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PERTURBATION OF DIRECT SUM
DIFFERENTIAL OPERATORS

S. J. LEE

0. Introduction. Let [ be an interval, and let 7; C [for 1 £ j << w
be abutted subintervals such that \UI; = I. Let 7, be a linear differential
expression defined on ;. In this paper we study densely defined operators
associated with

(0.1) Ly =ry+ By + x"(O)[A(ry]¢) + DV (y)]

defined on the direct sum space @1, (r;, p, I;) C L,(I). Here 7 is the direct
sum expression @ {7, B is an arbitrary given norm bounded operator defined
everywhere in L,(1), A and D are given m X r and m X N constant matrices,
x(t) and ¢(t) are given m X 1 and r X 1 finite column vector functions in
(L,(I))™ and (L,(I))" respectively such that the rows of x and ¢ are linearly
independent. 17(y) is an arbitrary but fixed N X 1 “boundary’” column vector
functional of ¥ which will be explained more precisely in § 1. The expression .2
contains, as a special case, a class of linear differential expressions whose
leading coefficients vanish identically on a subinterval of 1. The form of (0.1)
includes a wide range of interface problems (cf. the first paragraph in §5).
We shall make no special mention of those problems in what follows.

This paper is a generalization of a paper by Kemp and Lee [17] where a
special case of (0.1) is considered when 7, = 7; for all j, 4 = 0, and B is of
m dimensional range. The introduction of the term (ry|¢) allows, among other
things, the following: (i) the elements of the domain of densely defined adjoint
operators generated by (0.1) may be nowhere differentiable (Theorem 3.9);
(i1) the expression (0.1) contains, in some cases, a member which in turn con-
tains terms of the form

f YOO ()dt (§4).
1j

There is a large literature on operators generated by linear differential expres-
sions plus some additional terms. For example, see the survey article by Krall
[19]. Recently Coddington and Dijksma [7] investigated self-adjoint subspaces
in Iilbert space generated by a single formally self-adjoint differential expres-
sion (regular or singular). Honig ([13; 14] and, in particular, [15]) considered
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Volterra Stieltjes integral equations in general function space, with linear con-
straints. Krall [21] studied finite dimensional perturbations in a suitable L,-
type space, generated by a single regular differential expression. Tvrdy’ [26; 27]
and Tvrdy’ and Vejvoda [28] also considered integrodifferential equations on a
compact interval.

We briefly summarize the contents of our paper. In § 2 we set up ‘‘reasonable
boundary conditions” to study (0.1). This is done by introducing maximal and
minimal operators, and adjoint expressions. These ideas are basically the same
as in [17]. More specifically we do as follows: we define the maximal operator
7,(, p, I) by (0.1) on the maximal domain, and its adjoint operator is found,
but this adjoint may not have dense domain (Theorem 2.1). Our interest
here is in densely defined operators. In order that the domain of 7* (%, p, I)
be dense we assume through this paper that the matrix A, is non-singular
(Proposition 2.2). This assumption guarantees that 7,(, p, I) is a closed
operator (Theorem 2.3), and consequently we can define the minimal operator
To &L, q, I) = T, p, I) in L,(I). We attempt to find densely defined
closed operators 1" C 11(%, p, I). This leads us to define an expression £ in
L,(I) ((2.11)), and a corresponding maximal operator T, q, I) in L,(I).
We choose % so that.? and & produce a suitable bilinear form, allowing us to
define an adjoint expression (cf. Proposition 2.4), which in turn leads us to
define the minimal operator 70(&, %, p, I) = T* (&,q,1)in L,(I) (Theorem
2.5). The main object of study in § 3 is the operator 7" defined by (3.13.)
This operator corresponds to an «arbitrary closed linear operator between the
minimal operator 7°,(%, &, p, I) and the maximal operator T1(%, p, I)
(Proposition 3.6). When the number of boundary conditions for 7" exceeds N,
then 7" becomes a non-densely defined operator (PProposition 3.8 and Remark
after). The adjoint of 7" is computed (Theorem 3.9). Each element of & (1*)
is the sum of two functions, one of which is smooth, and the other not. These
phenomena occur also in Theorem 3.3 and Theorem 4.1 of Coddington and
Dijksma [7] in their description of self-adjoint subspace extensions. However,
the above mentioned phenomena do not appear if, in their theorems, we replace
“‘self-adjoint subspace extensions’’ by ‘‘self-adjoint operator extension’’. The
expression (0.1) can generate a symmetric operator in L» () only when it does
not contain the term (ry|¢) (Theorem 3.10), and under this circumstance we
can give a necessary and sufficient condition for a given perturbation to be
self-adjoint (Theorem 3.11 and Corollary 3.12). Theorem 3.11 in our paper
coincides with Theorem 3 in [6] and Theorem 4.1 (regular case) in [7] provided
that in our theorem we take / = 1, B of finite dimensional range and their
extensions are taken to be operator extensions, i.e., H(0) = {0} in their nota-
tion. A necessary and sufficient condition is given for a perturbation generated
by (0.1) to be symmetric without using the Cayley Transform (Theorem 3.13).
It seems that such a characterization has not appeared in the literature even
for the special case of [ = 1,.%y = 7,y. The purpose of § 4 is to see how large
is the class of expressions (0.1). In some cases (for instance, regular cases)
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(0.1) contains an expression which in turn contains terms of the form

fl YO0 d ()l

]

(¢, may be nowhere differentiable) (Theorem 4.14). In trying to convert the
above integral into the form (ylg,);, + (71y]g2) 11, we incidently generalize the
second part of Lemma XI11.2.9 of Dunford and Schwartz [10] (Part I of
Theorem 4.15). In §5 we briefly discuss inhomogeneous regular boundary
value problems in L,(I). In § 6 we find explicitly resolvents for self-adjoint
operators generated by (0.1) in singular cases. In the case when/ = 1 and B is
of finite dimensional range, resolvents of self-adjoint subspace extensions were
found by a different method in [7].

1. Preliminaries and notation. Whenever possible we shall use the same
notation as in [17]. If Q,(¢) and Q,(¢) are my X ms, m» X my matrix functions
in L,(I;) and L,(I;) respectively (1/p+1/¢=1, 1 £ p, ¢ < ), then
(Q1/Q2) 7, will denote the m; X m; matrix

| ewg.o

(integrated componentwise). If, in particular, the interval [ is used inside of
which all of our analysis will take place, then we denote (Q:|Q2); by (Q1]Q-).
The interior and the closure of ; are denoted by I,° and I, respectively. The
transpose and conjugate transpose of a matrix Q are denoted by Q7 and Q*
respectively. If 7" is a densely defined operator in L,(I;) (1 £ p < ) then
the operator adjoint of 7"is denoted by 7*. In the case when p = o0, the adjoint
7* of T is defined as in Rota [25]. For an operator 7', & (T") denotes the domain
of 1". Suppose now that 7'y and 7' are densely defined closed operators in
L,(I;) 1 =p =) such that 7y C 7. Then the 7'-topology in & (1) is
the topology generated by the 7'j-norm:

llz = 1yl + 11Tl if 1 =p <o,
= max {|[y[[o, [T} if p = 0.

