.1) as follows in the special case 
when B is of finite dimensional range and p j£ 00 . In this case an expression J^f 
has the form (0.1) if, and only \i,££'y = ry + G(t, y) where 

(i) For a.a. / Ç 7, G(/, y) is a 7 \ ( r , p, 7)-continuous functional of y on 
^1(7-, p, 7) (not necessarily annihilat ing £^O(T, £, 7) = 2){l\{j, p, 7 ) ) ) , and 

(ii) for each fixed y Ç 2X(T, p, 7) , G(t, y) £ 7^(7) . 

Let Uvv) = (yA.(3;))fc=1. If ()(/) is a 1 X d row vector (g7(/)) with entries in 

^ i ( r , p, 7) , then F (Ç) will denote the TV X d matr ix with the (fe, j ) - e n t r y 

Vk(qj). 

If 7̂  is an n X w square matr ix and if E\ = (ekj) is an mi X W2 submatr ix , 
then the cofactor £ \ = (ëkj) of Tii in £ is the m\ X W2 matr ix with ekj equal to 
the usual cofactor of ekj in E. 

2. M i n i m a l a n d m a x i m a l operators , a d j o i n t pairs . Th roughou t this 
section let «if be as in (0.1). Firs t let us define the maximal operator 7 \ ( i f , p, I) 
in LP(I) associated with ^ as follows: 

T1(^,pj)y=^y1 9{T,(ï£,p,I)) ^ 9 ^ , p J ) = ^ i ( r , £ , J ) . 

Clearly 2iï±(J£, p, I) is dense in LP(I) so t ha t r*(JSf, £, 7) exists. T o determine 
the domain of, and formula for, 7\*(J2?, £, 7) , we first define an operator 7' on 
L s (7 ) by 

7? (z) = z + (2|x^4)4>. 
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THEOREM 2.1. 

®(J?(<£,p,I)) = { z < E L , ( / ) : F ( z ) € 0 i ( r * , g , / ) 

«•«<* P(F(z)) + G^HrXzlZ^x) = 0{ 

T*(3f,p,I)z = r*(F(z)) +B*z. 

Proof. Take z € ^ ( 7 \ * ( i f , £, / ) ) and put 7V (if, p, 7)z = w. Then for any 
y € ^ , ( T l £, / ) , (ry + By + x r^(ry|^.) + *xW(y) |z) = (y|w). Thus, using 
(0.1) and the above, for y £ ^o ( r , £, I), 

(ry\F(z)) = (y|w - B*z). 

Hence, F(z) Ç ^ i ( r* , q, I) and T* (F (Z) ) = w — B*z. Now, for any y € 
^ i ( r , / > , / ) , 

(Ty|F(z)) + t(x rI>7(y)|z) = (y|r*(F(z))). 

Since F(z) G ^ ( r * , ^ 7), 

[P(F(z)) + C^»*(r)(2|I>rx)]*F(y) = 0 

for any 3; Ç «^i(r, £, / ) . This implies the second part of the theorem because 
V(y) can be an arbitrary N X I constant vector. This completes the proof. 

The above theorem tells us that elements in i^-( 7V (<JS?, p, I)) need not be 
differentiable, and the domain may not be dense in Lq(I). Since we are in­
terested in operators with dense domains we shall find a condition under which 
the domain is dense. First let us define an r X r constant complex matrix: 

A,. = Ir + (4>\xTA) 

with Ir denoting the r X r identity matrix. 

PROPOSITION 2.2. Suppose Ar is non-singular. Then 
(i) F is a homeomorphism from Lq(I) onto Lq(I), and 

F-i(z) = z - (z\X
TA)Ar-^. 

(ii) ^ ( 7 V ( i f , p, I)) is dense in Lq(I). 

Proof. Part (i) is clear. To prove (ii), let us define a manifold 

^ = K ^ i ( r* f g , / ) : V(z) + C*-1(T)(F-'(Z)\DTX) = 0). 

Then <& is dense in Lq(I) by Lemma 2.2 in [17]. Thus 9(??(<£, p, I)) = 
F~l(&) is dense in Lq(I). This completes the proof. 

In the remainder of this paper we shall assume that Ar is non-singular. 

By the above assumption 7V*(°£f, p, I) exists, and we have 

THEOREM 2.3. 7V*(if, p, I) = 7\(if, p, I), and, tn particular, Tx(<£, p, I) 
is closed. 

Proof. Since 7\(J£, p, I) C TV* (if, p, I), it is sufficient to show that 
TV*(if, p, I) C Tx(<£, p, I). Take any y Ç 9{J\**{<£, p, I)) and put 
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T?*{<£, p, I)y = w. Then for any z 6 ®(T?(<£, p, / ) ) , (T*(F(Z)) + B*z\y) 
= (z\w). Therefore 

(2.2) (r*g\y) = ( / ' - U g ) ^ - 5y) 

for any g G <^. Let [c, rf] be a compact subinterval contained in 7i°. Tlien 
(2.2) holds, in particular, for any g ^ "W vanishing outside [c, d]. Let us put 
g(»D(<) = ft(*). Then 

(2.3) ^ " - " ( O = f ' \^_S)iy Hs)ds, (lék^ m), 

and h is orthogonal to 1, s, • • • , snl-i in Lofe, d]. We also note that if h G L2(c, d) 
and is perpendicular to 1, s, • • • , s,a_i in L2(c, d) then g defined by g{ni)(t) = 
h(t) if t£[c,d],g = 0 for * (? [c, d] belongs to ^ H C0(/i°). Since g G f H 
Co(/°), we must have 

(g\xTD-xTA(Ar~^\x
TD)) = 0. 

Thus if we put 

(2.4) «(/) = x 3 ' ( 0 [ ^ - / l ( A , - V | x r i ? ) ] 

then 

We now express (2.2) in terms of h. Let us put 

and 

ûfc. 

(2.5) r(t) = w - By - x
TA(Ar-

1cl>\w - J3y), t G [c, d]. 

Then 

0 = (j*g\y) - (F~\g)\w - By) 

= fcy(t){pi0(t)g
M(t) + g £u(0K(n,_t) (')}<*< 

Thus, using (2.3) and interchanging the order of integration which can be 
justified by Fubini's theorem, the above can be rewritten as 

J h(s)$(s)ds = 0, 

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-053-7


PERTURBATION 607 

where 

(2.6) iKs) = |10 (s)y (s) + g £" -[f-J-YjT h ®y ^dt 

J s («! - 1)! 

Therefore \p is a linear combination of 1, 5, • • • , s"1-1 and the N entries of 

^ (t - s)711'1 

/ : 
•u(t)dt 

( » i - 1) ! 

in L2(c, d). Since £io(0 = (— l)Wli>io(0 ^ 0 for / G [c, d] and so it is easy to 
see that y is (ni — 1) times differentiable on [c, rf] and 

" E fc)("1_1-*)(-l)*+ (-1)" 1" 1 f'hi(.t)y(t)dt 
k=0 

~ (-1)"1"1 J r ( 0 * = a+ ( - l ) " 1 " 1 j " u(t)dt^ 

for a.a. s £ [c, d] for some constant a and an iV X 1 constant column vector 
/Si. From this we conclude that y^1-1) is absolutely continuous on [c, d], and 
differentiating again we have 

(2.7) ny - u{t)px = r(t) 

for a.a. t Ç [c, d], and hence in / i . The above shows that y^n^~l) is absolutely 
continuous on every compact subinterval of Ii° and ny Ç LV(I\). Since / i was 
arbitrary we see that y £ «^i(r, £, / ) and 

(2.8) Tjy-uMh = r(t), / É / , 

where /^ is a constant iVX 1 column vector depending only on 7 ;. If we define 
fi(0 in LP(7) by 12(0 = « ( 0 ^ if * G ^ , then, in view of (2.4) and (2.5), 
formula (2.8) is rewritten 

(2.9) w - By = ry - 12(0 + (w - By\<t>T Ar~
lT)AT

x 

for a.a. t £ / . Thus 

(w - By\4>TAr-
lT) = (ry - tt\ct>TAr-

lT)A* 

= (ry - û | « r ) . 