Note that 7'y-norm can be replaced by equivalent norms (||y|,> + || Tw||,”)!"”
and (||y|,2 + [|Tw|,>)'* when p # 0. By a boundary value for 7°; with
respect to 7'y we mean a 7';-continuous functional (i.e., continuous with respect
to the Ti-topology) on & (1), annihilating & (T%). If p % oo then any 1'-
continuous functional f on & (1';) can be written as

f@) = (Twlg2) r; + Blen) 1,
with g, € L,(I;). In addition, if f annihilates & (1), then g» € D (1*),
T'o*gy = —gi, and thus

FO) = (Twlge) r; — OW|Te*g:) 1,
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(cf. Lemma 1.1 in [17]). For each j =1, 2,---,/, let 7; be a differential
expression of order #;:

nj

Ty = ];j pay, eI,

where the p ;. (t) are (n; — k) times continuously differentiable complex-valued
functions defined on I; and p;o(¢) # 0 foreveryt € I,° P, (t) may or may not
vanish at end points of I;. We assume that the right end point of I, is the left
end point of 7,,1. As usual the direct sum expression r = @{r; is defined as
(ry) () = (z;y) (1) if t € 1,°. The Lagrange adjoint of 7, is denoted by 7;*.
Associated with each 7; there is in L,(I;) the maximal operator T(r;, p, ;)
and the minimal operator 7% (r;, p, I;). These operators are closed operators
satisfying 7'o(r;, p, ;) C 11(r;, p, I;). For detailed properties, see Kemp [16]
or Rota [25]. For a Banach space X, the dual will be denoted by X*.

Throughout this paper we assumet that the essential resolvent set for T (r;, p, I ;)
is not empty for eachj = 1,2, - L.

The above assumption implies that dim [Z(r;, p, 1,)/Do(z;, P, I;)]* is
finite (call it N;) and N; < 2n; (sece Rota [25]). Here Di(r;, p, I;,) =
D(Ti(ry, p, 1)), Dolry, p, 1) = D (To(r;, p, I,)). The above assumption is
not necessary if either 7, = 7,* and p = ¢ = 2, or 7, is regular. Because of the
above assumption there exists an IV; X 1 column vector function 17;(y) such
that the N, rows of 17;(y) form a basis for the space of boundary values for
Ti(r4, p, I;) with respect to 1'(r;, p, I,). The dimension of the space of the
boundary values for 71 (7;*, q, I,) with respect to 7(7;*, q, I;) is also N, and
there exists an N; X 1 column vector function V,(y) whose N; rows form a
basis for the space of boundary values for 7')(r*, ¢, I;) with respect to
To(r* q, I;). These functions satisfy the following relation:

<3’|Z>r,-,p,1]- = (Ti(r, oy I)YI2) 1 — OIT2 (7%, q, 1)) 1,
=V *(E)Ci(r) Vi)
forevery y € Z1(r;, p, I;) and 5 € D1(r*, ¢, ;) = D (1 (v% g, I,)). Here
C;(r;) is an N; X N, non-singular matrix depending only on 7.

Throughout this paper we shall assume that if either 7, 1s regular, or v; = 7;*
and p = q = 2,then V; = V.

This is not a restrictive condition. Let

N=Ni+No+ -+ N,y Viy) = ("), V"), -, V),
VT(z) = (Vi"(2), V2" (2), - -+, V)" (2))-
Thus V(y) and V(z) are N X 1 column vectors and
Ol2)rpr = (ylz) — Glr*z) = iV*()C(r) V(y)

1This assumption is not necessary if p = «. See E. A. Coddington and A. Dijksma, Adjoint
subspaces in Banach spaces with applications to ordinary differential subspaces, Ann. Mat. Pura
Appl., to appear.
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forevery y ¢ @12,(r;, p, I,) andz ¢ ®iD1(r* ¢, I,). Here C(r)isa N X N
. . 1~ . . )
nonsingular matrix @1C,(7;) (matrix direct sum).

We also assume throughout this paper that the rows of ¢ are linearly independent
mod I (r).
Thus (0.1) must contain terms involving (ry|¢), unless A vanishes identi-

cally. We define the direct sum operators 1'(r, p, I), T'1(z, p, 1), To(v*, ¢, I)
and 11 (7%, ¢, I) as follows:

1 1
TU<7'r P, I) = 6_1) TU(TJ': P ]j)v T1<71 P, I) = C—? TI(TJ'» P Ij)r

4 l

Y‘O(T*v q, ]> = @ TU(Tj*v q, Ij): Tl(T*v q, ]) = (-B Y‘1<Tj*’ q, 1])

1 1

Then clearly the following are satisfied:

’[‘()(Tv [)y ]) C '1‘1<Tv pa ])v ]‘O(T*y _(]y I) C -’1‘1(7-*1 (I_y I)v

T*(ryp, 1) = Th(v*,q, 1), T*(z,p, I) = Ts(v%,q, 1),

TO*(T*v q, ]) = Tl (T» i)v I)r ’1‘1*<T*a q, I) = TO(Tv j)y I)!

Wl2)ep s = (Tilr, p, Dylz) — O[T1(*, g, )2)
foreveryy € Z(r, p, 1) = D (1(r, p, 1)) and z € Z,(r*, q, [) = D (1'1(+*,
q, I)). Using 1 (z, p, I) we can interpret (0.1) as follows in the special case
when 73 is of finite dimensional range and p 5 0. In this case an expression %’
has the form (0.1) if, and only if, ¥y = 7y + G(¢, y) where

(i) For a.a. t ¢ I, G(1, y) is a T:(r, p, I)-continuous functional of y on
D1(r, p, I) (not necessarily annihilating D(r, p, I) = D (To(r, p, I))), and

(i) for each fixed y € D(r, p, 1), G(t,y) ¢ L,(I).

Let 1(v) = (v,(y)i_r. If Q1) is a 1 X d row vector (¢;(t)) with entries in
(1, p, 1), then T7(Q) will denote the N X d matrix with the (&, j)-entry
v/;((]./')‘

If £ is an n X n square matrix and if £, = (e;;) is an m; X ms submatrix,
then the cofactor Iy = (¢,;) of Iiy in E is the m, X ms matrix with &.; equal to
the usual cofactor of ¢;; in I

2. Minimal and maximal operators, adjoint pairs. Throughout this
section let% be asin (0.1). First let us define the maximal operator 7', (%, p, I)
in L,(I) associated with % as follows:

N p, Dy =%y, (1L, p, 1)) =2D2.(L,p,1)=D:(s,p,1).

Clearly 2,(%, p, I) is dense in L,(I) so that 7*(%, p, I) exists. To determine
the domain of, and formula for, 77* (&, p, I), we first define an operator /' on
L,(I) by

F(z) =z + (z[x"4)9.
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THEOREM 2.1.
DML, p, 1) = zC L,(I): Fz) € Di(e*,q,1)
and V(F(2)) + ¢*='(r) (z|D"x) = 0}
Y*(gv D, I)Z = T*(F(Z)) + B*z.
Proof. Take 2 € Z(T*(L, p, I)) and put T*(&, p, )z = w. Then for any
y € D(r, p, I), (ry + By + xTA (ry|¢p) + ixDV (y)|z) = (y|lw). Thus, using
(0.1) and the above, for y ¢ Z(r, p, I),
(ry|F(2)) = (y|lw — B*z).
Hence, I'(z) € (%, ¢, I) and 7*(F(z)) = w — B*z. Now, for any y €
gl(Tr pa I),
(ry|F(2)) + «(X"™DV(y)]z) = (y|7*(F(2))).
Since F(z) € D.(%, ¢, I),
[V(F(z)) + C-*(r) @ D™)*V(y) = 0

forany y € Z,(r, p, I). This implies the second part of the theorem hecause
V' (y) can be an arbitrary NV X 1 constant vector. This completes the proof.

The above theorem tells us that elements in Z(T*(&, p, I)) need not be
differentiable, and the domain may not be dense in L (7). Since we are in-
terested in operators with dense domains we shall find a condition under which
the domain is dense. First let us define an » X » constant complex matrix:

Ar = Ir + (¢|XTA)
with I, denoting the » X 7 identity matrix.

ProrosiTION 2.2. Suppose A, is non-singular. Then
(i) Fis a homeomorphism from L,(I) onto L,(I), and

F-1(z) = 5 — (z|x¥4)A,1¢.
(i) D(T*(&L, p, I)) is dense in L,(I).
Proof. Part (i) is clear. To prove (ii), let us define a manifold
Y =z Di(* ¢, 1): V(z) + C*1(r) (F~1(2)|[D"x) = 0.

Then % is dense in L,(I) by Lemma 2.2 in [17]. Thus 2 (T *(&, p, 1)) =
F~Y(%/) is dense in L,(I). This completes the proof.

In the remainder of this paper we shall assume that A, is non-singular.
By the above assumption 77** (%, p, I) exists, and we have

THEOREM 2.3. T7** (¥, p, 1) = T1(&, p, I), and, in particular, T1(&, p, I)
1s closed.

Proof. Since T1(&, p, I) C T**(&, p, I), it is sufficient to show that
T, p, I) CT(&, p, I). Take any y € D(T**(&, p, 1)) and put
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T (L, p, )y = w. Then for any z € D (T *(&, p, 1)), (+*(F(2)) + B*zly)
= (z)w). Therefore
(2.2)  (*gly) = (79w — By)

for any ¢ € %. Let [¢, d] be a compact subinterval contained in 7;°. Then
(2.2) holds, in particular, for any ¢ € % vanishing outside [c, d]. Let us put
gV (t) = h(t). Then

k—1
23) "0 = (t 3)1)! h(s)ds, (1 =k =m),
and kisorthogonal to 1, s, - -, s,,_1in Lo[c, d]. We also note thatif & € Lo(c, d)
and is perpendicular to 1, s, - - -, 5,,_1 in Ly(c, d) then ¢ defined by gV ({) =

h(t)if t € [c,d], ¢ = O fort ¢ [c, d] belongs to @ M Cy(I,°). Since ¢ € % N
Co(19), we must have

(gIx"D — x"A(A,¢[x"D)) = 0.
Thus if we put

(24)  u@) = x"OD — A(2,7"9[x"D)]

then
0= (glu) = f h(s)[ ( (é _”‘)‘7%7 IL(t)dt:lds

We now express (2.2) in terms of k. Let us put

Ti*g = Z_I: (g™
and .
(2.5)  r(t) =w — By — x"A(A0,¢[w — By), € [c,d].
Then

0= (*¢ly) — (F(¢)lw — By)

Il

fc y(t){ﬁwo)g("”a) + Z ﬁma)g("““(t)}dr

[l [

Thus, using (2.3) and interchanging the order of integration which can be
justified by Fubini’s theorem, the above can be rewritten as

fd h(s)Y (s)ds = 0,
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where
‘ n1 (t - 5)1” 1
26) ¥ = bul©) + X | o=y [ by @
f— n1—1
((n )1)‘ r(t)dt.
Therefore ¢ is a linear combination of 1, s, - - -, s"=! and the N entries of

b — ni—1
f ((n )1)' u(t)dt
in Lo(c, d). Since p1o(t) = (—=1)"1p14(t) 5 0 for t € [c, d] and so it is easy to
see that y is (n; — 1) times differentiable on [¢, d] and

ni—1

k;) (Elky)(m_l—k)(—l)k + (—-l)'”"1 fs( Zlnl(t)y(t)dl

— (=1t f r()dt = a + (—1)"1 f w(t)dtB,

for a.a. s € [¢, d] for some constant « and an N X 1 constant column vector
B:1. From this we conclude that y®i=V is absolutely continuous on [¢, d], and
differentiating again we have

27)  ny —u@®)p = @)

for a.a. t € [¢, d], and hence in ;. The above shows that y™1= is absolutely
continuous on every compact subinterval of 7,° and 7,y € L,(I;). Since {; was
arbitrary we see that y € Z,(r, p, I) and

(28) ry—u@)B;=rlt), tecl,

where 3; 1s a constant N X 1 column vector depending only on 7 ;. If we define
Q) in L,(I) by Q) = u()B, if ¢t € I;, then, in view of (2.4) and (2.5),
formula (2.8) is rewritten

(2.9) w— By =1y — Q@) + (w — By|$TAa,~17) A x

for a.a. ¢t € I. Thus

Il

(w — Byl¢"A, 1) = (ry — Ql¢TA,~1")A¥

(ry — Ql¢").

Il

Hence (2.9) can be rewritten

(210) w— By = 1y — (1) + (ry — 2¢7) A x.

We shall determine . Now for any s € 9 (T*(&, p, 1)),
(T*(F2)]y) = (F(2)|ry) — (22 + (Ql¢™) A x).

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-053-7

608 S. J. LEE

Hence by the definition of (y|z).,.; we can obtain
dH)CE)T(F(2) = — (22 + (Ql¢7) A4 ™).

Since z ¢ Z (1 (&, p, I)) and C*(v*) = C(r),
J*() D Tx) = (62 + (Qle™) A Tx).

Thus the denseness of Z (T*(&, p, I)) in L,(I) implies that
7 (y)D x = 2 + (2[¢7)A"x).

Substituting the above into (2.10), we sce that w = .¥'y. This completes the
proof.

By Theorem 2.3 we have the natural minimal operator 74(%, ¢, I) in L,(I)
defined by

T()(g! q, I) = Tl*(gv P: I)
Thus
To(Z, q, )z = TX(L, p, )z = ™(F(2)) + B*=.

Renjark. In [17] a different notation for the above To(L, q, I)is used. Note
that 79 (&, q, I) does not depend on.¥ which will be defined later.

Suppose now that 7" is a closed operator with dense domain such that

T C T, p, I).
Then

TQ(B%, q, I) C T*
In particular,
1%z = *(F(2)) + B*z, 2 ¢ 2(T6(Z,q,I)).

We also note that in this formula for 7*(, p, I) no terms involving (7*z|¢)
do appear. Therefore it is natural to expect that 7*z can be associated with an
expression of the form

(2.11) Lz = *(F(2)) + Bz + x™DV(F(z)), z € F-(2.(*, ¢ 1))

where B is a norm bounded operator defined everywhere in L,(I), x is an
7 X 1 column vector function whose # rows are linearly independent in
L,(I)and Disam X N constant matrix. The expression.? acts on I'=!(Z, (¥,
q, 1)). Associated with .# there is the maximal operator T7(%, ¢, I) in L,(I)
defined by

T‘l(g, q, Dz =<,(Zz, z € Y (D,(r*, ¢, I)).

We note here that the operator T4 (fZ), q, I) depends onZ" because v depends
on . However, if F is the identity operator, % is independent of ..
First we have the following.
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Definition. We say that the expressioncg in (2.11) is adjoint to & in (0.1) if
Bz = B*s + TDC*1(r) (2| D x)
for every z € L,(I). Similarly we say that.¥ is adjoint to Zif
By = B*y + o "DC* (%) (y|D7%).

_We note from the above definition that Z is an adjoint to % if and only if
& is adjoint to.Z. In particular, if B is of finite dimensional range, then by
altering D, D, x and x, we see that the concept of ‘“‘adjoint” discussed here
coincides with that in [17]. We have the following properties of .£ .

PROPOSITION 2.4. Suppose L is any adjoint expression to.L defined by (2-11)
for some x, D, B. Then

(i) (Lylz) — WLz) = [V(F(2)) + C*1(r)D* (z|x)1*C () [V () ~

+ C1(r)D*(y]x)]

fory € Di(r,p,I),3 € F-H(D:(r* ¢, I)).