Hence (2.9) can be rewritten 

(2.10) w - By = ry - Q(t) + (ry - Q,\<t>T)AT
X-

We shall determine fi. Now for any z € ^(7Y*(if, £ , / ) ) , 

(r*(f(Z))|y) = (f(z)|ry) - (2|Q + ( f i |0 r M r x)-
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Hence by the definition of (y\z)T,P,i we can obtain 

iV*(y)C(r*)V(F(z)) = -(z\Q + m<t>T)ATx). 

Since s G 9{T?(<£, p, I)) and C*(r*) = C(T), 

LV*(y)(z\DT
x) = (Z |Q+ (Q\4>T)ATx). 

Thus the denseness of 3l(T*(J£, p, I)) in Lff(7) implies that 

VT(y)DT
x = 4 " + (Q|*rMrx). 

Substituting the above into (2.10), we see that w = I£y. This completes the 
proof. 

By Theorem 2.3 we have the natural minimal operator To(J£} g, I) in LQ(I) 
defined by 

T0(^,q,I) = Tf&tPJ). 

Thus 

f0(o5f, g, / ) * = TV (if, p, I)z = T*(F(Z)) + B*z. 

Remark. In [17] a different notation_for the above To(<if, g, 7) is used. Note 
that 2% (if, g, 7) does wo/ depend o n i f which will be defined later. 

Suppose now that T is a closed operator with dense domain such that 

TCTx{<e,p,I). 
Then 

T0(y, q, i) c T*. 

In particular, 

7'*s = T*(F(Z)) + B*z, z e @(To<&, q, I))-

We also note that in this formula for 7V(if , p, I) no terms involving (r*s|</>) 
do appear. Therefore it is natural to expect that T*z can be associated with an 
expression of the form 

(2.11) £z = r*(F(z)) + Sz + t x r 5 f (F(z)), z G F - K ^ I C T * , g, / ) ) 

where B is a norm bounded operator defined everywhere in Lq(I), x is an 
m X 1 column vector function whose m rows are linearly independent in 
Lq(I) and 5 is a m X N constant matrix. The expression^ acts on F-1(@I(T*, 

q, I ) ) . Associated with i£ there is the maximal operator 7\(if , q, I) in Lq(I) 
defined by 

f i(e£\ g, J)z = £z, z G F-H®^*, g, I ) ) . 

We note here that the operator 7\(if , q, I) depends on «if because «if depends 
on F. However, if F is the identity operator, i f is independent of i f . 

First we have the following. 
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Definition. We say tha t the expression .if in (2.11) is adjoint to^£ in (0.1) if 

Sz = B*z + LXTDC*~1(T)(Z\DT
X) 

for every z G Lg(I). Similarly we say tha t «if is adjoint to ^ if 

By = B*y + LX
TDC*-l(T*)(y\DTx)-

We note from the above definition tha t «if is an adjoint to «if if and only if 
«if is adjoint to «if. In particular, if B is of finite dimensional range, then by 
altering D, D, x and x, we see tha t the concept of ' ' adjoint" discussed here 
coincides with tha t in [17]. We have the following properties of «if. 

PROPOSITION 2.4. Supposed is any adjoint expression to^£ defined by (2-11) 
foT some Y D B. Then 

(i) ÇSfy\z) - (y\&z) = i[V(F(z)) + C*'l(r)D*(z\x)]*C(r)[V(y) 
+ C-i(r)D*(y\x)l 

for y G ̂ ( r , p, I), z G F'^^^r*, q, I)). 

(ii) f 0 ( i ^ , g , I ) C f i ^ g J ) . 
(iii) z G 9{T,{Se,q,I))ij\andonlyifz G F~1{9I{T*} q, I)) and («ify\z) = 

(y\S£z) for ally G ^ i ( r , p, I). 

Proof. Since r 0 ( i f , q, I) = 7V(«if, p, I), (i) and (ii) follow immediately. 
The "only if" par t in (iii) is obvious from the definition of Qi(T*(J£, p, I)). 
The "if" par t of (iii) follows from (ii) and Theorem 2.3. 

The proof of the following theorem can be carried out by an argument 
similar to tha t of Theorem 2.3. T h u s we merely s tate it without proof. 

T H E O R E M 2.5. Suppose the S defined by (2.11) is adjoint to the ^ defined by 
(0.1). Then 

(i) ®{1\*{£, q, I)) = {y G 9l{r, P, I): V(y) + C"1 (r)D*(y\x)] = 0}, 
T1*(^,q,I)y=^y. 

(ii) Tx&.q,!) = T1**(^tq1I). 

By the above theorem if the «if and ̂ £ defined by (0.1) and (2.11) are an 
adjoint pair, then we have the natural minimal operator T^{££\ ^£, p, I) in 
LP(I) defined by 

r 0 ( i f , i^ , / ) - z v ^ , <?,/). 
Thus , the definition of 7\)(«if , i f , p, I) together with Theorem 2.5 yield 

T0(Jf,&,p,I)C Tx(J£,p,I), 

We also note t ha t if the Jz? defined by (2.11) is adjoint to the .if7 defined by 
(0.1), then 

(2.12) {T^,p,I)y\z)~ {y{T,(g,q,I)z) 

= L[V(F(Z)) + C*^(r)D*(z\X)]*C(r)[V(y) + C-i(r)D*(y\x)] 
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The relations between maximal operators T\{^£, p, I), T\(J£, q, I) and mini­
mal operators To(J£, q, I), rfo(^f,^f, p, I) can be illustrated by the following 
diagram: 

T0(^,^,p,I) C 7 \ ( i f , / > , J ) 

To(^,g,I) C f i ( f , 3 , / ) 

where " <->" means "adjoint to each other". We also note that T\(££, q, I) and 
r0(o£f ,=$?, p, I) depend o n i ^ , but T0(J^, q, I) does not depend on J ? . 

3. Adjoint operators, symmetric perturbations. We shall show how to 
find adjoint operators and closed symmetric operators using the adjoint 
expression defined in the previous section. Throughout this section, unless 
otherwise mentioned, T will be the operator 

(3.13) Ty = ^y = ry + By + X
T(t)[A (ry\<t>) + iDV{y)l 

(3.14) 2{T) = {y G ^ i ( r , p, I): P[V(y) + C^(r)D^y\x)} = 0. 

Here 
(i) D is a given m X N constant matrix, P is an M X N constant matrix 

of rank M ^ N (m < ao). 
(ii) x(0 is a given m X 1 column vector function whose rows are linearly 

independent in Lq(I). 
First we have 

PROPOSITION 3.6. (i) The operator T defined by (3.13) is closed. 
(ii) / / the I£ defined by (2.11) is adjoint to the ^f defined by (0-1) then any 

closed operator between l\(Jf£,ff£, p, I) and T\{££, p,I) has domain asin (3.14). 

Proof. To prove this proposition we shall make use of the following theorem: 
If To and 7\ are densely defined closed linear operators in LP(I) with To C "J- i, 
then an operator T' between T0 and J\ is a closed operator if and only if 
Q>(fT') is a TVclosed subspace of @{T\) containing 9(T0), (cf, for example, 
X11.45 in [10]). We now prove (i). First we note that T0(^, <£, p, I) C 
T C ri(«if, p, I). It is sufficient to show that 9(T) is 7\(if, p, J)-closed. 
But 9(T) is the kernel of the M 7\(r, p, 7)-continuous functionals, and thus 
is 7\(r, p, 7)-closed. However, from the definition of (0.1), there exists a 
constant K such that 

\\y\\Ti(r,P,i, ^ K\\y\\Tl{J2>tPiI) 

for all y £ 9i(r, p, I). Therefore using the closed graph theorem, the 7\(r, p, I)-
topology and T\(S£, p, 7)-topology in 9\(T, p, I) coincide with each other. 
Therefore 9(T) is 1\(££, p, I)-closed. We now prove (ii). Suppose T is any 
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closed operator between T0(J^, i f , p, I) and 7\(<if, p, I). For each 

z 6 F~1(9I(T*, q, I) and y Ç 9I(T, p, I ) , we define 

« y | * » * . * = &y\z) - (y\&*). 