(”) T()(Cg/r q, I) C Tl(‘ffv q, I)

(iii) 2 € D(To(Z, q, 1)) if, and only if z € F~1(D1(1*, ¢, 1)) und (Ly|z) =
L z2) for all y € D, (z, p, I).

Proof. Since Tw(&L, ¢, I) = T*(Z, p, I), (i) and (ii) follow immediately.
The “only if” part in (iii) is obvious from the definition of Z (T *(&, p, I)).
The ““if”” part of (iii) follows from (ii) and Theorem 2.3.

The proof of the following theorem can be carried out by an argument
similar to that of Theorem 2.3. Thus we merely state it without proof.

THEOREM 2.5. Suppose the & defined by (2.11) is adjoint to the & defined by
(0.1). Then

() (T XY, q, 1)) = 1y ¢ Dilr, p, 1): V(y) + CUr)D*(y[x)] = 0},

'L, q Dy =2y._

(i) TW(Z, g, I) = T** (&, ¢, I).

By the above theorem if the ¥ and . defined by (0.1) and (2.11) are an
adjoint pair, then we have the natural minimal operator 7(¥, %, p, I) in
L,(I) defined by

To(&, L p, 1) = T*Z,q, ).
Thus, the definition of ]‘0(2/',3, p, I) together with Theorem 2.5 yield
1‘0(0%,5?, py ]) C ]‘l(gy P» ])r
]‘()*(B(/’gv pv I) = Tl(gr qy 1)
We also note that if the Z defined by (2.11) is adjoint to the . defined by
(0.1), then
(2.12) (W&, p, Dyls) — (T, g, I)2)
= [V (F(z)) + C*1(r)D*@Ex)*C()V(y) + C-1(r)D*(y[x)]
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The relations between maximal operators 7' &, p, I, Ty (O(Z, g, I) and mini-
mal operators To(Z, q, I), To(&, &, p, I) can be illustrated by the following
diagram:

]‘O(D(Z;vj» [)y I) C ]‘1("%&7)7 I)

ToZL, ¢, 1) C T (L, q, 1)

where ‘<" means “adjoint to each other”. We also note that TI(G(ZL ¢, 1) and
Ty, %, p, I) depend on ¥, but Ty (&, q, I) does not depend on ¥,

3. Adjoint operators, symmetric perturbations. We shall show how to
find adjoint operators and closed symmetric operators using the adjoint
expression defined in the previous section. Throughout this section, unless
otherwise mentioned, 7" will be the operator

(3.13) Ty =Ly =71y + By + x"(O)[A(ry|¢) + DV (¥)],
(B314) D(T) = {y ¢ Di(r, p, 1): P[V(y) + CH(r)D*(y[x)] = 0.

Here

(i) D is a given 71 X N constant matrix, 2 is an M X N constant matrix
of rank M £ N (1 < w0).

(i1) x(¢) is a given 7 X 1 column vector function whose rows are linearly
independent in L,([).

First we have

Proposition 3.6. (i) The operator 1" defined by (3.13) 1s closed.
(i) If the & defined by (2.11) is adjoint to the & defined by (0-1) then any
closed operuator between Ty(L L, p, I) and T1(L, p, 1) has domain usin (3.14).

Proof. To prove this proposition we shall make use of the following theorem:
If Ty and 7' are densely defined closed linear operators in L, (1) with 7%y C 17,
then an operator 77 between 7'y and 7 is a closed operator if and only if
D (1") is a Ti-closed subspace of Z (1) containing Z (1Y), (cf, for example,
X11.45 in [10]). We now prove (i). First we note that 7,(%, %, p, I) C
T C T (&, p, I). It is sufficient to show that 2(T) is 11(%, p, I)-closed.
But Z (7') is the kernel of the A 1"\ (r, p, I)-continuous functionals, and thus
is T'1(r, p, I)-closed. However, from the definition of (0.1), there exists a
constant K such that

HyHTl(T,p,Iv = KHyHTl(.SP,p,D

forally € &,(r, p, I). Therefore using the closed graph theorem, the 7' (r, p, I)-
topology and T1(-&, p, I)-topology in Z:(r, p, I) coincide with each other.
Therefore 2 (T) is 11(Z, p, I)-closed. We now prove (ii). Suppose 1" is any
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closed operator between 7o(Z, £, p, I) and T1(%, p, I). For each
2 € F-Y D, (% ¢, I) and y € D (7, p, ), we define

(Gl2))e.z = (Lylz) — 0 L).
Then for each fixed z € F-1(9,(r*,¢,I), themap y — ((¥|z))e.zis T1(r, p, I)-

continuous on Y, (r, p, I). Thus, if we put

H,(y) = (Wl2))e.ar ¥ € Dilr, p, 1),
then, since 7 is closed,

9(7) = N {3’691(T,Z’y I)Hz(y) :0}

2€2(T*)

By the form in (2.12),
H.(y) = ¢ V(y) + CH)D*(yIx)], =z € D(T%),

for some N X 1 constant vector ¢, depending on z. Thus £ (T") has the form
as in (3.14). This completes the proof.

In the course of the proof of above proposition, we have also proved:

PROPOSITION 3.7. Suppose the & defined by (2.11) is adjoint to L defined by
(0.1). Then the dimension of the spuce of boundary values for T1(ZL, p, I) with
respect to To (L, L, p, I)is N.

Remark. A different method was used to prove Theorem 3.1 in Kemp and
Lee [17]. This method is not satisfactory in our case because the terms such as
(ry|¢) are involved in the definition of (0.1).

Proposition 3.6 does not give us any information on the denseness of Z(T)
in set (3.14) in the case when the number of boundary conditions exceeds the
dimension V. As we shall see later, such cases will lead us to non-dense domains.

Suppose now that P, and Q, are A/, X N and M; X % constant matrices,
and put

(3.15) 9 = {3’ € 91(73 P, I): Pﬂ"()’) + Ql(y|>2) = 0}-

Note first that if M; < N, then £’ can be rewritten as in the form of (3.14)

(see the proof of Theorem 3.5 in [17]).

ProrosiTioN 3.8. Suppose
(i) My > N, and
)A
(ii) Py s the compound matrix [1'112) :| for an My X N matrix P, of rank
—~ 2
My = N, and an (M, — My) X M, matrix E.

If we write Q; = [82} where Qs 15 an Mo X 1 matrix and Q3 is an (M, — M)
3
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X 1 matrix, then @' defined by (3.15) is dense in L,(I) if, and only if EQ, =
Q3. Im this case

D' =1y € D1(r, p, ) P2V(y) + Q1(y[x) = 0}.

Proof. Note first that y ¢ £’ if, and only if P2V (y) + Q:(y|x) = 0,
(Q3 — EQs) (ylx) = 0. The result is now immediate because the rows of x(t)
are linearly independent in L,(I) and the set of y such that PV (y) + Q2(y|x)
= ( is dense in L,(I).

Remark. In the course of the proof of the above proposition, we also proved
the following: If £’ denotes the linear space of y such that P17 (y) + Q(y|x1)
= 0 and (y|x2) = 0 where P and Q are constant matrices and P is of rank
M = N, and if the rows of x. are linearly independent in L,(I), then Z"
cannot be dense in L,(7).

However we still can define an operator 2’ using (0.1). This will give rise
to non-densely defined operators. Such operators have been investigated, for
example, by Krall [20; 21] for regular cases, and Coddington and Dijksma
|7] for the case p = ¢ = 2, the number [ of intervals I, is 1 and ,* = 7.
The method used by Coddington and Dijksma are radically different from that
of Krall [20; 21].