Then for each fixed z G F~l(3)I{T*, q, I), the map y ^ ({y\z))&.&\s Ti(r,p,I)-
continuous on 9\{j, p, I). Thus , if we put 

Hz(y) = ((y\z))x,x, ye @i(r,p,I), 

then, since T is closed, 

W ) = PI {j<€ ^ i ( r , £ , / ) : H , ( y ) = 0). 

By the form in (2.12), 

Hz(y) = £2*[F(;y) + C - ^ S ^ I x ) ] , z € @(T*), 

for some iV X 1 constant vector gz depending on z. Thus 9 (T) has the form 
as in (3.14). This completes the proof. 

In the course of the proof of above proposition, we have also proved: 

PROPOSITION 3.7. Suppose theJ£ defined by (2.11) is adjoint to J£ defined by 
(0.1). Then the dimension of the space of boundary values for T\(J£, p, I) with 
respect to T0(Jf , i ? , p, I) is N. 

Remark. A different method was used to prove Theorem 3.1 in Kemp and 
Lee [17]. This method is not satisfactory in our case because the terms such as 
(ry\<l>) are involved in the definition of (0.1). 

Proposition 3.6 does not give us any information on the denseness of 2l(T) 
in set (3.14) in the case when the number of boundary conditions exceeds the 
dimension N. As we shall see later, such cases will lead us to non-dense domains. 

Suppose now tha t Pi and Qi are Mi X N and Mi X m constant matrices, 
and pu t 

(3.15) & = \y <E £ ^ ( T , p, I): PiV(y) + Qi(y\x) = 0}. 

Note first t ha t if Mi ^ N, then 9' can be rewrit ten as in the form of (3.14) 
(see the proof of Theorem 3.5 in [17]). 

PROPOSITION 3.8. Suppose 

(i) Mi > Ny and 

(ii) Pi is the compound matrix 
1 2 

EP2 

M2 ^ N, and an (Mi — M2) X M2 matrix E 

for an M2 X N matrix P2 of rank 

[SI / / we write Qi = Mr where Q2 is an M2 X m matrix and Q% is an (Mi — M2) 

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-053-7


612 S. J. LEE 

X m matrix, then 2l' defined by (3.15) is dense in LP{I) if, and only if EQ2 = 
Qz. In this case 

9' = {y G ̂ i ( r , p, I): P2V(y) + <2iCy|x) = 0}. 

Proof. Note first that y G @* if, and only if P2V(y) + Q<i(y\x) = 0, 
(Q3 — EQ2)(y\x) = 0. The result is now immediate because the rows of x(/) 
are linearly independent in Lg(I) and the set of y such that PoV(y) + (M^lx) 
= 0 is dense in LP(I). 

Remark. In the course of the proof of the above proposition, we also proved 
the following: If 9" denotes the linear space of y such that PV(y) + Q(y\xi) 
= 0 and (ylxz) = 0 where P and Q are constant matrices and P is of rank 
M ^ TV, and if the rows of x2 are linearly independent in Lq(I), then 2)" 
cannot be dense in LP(I). 

However we still can define an operator Q)" using (0.1). This will give rise 
to non-densely defined operators. Such operators have been investigated, for 
example, by Krall [20; 21] for regular cases, and Coddington and Dijksma 
[7] for the case p = q\ = 2, the number / of intervals I j is 1 and n* = T\. 
The method used by Coddington and Dijksma are radically different from that 
of Krall [20; 21]. 

We now prove 

THEOREM 3.9. Suppose 
(i) ££ and^£ are an adjoint pair as defined in (0.1) and (2.11), respectively, 

and 
(ii) T is the operator in Lq(I) defined by: 

Tz = £z, z G 2{T), 

®(T) = {g - (g\X
TA)Ar-^: g e ^ i ( r * , g, I) and 

P[V(g) + C*-*(T)D*(g\x) - C*-i(T)D*(g\xTA)Ar-i(4>\x)] = 0}. 

Here P is an M X N constant matrix of rank M ^ N. Then the operator T 
defined by (3.13) and the above T are adjoint each other if and only if M + M = 
NandPC~l(r)P* = 0MXÛ. 

Proof. The proof is similar to that of Theorem 3.5 of Kemp and Lee [17]. 
However, for completeness, we shall outline it. First, put g = F(z) for z G 
2{T). Then 

9{T) = {z G Lq(I): z e F-^®^*, q, I ) ) , P[V(F(z)) 

+ C*-I(T)D*(Z\X)] =0}. 

Since P is of rank M ^ N there exists a non-singular M X M matrix E such 
that (EP)(EP)* = IM, and an (N - M) X M matrix R such that the com-

tEPl 
pound matrix is unitary. Thus y £ 3)(T) if, and only if there exists a 
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constant (N — M) X 1 column vector rj such that 

V(y) + C-i(r)D*(y\x) = R \ 

Note also that for any (N — M) X 1 constant column vector 77 there exists 
a y Ç Qf\(ji p, I) satisfying the above equation. This is because the TV rows of 
V(y) + C~l(r)D*(y\x) are linearly independent functional in y on 2iï\(j, p, I), 
which is dense in LV(I). We shall characterize &(T*) in terms of the above rj. 
First we note that 

r0(i?,^f/>,J) c r e ri(if,/>,/). 
Thus ToÇSf, q, I) C T* C T\(J£, q, I). Hence, using (i) of Proposition 2.4 we 
see that z £ &(T*) if, and only if 

0 = [V(F(z)) + C*-i(r)D*(z\x)]*C(T)[V(y) + C-^r)D*(y\x)] 

for every y £ &(T). Therefore z G &(T*) if, and only if 

[V(F(z)) + C*-i(r)D*(z\x))*C(T)R*v = 0 

for any (TV — M) X 1 constant column vector 77. Thus, letting Pi =. RC*(T), 

we see that z £ 0(T*) if, and only if 

W ( F ( s ) ) + C*-1(T)D*(Z\X)] = 0. 

Moreover PC-1(T)(T\)* = PC-1(T)C(T)R = 0MX(^-Mh and A is of rank 
TV - M. 

We can now prove the "only if" part. Suppose T = T*. Then, in particular, 

9(f) = \z e F-t&iiT*, g, I): P[?(F(z)) + C*~1(T)D*(Z\X)] = 0} 

= &(T*) = {s G F-H@i(r*,q, I): Pi[V(F(z)) 

+ C*~Hr)D*(z\x)} = 0}. 

Thus M = N — M and there exists a non-singular M X M matrix E such that 
P = EPi. Thus PC~1(T)P* = 0. The "if" part is obvious. This completes the 
proof. 

The following theorem gives us a necessary condition for the T defined by 
(3.13) to be symmetric. 

THEOREM 3.10. Suppose p = q = 2 and the operator T defined by (3.13) is 
symmetric. Then 

(i) A = 0 f/wi Fis the identity operator on L2(I). 
(ii) r = r* if, and only if B* — B is of finite dimensional range. 

Proof. Let us define an expression f£ by 

<£y s r*(*'(y)) + ii*y + ixrD[C*~Hr)(y\DTx) + V(F(y))] 

for y (z F~X{3)I(T*, 2, / ) ) . Then =Sf and Jz? are an adjoint pair and 
r 0 ( i f , i ? , p, / ) C T* C f i ( ^ , 2, / ) . Hence, for any y (E 9(J*(&,<2, 2, / ) ) 
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we must have y Ç 7 w ( ^ i ( r * , 2, 7)) and <£y = J^y. In particular, (y\xTA)ct) 
G ^ i ( r * , 2, 7) for any y G 9(T*(<£, <£, 2, 7)). Since the m rows of x are 
linearly independent in L2(I) and 0 ( r 0 ( i^ , i f , 2, 7)) is dense in L2(I), the 
map 3' >-» (3^|xT) from ^(T0(«if, J$f, 2, 7)) into Cm is surjective. Therefore, for 
any 1 X m constant vector c, cÂ<j) £ <2?i(r*, 2, 7). This is possible only if 
A = 0 because by assumption the rows of </> are linearly independent mod 
j5?] (r*). Therefore ^ 4 = 0 and thus 7' is an identity operator on LV{I). Since 7' is 
the identity operator on LP(I) and J ? = i ? on ^ ( T 0 ( i f , J ? , 2, 7)), we see that 

(3.16) (r - r*)3; = (B* - 7 ^ + iX
T(t)DC-i(T)B*(y\x) 

+ ixTD[V(y) + C*-Kr)(y|2?rx)] 

for every 3/ £ @(T0(J£, J£, 2, 7)). Part (ii) follows immediately from (3.16) 
since Q) {fl\{S£,<f£, 2, 7)) is dense in L2(I). This completes the proof. 

Remark. When 73* — 73 is of infinite dimensional range it is not clear whether 
or not the relation (3.16) implies r = r*. This suggests that (0.1) possibly 
generates a symmetric operator in the case when r 9^ r*, p = q = 2. Of course, 
if this happens, then the range of 73* — 73 must be infinite dimensional. 

THEOREM 3.11. Suppose p = g = 2, r = r* an<7 7" is //ze operator 

Ty = ry + By + o t 2 W(;y) , 

0 ( f ) = b G ^ i ( r , p , / ) : P [ 7 ( y ) + C^(r)(y\DTx)] = 0} 

for some il 7 X N constant matrix P of rank M S N. Then T is self-adjoint if 
and only if 

(i) B*y = By + ,x
TDC-Kr){y\DTx), y G LS(J). 

(ii) N = 2M, PC-1(T)P* = 0. 

(iii) 9CV) = {y € ^ I ( T , 2, / ) : P[F(3>) + O 1 ^ ) (;y|£x)] = 0}. 

Proof. The "if" part is trivial. We shall prove the "only if" part. Suppose 
T = 7'*. We note first that V(y) = V(y). The expressions^ and ££ defined 
by: 

<£y = Ty + By + t x ' W l » , 

iPy = Ty + £*;y + ^D[C-l(r) {y\DT
x) + V(y)], 

are an adjoint pair, and 

r 0 ( ^ , i f , 2 , 7 ) C f C 7 \ ( ^ , 2 , 7). 

This relation implies (i). By Theorem 3.9 there exists an (N — M) X iV 
matrix 79 of rank N — M such that 

PC-l(r)P* = 0 and 

0 ( f ) =@(f*) = {y t @,(r,2,I): P[V(y) + C-i(r)(y\DT
x)] = 0}. 

By (i),<j£f is adjoint to itself. Thus applying Theorem 3.9 again, we can find 
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an M X N constant matrix Pi of rank M such that PIC~1{T)P* = 0 and 

9{f) = {y g ^ ( r , 2, I ) : Pl[V{y) + C^(r)(y\DT
X)] = 0}. 

Therefore i f = TV — if, and there exists a non-singular i f X i f matrix E 
such that Pi = EP. This implies (iii). This completes the proof. 

Theorem 3.11 does not tell us conditions on D, x f° r which T is self-adjoint. 
However, in the course of the proof of the above theorem we also have proved 

COROLLARY 3.12. Suppose that p = q — 2, r = r*. Then the operator T defined 
in Theorem 3.11 is self-adjoint if, and only if 

(i) B*y = By+ LXTDC-^r)(y\DT
x) îor y ç L2(f). 

(ii) TV = 2if, PC~1{T)P* = 0. 

(iii) xT(t)DC-'{r)P* = xT(t)DC-Kr)P*. 

Remark. The above condition (i) implies that in addition if B = 73*, then 
DC~1(T)D* = 0. 

Remark. Theorem 3.11 and Corollary 3.12 coincide with Theorem 3 of 
Coddington [6], and Theorem 4.1 (regular case) of Coddington and Dijksma 
[7] provided that / = 1 in our case and their extensions are operator extensions, 
i.e., if (0) = {0} in their notation. 

Remark. Theorem 3.11 also proves the following: Let {7", 7+} denote the 
deficiency indices of n = n* in L2(fi). Then y~ = y+ if y~ + 7+ is an even 
number, and there exists a ((7" + 7+)/2) X (7"" + 7+) constant matrix P 
such that PC" 1 (ri)P* = 0. 

Next we shall find a necessary and sufficient condition for a given closed 
perturbed operator to be symmetric. As we will see later, any closed symmetric 
perturbation can be obtained by examining the N X N non-singular matrix 
C{T). In the proof of the following theorem, we do not make use of Cayley 
transform. 

THEOREM 3.13. Suppose p = q = 2,T = r*. Let T be the operator 

Ty = ry + By+ LX
TDV(y), 

9(T) = {y G ^ i ( r , 2, I): P[V(y) + C-Hr)D*(y\x)] = 0} 

where P is an M X iV constant matrix of rank M ^ N. Then T is symmetric 
if, and only if 

(i) (B* - B)y = iX
r{t)DC~Kr){y\DTx), y € L2(J), and 

(ii) there exists an (N — M) X M constant matrix E of rank N — M S M 
such that PC~l

 (T){EP)* = 0. 

Proof. Define an expression^ on £iï\(j, 2, / ) by 

Jfy = ry + By+ LX
T(t)DV{y). 

First we prove the "if" part. Condition (i) implies that=£f is adjoint to itself, 
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so we take J2? = ££. By Sylvester's inequality the rank of EP is N — M. Set 
P = EP. Thus PC~1(T)P* = 0. Let 9' denote the set of y in 9X{T, p, 7) such 
that P[V(y) + C-l(r)D*(y\x)] = 0. Let V denote the operator defined on 9' 
by Vy = <£y. Then, by Theorem 3.9, V = T*. Clearly ^ ( r ) C ^ ' . There­
fore T C r*, so that r is symmetric. 

We now prove the ''only if" part. First we note that Theorem 3.10 implies 
(i) of our assertion. Thus^f defined above is adjoint to itself and so 

r 0( i f ,o£?,2 f / ) C r c 7 ^ , 2 , 7 ) 

where as before we t a k e i ? = J?f. Note that T<s(J£,££, 2, 7) is a closed sym­
metric operator in L2(I). By Theorem 3.9 there exists an (N — M) X N 
constant matrix P of rank N — M such that 

9{T*) = {y.y£ ^ ( r , 2, / ) , P[F(y) + C^{r)D*{y\x)} = 0} 

and PC-1(T)P* = 0. We note that Q{JxiJ£, 2, / ) ) and 

are Hilbert spaces with the inner product 

We can regard 9{T)/9^) and @(T*)/@0Ç¥) as subspaces of the Banach 
space ^ i ( r , 2, I)/90(J^)t Thus, since ^ ( T ) C 9 (T*) by assumption, we see 
that 9{?)!&*{<£) C@(T*)/@0(^). However [@(T)/&0Ç&)]* is the 
space of functional generated by the M rows of P[V(y) + C-1(r)Z)*(3'|x)]) 

and [9(T*)/90(J^)]* is the space of functionals generated by the N — AT rows 
of P[V(y) + C"1^)/)*(y |x)] . Thus there exists an (N - M) X M constant 
matrix E such that 

P[V{y) + C-i(r)D*(y\x)] = EP[V(y) + C^(r) D* (y\x)] 

for every y £ ^ i ( r , 2, 7). This implies that P = EP and PC~1(T)P*E* = 0. 
It is clear that E is of rank TV — M ^ i7. This completes the proof. 