We now prove

THEOREM 3.9. Suppose
() L and L are an adjoint pair us defined in (0.1) and (2.11), respectively,
and
(ii) T'is the operator in L,(I) defined by:

Tz =%z z¢ 9,
D(T) = {g — (gx")A¢: g € D1(*, ¢, 1) and
PV (g) + C*=1(1)D*(glx) — C*='(7)D*(g|x"4) A, (¢]x)] = 0}.

Here P is an M X N constant matrix of rank M < N. Then the operator 1°
defined by (3.13) and the above T are adjoint each other if und only if M + M =
N and PC‘I(T)P* = Oprxit-

Proof. The proof is similar to that of Theorem 3.5 of Kemp and Lee [17].
However, for completeness, we shall outline it. First, put ¢ = F(z) for z €

2(T). Then
D(T) = {z € L,(I): 3 € F-(D1(r*, ¢, 1)), P[V(F(2))
+ C*1(r)D*(z[x)] = 0}.

Since P is of rank M =< N there exists a non-singular M X M matrix £ such
that (EP)(EP)* = I,;, and an (N — M) X M matrix R such that the com-

pound matrix [135:] is unitary. Thus y € 9 (7)) if, and only if there exists a
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constant (N — M) X 1 column vector 5 such that
V(y) 4+ C-H(r)D*(yx) = R*y.

Note also that for any (N — M) X 1 constant column vector n there exists
ay € D.(r, p, I satisfying the above equation. This is because the N rows of
V(y) + C-1(r)D*(y|x) are linearly independent functionals in y on Z:(r, p, I),
which is dense in L,(I). We shall characterize & (T*) in terms of the above .
First we note that

To(&\ L p, 1) CT C 1L, p, 1)
Thus T9(&, ¢, I) C 1* C T1(Z, g, I). Hence, using (i) of Proposition 2.4 we
see that z € & (T™*) if, and only if

0 = [V(F(2) + C*Hr)D* (=) ]*C(r)[V(y) + C1(r)D*(y[x)]
for every y € Z(1"). Therefore z € & (T*) if, and only if

[V(E(2)) + C1(r)D* (& x)*C(r)R*y = 0

for any (N — M) X 1 constant column vector 5. Thus, letting 7, = RC*(7),
we see that z € Z(1*) if, and only if

PA[V(F(z)) + C*1(r)D*(z[x)] = 0.

Moreover PC-1(r)(P)* = PC1(r)C(r)R = Opxy_1, and Py is of rank
N — M.
We can now prove the “‘only if”’ part. Suppose T = T*. Then, in particular,
D(T) = {2 € F7H(D1(t*, ¢, 1): PLV(F(2)) + C*1(r)D*(z]x)] = 0]
=D(T*) = {z € F-Y (D% q,1): P,[V(F(3))
+ 1D EN0] = 0,
Thus M = N — M and there exists a non-singular 3 X M matrix E such that
P = EP,. Thus PC-1(+)* = 0. The “if” part is obvious. This completes the
proof.

The following theorem gives us a necessary condition for the 7" defined by
(3.13) to be symmetric.

THEOREM 3.10. Suppose p = ¢ = 2 and the operator 1" defined by (3.13) is
symmetric. Then
(i) A = Oand F1is the identity operaior on Lo(I).
(i1) 7 = * if, and only if B* — B 1s of finite dimensional range.

Proof. Let us define an exprcssionfz by

Ly = *(Fy) + B*y + "DIC (1) 3|D"x) + V(F()]

for vy € IY(Z:(+* 2, I)). Then & and & are an adjoint pair and
To(L, &L, p, 1) C1* C T1(L,2,I). Hence, forany y ¢ 2(10(&, <, 2, 1))
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we must have y ¢ '™ (r*,2, 1)) and Xy = ZLy. In particular, (y[x"4)¢
€ D%, 2, 1) for any y ¢ D (1L, Z, 2, I)). Since the m rows of x are
linearly independent in Ly(1) and D (Ty(Z, %, 2, I)) is dense in Ly(I), the
map y — (y|x?) from Z(1(¥,¥, 2, I)) into C™ is surjective. Therefore, for
any 1 X m constant vector ¢, cA¢ € Z1(v*, 2, I). This is possible only if
A = 0 because by assumption the rows of ¢ are linearly independent mod
2,(7*). Therefore A4 = 0 and thus /is an identity operator on L, (I). Since I'is
the identity operator on L,(I) and ¥ =% on D (1'\(&,.L, 2, 1)), we see that

(3.16)  (r — ™)y = (B* — B)y + " ())DC~(1)D* (y|x)
+ X TD[V(y) + C*(r) (3|D"x)]

for every vy ¢ D (1(&, .2, ). Part (ii) follows immediately from (3.16)
since Z(Ty(&,¥, 2, 1)) is dense in Ly(I). This completes the proof.

Remark. When 5* — B is of infinite dimensional range it is not clear whether
or not the relation (3.16) implies 7 = 7*. This suggests that (0.1) possibly
generates a symmetric operator in the case when 7 £ 7%, p = ¢ = 2. Of course,
if this happens, then the range of B* — B must be infinite dimensional.

THEOREM 3.11. Suppose p = q = 2,7 = % and T is the operalor

Ty =ry + By + w'DV(y),
D(T) = {y ¢ Di(r,p, 1): PLV(y) + C'(r)3DTx)] = 0}

for some M X N constant matrix P of rank M < N. Then T is self-adjoint if
and only if
(i) B*y = By + «"DC' (1) (y|D"x), v € Lo(1).
(i) N = 2M, PC(r)P* = 0.
(i) 2(1) = {y € Z1(r, 2, 1): P[V(y) + C'(r) (3| Dx)] = 0O}.

1’700[ The “if” part is trivial. We shall prove the “only if”’ part. Suppose
17" = T* We note first that 17(y) = 7 (y). The expressions &’ and . defined
by:

2
I

y + By + "DV (y),

Ly =1y 4+ B*y + x"D[C1(r) 5|D"x) + V(y)],
are an adjoint pair, and

T, L, 2, 1) CTC 1,2 1).

This relation implies (i). By Theorem 3.9 there exists an (N — M) X N
matrix P of rank N — M such that

PC-Y(r)P* = 0 and
D(T) = D(T*) = {y ¢ D:1(r,2,1): PV(y) + C-(r) 3ID"x)] = 0.
By (i), % is adjoint to itself. Thus applying Theorem 3.9 again, we can find
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an M X N constant matrix P; of rank M such that P;C-1(z)P* = 0 and
D(T) =1y € Di(r,2,1): P[V(y) + C1(7) (3] DTx)] = 0}.

Therefore M = N — M, and there exists a non-singular 4/ X M matrix £
such that P, = EP. This implies (iii). This completes the proof.

Theorem 3.11 does not tell us conditions on D, x for which 7" is self-adjoint.
However, in the course of the proof of the above theorem we also have proved

COROLLARY 3.12. Suppose that p = q = 2, = t*. Then the operator T defined
in Theorem 3.11 is self-adjoint if, and only if
(i) B*y = By + "DC(r) (y|D"x) for y € Lao(I).
(il) N =2M, PC(r)P*=0.
(iii) x7()DC-1(r)P* = xT(t)DC-1(7)P*.

Remark. The above condition (i) implies that in addition if B = B*, then
DC-1(r)D* = 0.

Remark. Theorem 3.11 and Corollary 3.12 coincide with Theorem 3 of
Coddington [6], and Theorem 4.1 (regular case) of Coddington and Dijksma
(7] provided that ! = 1 in our case and their extensions are operator extensions,
i.e., H(0) = {0} in their notation.

Remark. Theorem 3.11 also proves the following: Let {y~, v*} denote the
deficiency indices of 7, = 7,* in Ls(/,). Then y= = y* if y~ + y* is an even
number, and there exists a ((y~ + v1)/2) X (y~ + v*) constant matrix P
such that PC~1(r;)P* = 0.

Next we shall find a necessary and sufficient condition for a given closed
perturbed operator to be symmetric. As we will see later, any closed symmetric
perturbation can be obtained by examining the N X N non-singular matrix
C(r). In the proof of the following theorem, we do not make use of Cayley
transform.

THEOREM 3.13. Suppose p = q = 2, 7 = 7*. Let 1" be the operator
Iy =1y + By + x"DV(y),
D(T) =ty € Di(r,2,1): P[V(y) + C(r)D*(y[x)] = 0

where P is an M X N constant matrix of rank M =< N. Then 1" is symmetric
if, and only if

(i) (B* — B)y = x"()DC(r)0ID"x), ¥ € L2(1), and

(ii) there exists an (N — M) X M constant matrix E of rank N — M < M
such that PC=1(r) (EP)* = 0.

Proof. Define an expression.?” on Z,(r, 2, I) by
Ly =1y + By + x"()DV(3).
First we prove the “if’’ part. Condition (i) implies that % is adjoint to itself,
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so we take & = £. By Sylvester’s inequality the rank of EP is N — M. Set
P = EP. Thus PC-1(r)P* = 0. Let @' denote the set of y in &, (r, p, I) such
that P[17(y) + C='(r)D*(y|x)] = 0. Let 7" denote the operator defined on &’
by T’y = %y. Then, by Theorem 3.9, T” = T*. Clearly Z(T) C &'. There-
fore T C T*, so that T is symmetric.

We now prove the “only if”’ part. First we note that Theorem 3.10 implies
(i) of our assertion. Thus.¥ defined above is adjoint to itself and so

To(Z,%,2,1) CTCTW(¥Z,2]1)
where as before we take & = . Note that 14(%, %, 2, I) is a closed sym-
metric operator in Ly(I). By Theorem 3.9 there exists an (N — M) X N
constant matrix P of rank N — M such that

D(T*) = {y:y € D:1(r,2,1), P[V(y) + C-(r)D*(y|x)] = 0}
and PC-1(r)P* = 0. We note that 2 (T,(&, 2, I)) and

90<$) = g(y‘ﬂ(yygy 27 I))

are Hilbert spaces with the inner product

(fle)m = (flo) + ZflL ).

We can regard 2 (1) /2 y(&) and D (T*)/ D o(&) as subspaces of the Banach
space D1(r, 2, 1)/2D:(Z). Thus, since 2 (I") C 2 (T*) by assumption, we see
that 2(1)/D(L) C D(T*)/D(L). However [D(1)/D(L))* is the
space of functionals generated by the M rows of P[V(y) + C-'(+)D*(y|x)],
and (2 (T*)/D (<L )]* is the space of functionals generated by the N — M rows
of P[V(y) + C-'(r)D*(y|x)]. Thus there exists an (N — M) X M constant
matrix E such that

PV(y) 4+ C-1(r)D*(y|x)] = EP[V(y) + C~(r)D*(y|x)]
for every vy € 94(r, 2, I). This implies that P = EP and PC-(r)P*E* = 0.
It is clear that E is of rank N — M = M. This completes the proof.

4. Extensions to other forms of expressions. In this section we shall see
how large is the class of expressions (0.1).

THEOREM 4.14. Let 71 be as in § 1. Suppose that
1 =p<ooy
(1) the coefficients p1(t) (0 < k = my) of 71 (ny 1s the order of 1) are uni-
formly bounded by a constant ¢ on I; and
(ii1) there exists a constant e such that

Ipro®)| = € >0 forallt € I,
Then for each k = 0, 1,2, - - -, ny there exists a constant K, < o0 such that

ly®ll, = Killlylls + [l7iylls]
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for all v € D1(r1, p, 1.). In particular, for each fixed ¢, € L,(I1), the map

y = (y®|¢y) 1, defines a T1(r1, p, I1)-continuous functional on Z1(r1, p, I1).

Proof. If 0 £ k < ny — 1, then the result follows directly from the defini-
tion of &,(r1, p, I,) and Theorem 1 of Halperin and Pitt [12]. We now prove
the result for 2 = n,. For y € @,(ry, p, I).

(le — ; Plky(m_”)/f’w

1 o ni—o 1/17 q
= (I(ny)(t)l”+ 2 1 ><t>|”) (14 g™
where 1/p + 1/g = 1. Thus

ly('”)(t) l — (l)

n1

b1 < &(lleyle + 3 15%1) = Kulblucns. o

o=1
using the first part, where K, K, are some constants. This proves the first
part of the result. The last part of our assertion is obvious because ||y|[, <
19|l 72¢r9. 10

The above theorem implies that if 1 < p < o0 and if all the coefficients
pit) (0 =k =mn;)of r; (1 £j = 1) satisfy the conditions of Theorem 4.14
(this will be the case, for instance, if 7; is regularon I ;foreachj = 1,2, - - ,1/),
then the expression . defined by (0.1) contains a term which in turn has the
following form:

Ly =1y + By + x"()[4.G(y) + DV(¥)]

where (i) 4;is a m X [ constant matrix, (ii) G(y) is the I X 1 column vector
(d;) where

dj _ }; (y(nj—.k)l¢jk>lj (¢jk € Lq([j))

may not be differentiable on ;. However a direct attempt to apply our theory
developed so far to the expression & is not satisfactory because formally ¥,
and (0.1) are different from each other. Therefore, it is desirable that we con-
vert an integral of the form

f B0 TG

Ij

into the form (73|¥1,) 7, + (¥|¥2;) 1, We shall show how this can be done. The
following notation will be needed later: If S is a formal differential expression,
Sy = Y0 p. 1)y, then for each fixed & = 0, 1, - -+, n, S® and S*® will
denote the differential expressions of order k defined by:

k k
S(k)y — ;0 Pv(t)y(n—v)v S*(k)y — ZO (_1)n—k(ﬁv(t)y)(n—a)‘

Note that if & = 0 then S*©®y is the Lagrange adjoint of S.
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We shall define certain functionals which will be used later. Suppose (¢, d]
is a fixed compact subinterval of I;,’and 1 < p < . Foreachk =1,2,-. .,
ny, let P,_1(s) be a polynomial in s of degree <k — 1, and let g, and g;. be
functions in L,(I;) satisfying the following additional conditions: For the case
when 1 £k =5 — 1, g2(t) is (ny — k — 1) times differentiable on [; and
221D () is absolutely continuous on every compact subinterval of I,%;
For the case when k = n,, the g, is locally integrable on I;. With g;; and
P,_, defined as above we define functionals &, = & (c, d, v, gr2), Br = Bi(c, d,
Y, gk2)y Vi = Yi(c, d, y, gi1) and &, = &, (c, d, P;_1) as follows:

a= c O T e 0370 + (= Y O )
+ > pe®y*()

15 ik—2
ni—k+i+1<o<n)

ni

X (=)™ (e —n+k— i)!}dt if3 =k

IIA

- f gkz(t){ § Py ) + ¥ )t — )prm (t)}dt ifb =2

- j:i Pi )@y (c)dt if kb = 1.

Bk _ Z (_ l)m—k—u-)- i[y(nx—k—v+ 1) (l) (Plvg_ld) (n1—k—o—1) (t) ]cd

1So=n1—k—1
1= isn1—k—1

if 1 é k = ny — 2,
= =" P Op1)g ] itk =n— 1,
=0 ifk=mn.
da ' — k—1_ (k—1)
e = — f g“(n{y(c) +4 (Ck) —T ©)

y(k—i—l) (C) (t _ C)k‘i—l
1=5i-2 (k—1—1)!