4. Extensions to other forms of expressions. In this section we shall see 
how large is the class of expressions (0.1). 

THEOREM 4.14. Let n be as in § 1. Suppose that 
(i) 1 ^ p < GO; 

(ii) the coefficients pn(t) (0 S k ^ n\) of n (wi is the order of n ) are «wi-
formly bounded by a constant f ow 7i; awd 

(iii) //zere exists a constant e such that 

\pio(t)\ ^ « > 0 for all t e 7i. 

Then for each k = 0, 1, 2, • • • , wi Jfeere exis/s a constant Kk < co swcA //&a/ 

llywll, =§ ^*[||y||p + HnyllJ 
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for all y g ^ I ( T I , p, A ) . In particular, for each fixed <j)k Ç Lq(Ii), the map 

y K-> (y(k)\<t>!ç)i! defines a 7 \ ( r i , p, i \)-continuous functional on 3)\{T\, p, Ii). 

Proof. If 0 ^ k ^ ni — 1, then the result follows directly from the defini­
tion of ^ i ( r i , p, h) and Theorem 1 of Halperin and P i t t [12]. We now prove 
the result for k = n\. For y 6 ^ I ( T I , p , 7i) . 

iyni;(oi = (0 [rry- £ Puy^)/Pv 

^ - (\(ny)(t)\p + E ^"-"(Orj^d + «if4)1" 
where \/p + 1/g = 1. Thus 

\\y{Ri)\\l^K[\\riy\\l+ t ïïy^Wï) ûKni\\y\\>TliT1,p.I0 

using the first par t , where Ki, Kni are some constants. This proves the first 
par t of the result. The last par t of our assertion is obvious because \\y\\p ^ 

lb||ri(r,p,7). 

The above theorem implies tha t if 1 ^ p < GO and if all the coefficients 
Pjk(t) (0 ^ k ^ fij) of Tj (1 è j ^ I) satisfy the conditions of Theorem 4.14 
(this will be the case, for instance, if Tj is regular on Ij for each j — 1, 2, • • • , / ) , 
then the expression ££ defined by (0.1) contains a term which in turn has the 
following form: 

S£v = ry + By + X
T(t)[AiG(y) + iDV(y)] 

where (i) Ai is a m X I constant matrix, (ii) G(y) is the I X 1 column vector 
(dj) where 

d,= E (y^Mi, (**€£«(/,)) 
k=l 

may not be differentiable on Ij. However a direct a t t e m p t to apply our theory 
developed so far to the expression ££\ is not satisfactory because formally ££\ 
and (0.1) are different from each other. Therefore, it is desirable tha t we con­
ver t an integral of the form 

/ . 
y{nj~k\t)4>jk{t)dt 

into the form (r^yl^i,-)/, + (y\*l/2j) ij. We shall show how this can be done. The 
following notation will be needed later: If 5 is a formal differential expression, 
Sy = ]CLo pAt)y(n~a\ then for each fixed k = 0, 1, • • • , n, Sw and S*w will 
denote the differential expressions of order k defined by: 

Swy= È P,(t)y{n-°\ S*a)y= È t-i)n-\p,(t)y){n-')-
0 = 0 0 = 0 

Note tha t if k = 0 then S*(0)y is the Lagrange adjoint of 5 . 
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We shall define certain functionals which will be used later. Suppose [c, d] 
is a fixed compact subinterval of 7i° and 1 ^ p ^ oo. For each k = 1, 2, • • • , 
Wi, let P*_i(s) be a polynomial in 5 of degree ^k — 1, and let g^ and ^ 2 be 
functions in Lq{I\) satisfying the following addit ional conditions: For the case 
when 1 ?£ k ^ ni — 1, gk2(t) is (tii — k — 1) t imes differentiable on A and 
gk2(ni~k~l) (0 is absolutely continuous on every compact subinterval of 7i°; 
For the case when k = rii, the gfcni is locally integrable on A. Wi th gki and 
Pfc_i defined as above we define functionals àk = âk(c} d, y, gk2), $k = At(c, 6?, 
y» fe), 7k = 7k(c, d, y, gkl) and ôk = 8fc(c, d, P*_i) as follows: 

Oik 
4 7 C V <r=0 

+ E pu(oy*-°(c) 
1 S Î S * - 2 

«i-fc+i+lSirgill 

X (/ - c)'_"I+*~V(<7 - m + k - t)!f<fc if 3 ^ fe g m 

J 6.WJZ ^i.(')y"W+/W(f - c)/»!.., (/)}<// if * = 2 

/ ; 
Pl,ni(t)glc2(t)y(c)dt U k = 1. 

if 1 ^ fe g wi - 2, 

= - [ y ^ C O M O / t e t o ] / if* = n x - 1, 

= 0 il k = ni. 

+ E y Jc){ â U if 3 ̂  * ^ »x. 
i < S - 2 (fe - t - 1)! ; 

- / . 

l^Wc-2 (k — î — 1) 

/ > 

(1 + t - c ) | H ( 0 y ( c ) A if* = 2, 

hx(t)y{c)dt \ik = 1. 

«*=- E ( -D t - 1 b ( t - 1 ) w? t - i w «] / . 
0^(r^A:- l 

Finally we define 

Ù = Û(c, d, y, Pk-U gki, gk2) = âk + $k + ïk + Bk. 
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Then this has the property tha t if y Ç ^ i ( r i , p, i \ ) vanishes a t c and d, then 

Û(c, d, y, Pk-i,gkU ghi) = 0. 

T H E O R E M 4.15. I. Suppose 1 ^ p ^ co and & 6e an arbitrary, but fixed integer 
such that I ^ k ^ n\ {n\ = order of n ) . Suppose (f>k, gk\ and gk2 are given func­
tions in Lq(Ii). If 

(4.17) (y<*>|«*)7l = (y\gn)n + (riy|&2)z! 

for every y £ Ql \ ( n , p, I\), /Aew we Aave the following: 
(i) If k ^ nx, then gk2(t) is (ni — k — 1) times differentiable on i \ rma7 

^2(ni-A;-i) ^ ^ absolutely continuous on every compact subinterval of Ii°. 

(ii) For every compact subinterval [c, d] of Ii°, there exists a polynomial 
Pk-i(s) of degree ^k — 1 such that for a.a. 5 £ [c, d], 

Ms) = (n* (n '-*W)(5)+A-i(5) 

, P ( ^ Pu{t){t - sy-"+k-\ (A,(t-sr\ \ 
+ Js u S + 1 T - »i + * - D!&l(0 + i*=i)T&iWr-

(iii) For every y £ ^ i ( r i , p , / i ) awd [c, rf] C ^i°, 

(4.18) J y{k\t)fa{t)dt = J {ygn + (r^g^dt + Û(c,d,y, Pk_u gkh gM), 

lim S = 0. 
( c , d ) - * / i 

I I . Conversely, suppose I ^ p ^ co and let k be a fixed integer such that 
1 ^ & ^ m. Suppose further that gki and gk2 are given functions in Lq(Ii) 
satisfying the following condition: 

(i) / / k 9^ n\, then gk2(t) is (n\ — k — 1) times differentiable on I\ and 
gjC2(ni~k~l) (t) is absolutely continuous on I\. 

If k = n\, then gm2(t) is locally integrable on I\. 

(ii) For each y Ç ^ i ( n , p, Ii), \im(c>d)^0& = 0. 
Then, if <t>k{t) is the function defined in I\ as in (ii) of Part I, then (4.17) holds 

for every y £ &I(TI,P,II). 