I

+ }dt if3 =k =m,

It

- fd I+t —)gu®)y()dt ifk =2,

- - fdgkl(t)y(c)dt ik =1

[4

Sk —- Z ) (__ l)k—l[y(k—v—l) (t)Pk—l(a) (t)]cd-

0<o<k—

Finally we define

Q = Q(Cy dv Yy, Pk—lv k1, gk?) = &k + E}c + 'Y"Ic + Sko
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Then this has the property that if y € Z,(r1, p, [,) vanishes at ¢ and d, then
Q(Cr dr Y, Pk—ly 8r1y glﬂ) = 0.

THEOREM 4.15. I. Suppose 1 < p < 0 and k be an arbitrary, but fixed integer
such that 1 < k < ny (ny = order of 1). Suppose ¢, g1 and gie are given func-

tions in L,(I,). If
(4.17)  YPl¢e) 1, = Glge) nn + (Tylgee) 1,

for everyy € D1(r1, p, 1), then we have the following:

(1) If k # ni, then gi(t) is (my — k — 1) times differentiable on I, and
gr2a®1E=D (t) 15 absolutely continuous on every compact subinterval of 1,°.

(i) For every compact subinterval [c, d] of I,° there exists « polynomial
P;_1(s) of degree <k — 1 such that for a.a. s € [c, d],

ér(s) = (r* ™ Pg0) (5) + Pr_i(s)

d n1 Pl.r(t) (t _ S)a—n|+k—-l (t _ S)Ic;l
[ R o + 2 o

(iii) For everyy € D1(r1, p, 1)) and [c,d] C I,°,

d d
(4.18) f y© (O du(t)dt = f (98 + (ry)geldt + Qle,d, 3, Proy, g, gi2),
and

lim @ =0.
(c,d)> I

II. Conversely, suppose 1 < p = 0 and let k be a fixed integer such that
1 £k = ni. Suppose further that gui and g are gwen functions in L,(I,)
satisfying the following condition:

1) If k = n1, then go(t) is (my — k — 1) times differentiable on I, and
22 ™1 =V (1) 45 absolutely continuous on I,.

If k = ny, then g,,2(t) 1s locally integrable on I,.

(ii) Foreachy € D1(ry, p, I1),limq 02 = 0.
Then, if ¢1.(¢) is the function defined in I, as in (ii) of Part I, then (4.17) holds
foreveryy € D1(zy, p, Ih).

CoOROLLARY 4.16. Suppose, for a given expression 1y, conditions (i), (ii) and
(iii) of Theorem 4.14 hold. Suppose further that, for o given integer k with 1 <
k= n, ga(t) and g2 (t) are functions in L,(I,) satisfying (i) of Part II of the
above theorem. Then, if we define a function ¢, (t) as in (ii) of Part I of the above
theorem, it follows that

Pl = Wlge) n + (Toylgee) 1o
for everyy € Do(ry, p, 11).

Proof. Let % denote the set of functions f(¢) defined on I, such that f(¢) is
n; times continuously differentiable and has compact support on I,°. Then,
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in view of the definitions of &, B8 ¥+ and & and (4.18) we see that

Ol = Olge) 1 + (Fylge)
for every vy € %, Let vy ¢ D(r1, p, 1) be given. Since % is dense in the
Banach space & (r1, p, 1) with T (r1, p, I,)-topology, there exists a sequence
(yy) in% converging toy € D(r1, p, [) with respect to T'1(r1, p, [1)-topology.
By Theorem 4.14, the map y — (y®|¢:) s, is T1(r1, p, I1)-continuous on
D(r1, p, I). Since the T'(ri, p, I)-topology is stronger than the norm
topology in & (71, p, I,) we see that

0P1¢e) = lim 3 @) 1 = hm { (37 @) 10 + (rylgee) 1)

= (y(k)|gk1) n + (wlge) -
This completes the proof.

Proof of Theorem 4.15. First we prove Part 1. Take any y € 9,(ry, p, I1)
such that y(t) = 0 for ¢ ¢ [¢, d] C I,° Define
Yoo (t) = h(t), € [c dl.

Then y satisfies (2.3) with y = g. As we have seen in § 2, a simple calculation
shows that

Il

(rylexe) 1 j‘: h(S){Plo(S)gkz(S)
+ 2 (1)t — )7/ (0 — 1)'-)§k2(t)dt}ds;

Olgi) 1 = f;h(é‘){f:l (t = )" ga(t)dt/ (ny — 1)!}d5;

*d
(y(k)|¢k) It j h(s)@r(s)ds 1f kb = ny,

- frdh(S){fd (t = )" (t)dt/ (ny — k — 1)!}(i8

In the case when k& = ny, (4.17) can be rewritten
a d
0= f /l(S){—qSk(S) + p10(8)gk2(s) + f t — )" "ga)dt/ (n1 — 1),

+ n;ll ' P1a(t)(t — 5) a2 (t)dt ) (¢ — 1)!}(15'

so0, as in § 2, there exists a polynomial P,,_,(s) of degree <n, — 1 such that
for a.a. s € [¢, d],

51(5) = P + [ € = 9" et/ (s — 1!

+ Z £ ﬁlﬂ(t) (t - S)G—Igm?(t)dé/(g - 1)‘ + P711~1(S)-

1=0<n;
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For the case 1 < k < n; — 1, formula (4.17) implies that

- fs (¢ = )" ™ o(t)dt/ (e — b = 1) + pro($)gra(s)

+ f { ¢ = )" g/ (m — D!+ ; P (t = ) g (t)dt/ (o — 1>!}dt

is a linear combination of 1, s, -+ -, s"t=1in Ls[¢, d]. Thus, applying the same
method used in § 2, we get (ii) of Part I. We now prove (4.18). Take any
v € D1(r1, p, I1) and [¢, d] C I,° Then

jc y B (s) gi(s)ds = f v 2 () ¥ P g (5) + f ¥ ($)pr-r(s)ds

" f y<k>(s){ S b — ) g (Vdt (0 — my + ke — 1)!}ds

s o=n]—k+1
+ fd y(")(s){fd (t — ) ga()dt/ (k — 1)!}ds.

Interchanging the order of integration, and then integrating by parts (this
can be justified by the use of Fubini's Theorem), a lengthy and tedious
calculation shows that

da
S5 0650 (s

= f Z pl”(t)y(m_‘,) (t)gﬂ(t)dt + Bk(cr dv yv ng)y

¢ 0<o=ni1—k

a
f Y () Prca(s)ds = 8i(e, d, Pia),

c

S [0 - o tma e - fas
= fcdy(s)gkl(s)ds + vile, d, y, gi),
f )

<

o=n1—k+

X { Z 1 f ()t — $) 7 g (t)dt /(o — ny + R — 1)!}ds

= Zﬂ pl,m—o(‘g)y(o) ($)gra(s)ds + aunlc, d, ¥, gre)-

Therefore

d a ‘
f y(k)(s)J)k(s)ds = f (g1 + (ry)@2)ds + Q.
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Taking (¢, d) — I, we see that @ — 0. This proves Part I. Part II is obvious.
This completes the proof.

Remark. Part 1 of Theorem 4.15 can be regarded as a generalization of the
second part of Lemma XI11.2.9 of Dunford and Schwartz [10]. To see this we
need only take ¢; = 0, g11 = 0, k = 1 in (4.17), and then use (ii) of Part I
of Theorem 4.15. Note that the proof of Theorem 4.15 does not make use of any
result from the theory of differential operators.