COROLLARY 4.16. Suppose, for a given expression TI, conditions (i), (ii) and 
(iii) of Theorem 4.14 hold. Suppose further that, for a given integer k with 1 ^ 
k ^ n\, gki(t) and gk2(t) are functions in Lq{I\) satisfying (i) of Part II of the 
above theorem. Then, if we define a function <t>k(t) as in (ii) of Part I of the above 
theorem, it follows that 

(y(k)\<t>k) n = (y\gki)n + (Tiy\gk2)n 

for every y £ &o(ri,p, Ii). 

Proof. Let ^ denote the set of functions f(t) defined on A such t h a t / ( / ) is 
n\ times continuously differentiable and has compact support on 7i°. Then , 
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in view of the definitions of ak, J3k1 yk and 8k and (4.18) we see that 

(y{k)\<t>k) n = (y\gki)n + (Tiy\gk2)n 

for every y £ &. Let y Ç @O(TI} p, i\) be given. Since & is dense in the 
Banach space ^ 0 ( T I , p, h) with T\(TU P, 7i)-topology, there exists a sequence 
(yt) i n ^ converging to y £ ^o ( r i , p, A) with respect to ^ ( n , p, 7i)-topology. 
By Theorem 4.14, the map y—* (y^lfa) ii is ^iOn> P> /i)-continuous on 
3?O(T1J p, Ii). Since the Ti(n, p, 7i)-topology is stronger than the norm 
topology in &Q(TI, p, I\) we see that 

( y ( t ) k t ) / . = Hm (ylk)\4>k)n = lim { ( y ^ l g u ) / . + Mgv)n\ 
i i 

= (y^kkùn + (nylgn)^ 
This completes the proof. 

Proof of Theorem 4.15. First we prove Part I. Take any y Ç £iï\{j\, p, l\) 
such that y(t) = 0 for t g [c, d] C A0. Define 

y™(t) = h(t), te [c,d\. 

Then y satisfies (2.3) with y = g. As we have seen in § 2, a simple calculation 
shows that 

(riy\gk2)n = J h(s)^pl0(s)gk2(s) 

(yk»)/.=re
h(s){r,{t _ s)"i_«*i(o*/(«i - 1 ) ! } ^ ; 

( y ' k t ) ; , = I h(s)$k(s)ds lf* = Mll 

= - J A(5)| J ' (/ - J)"1"*"1*.^/)^/^! - * - iy\ds 

if 1 ^ k ^ Wi - 1. 
In the case when & = «i, (4.17) can be rewritten 

0 = jHs){-fa(s) + Pio(s)gki(s) + J (t - s)n'-lgn{t)dt/{ny - 1). 

+ E JPu(.t)(t - Sy-%,{t)dt/(a - \)Vfds, 

so, as in § 2, there exists a polynomial Pni-\{s) of degree ^Wi — 1 such that 
for a.a. 5 Ç [c, d], 

Ms) = M)gnii(s) + J it - s)"1_WvO<fc/(»i - 1)! 

+ E f Pu(t)(t - sy-'g^Wt/i* - 1)! + Pn i_i(s). 
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For the case 1 ^ k ^ n\ — 1, formula (4.17) implies that 

- fd(t-sr-'-^m/fa-k-iy. + £io(5)gM(s) 
J s 

+ / \ ( t - sT-'g^iD/im - 1)! + g £„(<)(< - j)'-1gM(0*/(cr - l)!|d< 

is a linear combination of 1, s, • • • , s"1-1 in L2[c, d]. Thus, applying the same 
method used in § 2, we get (ii) of Part I. We now prove (4.18). Take any 
y e @X(TU P, h) and [c, d] C A0. Then 

jd
cy

W(s)^(s)ds = J% ( t )(5)(r1* ("1- t ,g«)(5) + j V t o Â t - i (*)<** 

+ f V % ) { r £ ^ ( 0 0 - sy-ni+k~1gki{t)dt/{<j -m + k - iy\ds 
J c \ J s cr=ni—fc+1 / 

+ J*V(*){£* « - *)*-Wo*/(* - iv}ds. 
Interchanging the order of integration, and then integrating by parts (this 
can be justified by the use of Fubini's Theorem), a lengthy and tedious 
calculation shows that 

yw(s)(Ti«"1-"glctHs)ds f 
u c 

= f E Pu(t)y'ni~'\t)g^t)dt + Ucd,y,gk,), 

Jy(k)(s)Pk_1(s)ds = 6k(c,d,Pk^), 

fcy™(s){f* (< ~ *)*~Wo*/(* - îyjds 

= J y(s)gki(s)ds + yk(c,d,y,gkl), 

f>C0 
J c 

X { £ fPu(t){t - s)°-ni+k-l
gk,{t)dt/{<T -m + k - iy\ds 

k-i Ça 
= X) I Pi.ni-,(s)yia)(s)gk2(s)ds + âk(c, d, y, gk2). 

r r=0 •* r. 

Therefore 

j *y(k)(s)ik(s)ds = j d fe, + (ny)gk2)ds + S. 
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Taking (c, d) —> Ii we see that Û —> 0. This proves Part I. Part II is obvious. 
This completes the proof. 

Remark. Part I of Theorem 4.15 can be regarded as a generalization of the 
second part of Lemma XI11.2.9 of Dunford and Schwartz [10]. To see this we 
need only take fa = 0, gn = 0, k = 1 in (4.17), and then use (ii) of Part I 
of Theorem 4.15. Note that the proof of Theorem 4.15 does not make use of any 
result from the theory of differential operators. 

5. Regular boundary problems in LP(I). In this section we assume that 
each I j is a compact interval [a^_i, a3] (1 ^ j ^ /) and that each Tj is regular 
on I j . Thus N j = 2tij and N = 2(tii + • • • + fii), V j(y) = Vj(y), so we can 
take VjT(y) to be the 1 X 2fij vector: 

(y(a,_i + ), y(a ,_ i + ), • • • , y^-l)(aj-i + )1 3 ^ - ) , / ( a , - ) , • • • , 

y{n*-l)(a>j-)), 

so that VT(y) = ( F i r ( y ) , - - - , F , r (y ) ) . 
We are interested in the following problem: Given a (perhaps complex) 

number X and a function / in LP(I) find a function ;y £ Ql(T) (1 ^ p ^ co) 
such that 

(5.19) ( r - X)y = / 

where Ty = S£y and 

^ ( r ) = {y e @i(T,p,I):P[V(y) + C^(r)(y\DTx)} = 0}. 

Here^èf is defined in (0.1) and ? is an M X iV constant matrix of rank M ^ iV. 
This problem is still too general to handle, because B is an arbitrary bounded 

operator on LP(I). We shall consider two cases: B of finite dimensional range, 
and B a multiplication operator. 

Case 5—(i). B is of finite dimensional range. 
Suppose that the dimension of the range of B is d. Thus we can find a ^ X 1 

column vector function \p(s) whose d rows are in LP(I) and linearly independent 
there, and a d X 1 column vector function \j/ whose d rows are in LQ(I) (the 
d rows need not be linearly independent) such that 

(5.20) By = (3# r)V, y € LP(I). 

Let us define a 1 X (N/2) matrix function S(t, X) defined for t £ I and a 
function K(t, s, X) defined for (t, s) £ I X I as follows: If t £ 7;- then 5(/, X) is 
the 1 X (N/2) matrix function 

(0, •• • , 0,5,(/ , X),0, • • • ,0) if* Ç J„ 

where there are n\ + • • • + Wj-i zeros before 5 ; and nj+i + ••• + #« zeros 
after; 5^(/, X) is a 1 X w; fundamental matrix solution of the differential 
equation rfy — \y on the interval I j . Let Sj(s, X) denote the cofactor of the row 
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vector Sj(t, X) in the matrix (cf. section 1): 

Sj(s, X) 
S/(s, X) 

S/n>-2> (s,\) 
Sj(t,\) 

Then i£(j, 5, X) is defined as follows: 

Sj(t1X)SJ
T(s, X) 

#(/,*, x) if (/, 5) Ç 7, X Ij and s < /. 
p ; 0 ( 5 ) ^ ( a ) ) 

= 0 if (/, s) Ç J, X /;• and 5 > L 

= 0 if (*, 5) Ç J* X / ; and fe 5* j . 
Here W(S,(s, X)) is the Wronskian of S ;(s, X). 

Then using the variation constants formula, (5.19) can be rewritten as: 

(5.21) y(t) = S(t, \)b - (K(t, -, X) |**)6#) 

- {Kit, -, \)\x*)[A(ry\<l>) + d>V(y)] + (K(t, -, X)|/) 

for t (z I where b is an (wi + w2 + • • • + nt) X 1 constant column vector 
depending only on y. First let us define an (M -\-N-\-d-\-m-\-r) X 
(N/2 + N + d + m + r) constant matrix A(X) = ( A^(X)) with the (k, j)-
matrix entry Akj(\) as follows: 

AU(X) = - V(S( • , X)), A12(X) = IN + » K ( J K(-,s, X)x
T(s)dsjD, 

Aw(X) = F ( J * ( - , 5, X)X
T(s)dsJA, 

AH(X) = F ( J K(-,S, \)*T(s)ds), 

Ais(A) = Oivxm» 

A24(X) = Oji/xdi 

A2i(X) = 0MX.v/2, A22(X) = P, A23(X) = 0Mxr, 

A25(X) = PC-\T)D*, A„(X) = - ( i f ( - ) | 5 ( - , X ) ) , 

A32(X) = t(^l(X(X)lx*))-P, A33 = (^|(if(X))|x*)M, 

A34(X) = Ig + ($\(K(\)\4,*)), A35(X) = 0 ^ a ) = - (x |5 (X) ) , 

A42(X) = t(x|(*(X)[x*))A A43(X) = (x\(K(\)\x*))A, 

A44(X) = (x|(g(X)|^*)), A45(X) = J«, A6i(X) = -X'(*|S(X)), 

A62(X) = i ( * | / X ' W T , 

A53(X) = /, + («I J ^r(5)r 

A64(X) = (* | J V(s)rtK{ • , s, \)dsj, A65(X) = 0rx«. 

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press

file://-/-N-/-d-/-m-/-r
https://doi.org/10.4153/CJM-1978-053-7


624 S. J. LEE 

Here rtK(t, s,\) = rk{t) with k(t) = K(t, s, X). If we put g{t) = (j\K(t,-,\)), 
then we have the following M-\-d-\-r-\-N-\-m equations with {N/2 + 
d + r + N + m) unknowns: 

(i) A,i(X)6 + AMV(y) + A33(X)(r;y|4>) + A34(A)(3#) = (gl#). 
(ii) An(X)6 + A12(X)F(y) + A 1 3 ( X ) ( T J # ) + A14(X)(3#) = V{g). 

(iii) A51(X)6 + A62(X)F(y) + A5,(X)(Ty|«) + A54(X)()#) = r(g|0). 
(iv) A22(X)F(y) + A«(X)(y|x) = 0. 
(v) A«(X)6+ A«(X)7 (y )+ A«(X)(Tjr|0) 

+ A44(X)(y|^) + A45(X)(y|x) = (g|x)-
The equations (i)-(v) can be rewritten 

A(X) 

Thus we have 

THEOREM 5.17. Let T be the same as in (5.19) and B be the same one as in 
(5.20). 

(i) If M < N/2 then any X (E C is an eigenvalue for T. 
(ii) / / M = N/2 then \ d Q is not an eignevalue for T if and only if det 

A(X) 5* 0. In this case the inverse operator R\ = (T — X) -1 is a compact integral 
operator defined everywhere in Lp (I) and is given by 

b V{g) 
V{y) OA/XI 

{ry\4>) = {g\i) 
h\h (six) 
{y\x) {rg\4>) 

{Rif){t) = J K(t,s,\)f(s)ds + 

-S{t,\)T 

{{K{t, -,\)\x*)d>)T 

{{K{t, -,\)\X*)A)T 

{{K{t, -,\)\r)Y 

OmXl 

K-\\) 

7. V(K(-,s,\))f(s)ds 

0 AfXl 

{f\{K{\)\t)) 
{f\{K{\)\x)) 

\{f\(K{\)\4>)) 

Proof, (i) and (ii) are an obvious consequence of (5.22). The assertion con­
cerning the form R\ follows from (5.21) and (5.22), since rg = \g and 

v[ J K(-, s, \)f(s)dsj = f V{K{ • , s, \))f{s)ds. 

Thus R\ is an integral operator with a kernel of Hilbert-Schmidt type, and thus 
a compact operator. This completes the proof. 

Case 5—(ii). By = hy. 
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Here h is Lebesgue measurable and essentially bounded in / . T o investigate 
this case, we merely define another f by fy = ry + hy. Thus the case 5—(ii) 
can be reduced to case 5—(i). 

If we allow the matrices A, D, D to vanish identically and B = 0, then we 
get ordinary regular multiple boundary problems (in fact, more general than 
tha t because we deal with direct sum operators) . Let 0(X) (X 6 C) denote the 
(N + M) X (N + N/2) constant matrix 

• - 7 ( S ( . , X ) ) , IN 

VMXN/2, -L MXNm 

where P is an M X N constant matrix of rank M ^ N. Then the previous 
theorem yields 

Remark. Suppose 1 ^ p ^ GO and T is the operator defined by Ty = 
© i r,y on [y\y G @{ &dr}, P, I,), PV(y) = 0}. 

(I) / / M < N/2, then any point X G C is an eigenvalue for T. 
( I I ) If M = N/2, then X is not an eigenvalue for T if and only if det 0 ( \ ) 

9e 0, and in this case the inverse operator (T — X) - 1 is given by: 

(T- X ) - 1 / = (S(t,\):01XN)e-1(\) X V(K(-,s,\))f(s)ds 

JMX* 

f, + J K(t,s,\)f(s)ds. 

6. Reso lvent s of se l f -adjo int p e r t u r b a t i o n s . The variat ion of parameter 
method used in § 5 is not satisfactory for computing resolvents for singular 
cases. Here we use a per turbat ion technique combined with the variat ion of 
parameter method. The idea came from discussions with R. R. D. Kemp. In 
the case when / = 1, Coddington and Dijksma [7] have obtained generalized 
resolvents of self-adjoint subspace extensions, which depend on the kernels 
obtained by approximating self-adjoint operators on compact intervals (see 
§ 6 in [7], § 5 in [6], p. 179 in [4]; see also [23]). Here we do not use such 
approximations. 

In this section we assume tha t p = q = 2, TJ = T* for each j . 
Thus Vj = Vj. Let z be an arbi t rary but fixed non-real complex number. 

Let Cj be a fixed point in / / = (a^-i, a/). Thus —oo ^ a0 < at ^ oo. Let 

7j(z) = dimJ^iT^Tj, 2, Ij) - zl),aj(z) = d i m ^ / ( r 1 ( r „ 2, («,_!, Cj)) - zl) 
and Pj(z) = d i m ^ ( / ( r i ( r j , 2, (cjy cij)) — zl). Here<^V denotes " the null space 
of" and I denotes the identi ty operator. Let Sj(t, z) denote the 1 X fij funda­
mental matr ix solution 

(Sji(t, z), Sj2(t, z), Sjz(t, z)), t G Ij 

of the differential equation rjy = zy in the interval Ij such tha t (i) Sji(t, z) is 

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-053-7


626 S. J. LEE 

a 1 X Jj(z) row vector with entries in L2(/ ;), (ii) S^it, 2) is a 1 X (<*j(z) 
— yj(z)) row vector with entries in L2(aj_i, Cj), (iii) S^(t} z) is a 1 X (tij — 
oij{z)) row vector with entries in Li{ch aj). This can obviously be done, be­
cause a3-(z) + Pj(z) = 7j(z) + tij (see, for example, [22]). Let Sji(s, z), 
Sj2(s, z) and SJZ{S, z) denote the cofactors of the row vectors Sji(t, z), Sj2(t, z) 
and Sjz(t, z) respectively in the matrix: 

Sj(s, z) 

S/(s,z) 

S+ni-2)(syz) 

Sj(t,z) 

Let S(t, z) denote the 1 X (71(2) + h T/W) row vector defined for 
/ 6 I by: 

S(t, z) = (0, • • • , 0, Sj(t, z), 0, • • • , 0) if / 6 I j. 

where there are ji(z) + • • • + y j-\(z) zeros before 5;-, and yj+i(z) + • • • + 
y 1 (z) zeros after. Note here that this S(t, z) is different from that in § 5. Let 
J^(t, s, z) be a function of (/, s) £ 7 X 7 defined as follows: 

J f (/, 5, 2) 
5ji(/, z)Sji T(s, z) + ^-3(/, z)Sj* T(s, z) 

PAs)W(Sj(s,z)) 

if (/, s) G 7, X I j , s < /. 

= 0 if (/, s ) G / t X I jt k 5* 7-

Suppose now that T is the self-adjoint operator defined by 

(6.22) Ty = ry + By + iX
TDV(y), 

D(T) = {y e ®I(T, 2, 7): P[V(y) + C-i(r)D*(y\x)] = 0}. 

Here P is an M X N (N = 2ikf) constant matrix of rank M such that 
PC~1{T)P* = 0, and B satisfies: 

(7J* - iOy = iXTDC-i(r)(y\DTx), y É U(I). 

Thus by Theorem 3.11, T = T*. We shall compute (T — z)~l. 
Let us define an operator T by 

Ty = ry, 9 if) = {y £ 9X(T, 2, 7): PV(y) = 0}. 

This is a self-adjoint operator because PC~X(T)P* = 0, and N = 2M. First 
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we note that 

£ y M = £ T,(*) = M = N/2. 
j=l 3=1 

This follows from the fact that T is a self-adjoint extension of the direct sum 
operator © i T0(TJ, 2, /,,), and the fact that 

( J2 Y;(*o), Z) 7>(zo)l (Imz > 0) 

are the deficiency indices of the direct sum operator. First we shall compute 
Rz = (T — z)~l and then use this to compute Rz = {T — z)~l. 

Take a n y / £ L2(I) such that for each J ; , / | 7 i has compact support in / / , 
and let g = i£2/. Then, using the same method as in [23], we see that 

g = S(t, z)b + J J f (/, 5, z)/(*)<k 

for some (71(2) + • • • + yi(z)) X 1 constant column vector b. Since b\Tj has 
compact support in / / , 

vy J j r ( •, 5, *)/(s)<fc) = J v{X{ •, 5, z))f(s)ds. 

Hence, since g £ @{T), 

PV(S( • , *))6 = - J Kpf ( • , 5, z))f(s)ds. 

The M X M matrix ?F(5 ( - , 2)) (TV = 2M) cannot be singular. Therefore, 
if we define 

# ( / , 5, z) = J f (/, 5, 2) - S(t, z)(P7(S(-, z)))-'V{^(-, s, z)) 

for (/, s) £ I X I, then 

- / , 
(6.23) g = RJ = J ^(t,s,z)f(s)ds 

for every / £ L2(I) such that for each Jy, / | 7 i has compact support on / / . 
It is easy to see that the above also holds for every/ £ L2(I) (cf. Lee [23]). 

We now find (T — z)~l. As before, take any / £ L2(I) such that on each 
Ij,f\ij has compact support on 7 / and put g = (T — z)~lf. Thus (T — z)g = 
f. Therefore 

(T-z)g=f-Bg- ,x
T(t)DV{g). 

Thus, since (T — z)g € £2 CO, 

Rz(r - z)g = RJ - (Rz o B)g - i(RzX
T)DV(g). 

Let Ê.Z(T — z)g = h. Thus (r — z)(h — g) = 0. Since h — g Ç. L2(I) we must 
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have h — g = S(t, z)b for some (71 (z) + 
vector b. Therefore 

+ 7i(z)) X 1 constant column 

(6.24) g = -S(t, z)b + RJ - (Rz o B)g - i(RzX
T)DV(g). 

We must determine b, (Rz o B)g and V(g) in the above expressions. T h e 
operator B is too general to handle. Thus , as in § 5, we assume tha t B is of 
finite dimensional range. Assume further t ha t B has the form as (5.20), 
where in this case p = 2. T h u s (6.24) can be rewri t ten: 

(6.25) g = -S(t, z)b + RJ - ( g | n C ^ ) - i{&,xT)DV(g). 

Let us define the (M + N + d + m) X (M + N + d + m) matr ix 5(2) = 

(&icj(z)) with matr ix (k, j ) - e n t r y 5kj(z) as follows: 

«11(2) = P, 612(2) = 0MXM, 614(2) = 0MXd, 613(2) = PC-l(r)D*, 

521(2) = /.v + iV(RzX
T)D, SM(z) = V(S(-,z)), 

623(2) = O.vx», 024(2) = V(R^T), 

53i(2) = ( * « x | l P ) T A 632(2) = ( f lS ( - . z ) ) , 

533(s) = 0«Xm, 534(2) = ( ^ ^ | ^ r ) + /«, 

ô„(z) = Jm + t ( x | ( £ , x r ) ) Z > r , 

642(2) = ( x | 5 ( - , z ) ) , 643(2) = Im, 

8u(z) = (.X\R,V). 

Then using (6.25) and in view of @(T) we have the following equat ions: 

5n(2)F(g) + « i a ( z ) ( g | x ) = 0 . 

621(2) F(g) + M 2 ) 5 + M s ) ( g | t f ) = V(RJ). 

«8i (z) 7 (g) + 532(z)6 + M z ) (g|#) = C M * ) . 

54!(2)F(g) + 842(2)6 + 84»(z)(g|x) + 544(2) (g|0) = ( l ^ / | x ) . 

The above equation implies t ha t <5(s) cannot be singular. If we define 

Q(S) = V(&(;S,z)), 

then, since e a c h / | 7j- has compact support in / / , we see t ha t V(Rzf) = (f\Q). 
T h u s (6.25) can be rewrit ten 

(6.26) R,f= (RJ)(t) 

- [c(R;XT)(t)D: S(t,z):01Xm: (R^T)(t)]è-\z) (/l<2) 
(/l(£.)V 
(/l(^)*x 
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Let us define a function ^ ( / , s, z) for (i, s) £ I X I by 

(6.27) &(t,s,z) = &(t,s,z) 

- [i(RzX
T)(t)D: S(t,z):01Xm: (Ê^T)(t)T\z) 

Then 

(6.28) RJ = J &(t,s,z)f(s)ds 

for every / Ç Li(I) such tha t each / | 7 i Jias compact support in / / . Since 

T = T*, we can show tha t & (t, s, z) = & (s, t, z). From this we can conclude 

tha t (6.28) holds for e v e r y / Ç LP(I). Thus we have the following. 

T H E O R E M 6.18. If B is the same as in (5.20) and if T is the self-adjoint operator 

in (6.22) then the resolvent Rzof T is an integral operator with the kernel & (t, s, z) 

given in (6.27). 

Remark. We do not t reat expansion theorems in this paper. In the case when 

/ = 1, r\ = TI* and B is of finite dimensional range, the corresponding expan­

sion theorems are given in Dijksma and De Snoo [9], where point-wise con­

vergence is allowed. 
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