5. Regular boundary problems in Z,(I). In this section we assume that
each I;is a compact interval [a; 1, ¢;] (1 £ j = [) and that each 7, is regular
onl, Thus N; = 2n;and N = 2(ny + - -+ + n,), V,;(y) = V,(y), so we can
take V;7(y) to be the 1 X 2n; vector:

(@jmat), ¥ (ajat), -y ¥ (am+), yla—), ¥'(a;=), -+,
YO (a;—)),
so that V(y) = (11"(¥), - -+, V.7 ().
We are interested in the following problem: Given a (perhaps complex)
number \ and a function f in L,(I) find a functiony € 2(T) (1 £ p £ w0)
such that

(5.19) (I'=Ny=f
where Ty = %y and
D (1) = {y € Di(r, p, ): PV () + C'(r) (9|D"%)] = 0}.

Here.? is defined in (0.1) and Pisan M X N constant matrix of rank M < N.

This problem is still too general to handle, because B is an arbitrary bounded
operator on L,(I). We shall consider two cases: B of finite dimensional range,
and B a multiplication operator.

Case 5—(1). B is of finite dimensional range.

Suppose that the dimension of the range of B is d. Thus we can finda d X 1
column vector function ¢ (s) whose d rows are in L,(I) and linearly independent
there, and a d X 1 column vector function ¢ whose d rows are in L,(I) (the
d rows need not be linearly independent) such that

(5.20) By = ("), y € L,(I).

Let us define a 1 X (N/2) matrix function S(¢, \) defined for ¢t € I and a
function K (¢, s, \) defined for (¢, s) € I X I as follows: If { € I, then S(¢, \) is
the 1 X (N/2) matrix function

0,---,0,5;¢N),0,---,0) iftel,

where there are n; + - - - 4+ n;_; zeros before S; and n,;.1 + - - - + n, zeros
after; S;(t, \) is a 1 X n; fundamental matrix solution of the differential
equation 7,y = Ay on the interval I;. Let S,(s, \) denote the cofactor of the row
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vector S;(f, A) in the matrix (cf. section 1):
[ Si(sy )‘)
Si' (s, N)

S (s, N)
S,(t, N)
Then K (¢, s, \) is defined as follows:
S;(t, \) S, (s, \)
Pio(s)W(S;(s, 1))
=0 if(,s)e ;X I;ands > ¢t
=0 if (¢, s) € Iy X I;and k 5= 7.
Here W(S,(s, \)) is the Wronskian of S;(s, \).
Then using the variation constants formula, (5.19) can be rewritten as:
(5.21) y(t) =St N0 — (K, -, N¥*) 1P)
— (K(t, -, N[x*)[4 (ryl¢) + DV ()] + (K(t, -, M|f)
for t € I where b is an (n; + n2 + - - - + n;) X 1 constant column vector
depending only on y. First let us define an (M + N 4+d 4+ m +r) X
(N/2 4+ N + d + @ + r) constant matrix A(N) = (Ax;(\)) with the (&, j)-
matrix entry A;;(\) as follows:

Au(d) = —V(S(-,N), Ae(N) = Iy + LV( fIK( -8, )\)xT(s)ds)D,

K(t, s, \) =

if (t,s) € I, X I,and s < L.

Ais(\) = V( fIK( S, X)XT(S)dS)A,
As(N) = V( fIK( S, )\)wT(s)ds),

Ais(N) = Onsein, A21(N) = Oarsewrz, A2a(N) = P, Asg(N) = Opgxry
A24()\) = Oarxar A25()\) = PC_I(T)E*y Aal()\) = —u./( . )|S( ’ 7\)),
Ap(N) = ((JIE M) XD, A = (PIEN))[x*)4,

Ase(N) = Io + (PIEN) ), Ass(N) = Ouximy An(A) = — (%[S(N)),
AN = (RIEN) XD, Au(N) = GIEN)[x*))4,

Au(V) = GIE M), AsN) = Iz, Aa(d) = =X (8[SON)),

A (A) = L(¢>1f1 x () K (s, A)ds)D,

Ass(\) = I, + (¢|f1 vI(s)r K(- s, )\)ds)A,

Ass(\) = (¢|f} Y ()T K (s, )\)ds), Ass(N) = O
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Here 7, K (t, 5, \) = 7k(t) with k() = K(t, 5, \). If weput g(¢) = (fIK(t, -, \)),
then we have the following M + d + r + N + s equations with (N/2 +
d +r + N + #) unknowns:

(1) Ast(Nb + AN V() + Ass(N) (ry]9) + AsaN) W]¥) = (glP).

(i) Au(ND + AN V() + AN (ry]e) + AN OW) = V().

(iil) Asi(Vb 4+ Asa(N)V(¥) 4+ Ass(N) (ryl9) + Ass(N) (W) = 7(gl9).

(iv) ANV () + A (V) (¥[x) = 0.

(V) AaNb + ANV () + As(N) (7yl¢)

+ AN O + AsN)Ox) = (&@x).

The equations (i)—(v) can be rewritten

b V(g)

V(y) Oar31

AN | (yle) | = | (¢l¥)
() (g%)

(y1x) (rgl)

Thus we have

THEOREM 5.17. Let T be the same as in (5.19) and B be the same one as in
(5.20).

(i) If M < N/2 then any N € G is an eigenvalue for 1.

(ii) If M = N/2 then N € G s not an eignevalue for T if and only if det
A(N) 5= 0. In this case the inverse operator Ry = (1" — N)~'is a compact integral
operator defined everywhere in L,(I) and is given by

(Rvf) (t) = f (s N ()ds +

—Sit,N)T ’ j V(EC(-, s, N)f(s)ds
((K(t, ) >\)|X*)LD)T OM><1
— | (K@ AT | AT | (IEN)
(K@, -, NlyN” (fIEMN) X))
U™ | IR 19) |

Proof. (i) and (ii) are an obvious consequence of (5.22). The assertion con-
cerning the form R, follows from (5.21) and (5.22), since 7¢ = \g and

V( fIK( -, )\)f(s)ds) = f{ V(K(-,s, N\)f(s)ds.

Thus R, is an integral operator with a kernel of Hilbert-Schmidt type, and thus
a compact operator. This completes the proof.

Case 5—(ii). By = hy.
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Here £ is Lebesgue measurable and essentially bounded in I. To investigate
this case, we merely define another 7 by 7y = 7y + hy. Thus the case 5—(ii)
can be reduced to case 5—(i).

If we allow the matrices 4, D, D to vanish identically and B = 0, then we
get ordinary regular multiple boundary problems (in fact, more general than
that because we deal with direct sum operators). Let 6(\) (A € C) denote the
(N + M) X (N + N/2) constant matrix

[0— VIS¢, N), Iy ]

MXN /2y PM)(N

where P is an M X N constant matrix of rank M =< N. Then the previous
theorem yields

Remark. Suppose 1 = p < 00 and T is the operator defined by Ty =
@iryon{yly € D1 Di(r,, p,1,), PV(y) = 0}.
(I) If M < N/2, then any point A € C is an eigenvalue for 7"
(IT) If M = N/2, then X\ is not an eigenvalue for T if and only if det 8(\)
# (0, and in this case the inverse operator (7" — \)~!is given by:

(T = N7 = (SEA): 00 (N) f, VE(-, s, M))f(s)ds

O}[)(l
+ f{ K (t, s, \)f(s)ds.

6. Resolvents of self-adjoint perturbations. The variation of parameter
method used in § 5 is not satisfactory for computing resolvents for singular
cases. IHere we use a perturbation technique combined with the variation of
parameter method. The idea came from discussions with R. R. D. Kemp. In
the case when [ = 1, Coddington and Dijksma [7] have obtained generalized
resolvents of self-adjoint subspace extensions, which depend on the kernels
obtained by approximating self-adjoint operators on compact intervals (see
§ 6 in [7], § 5 in [6], p. 179 in [4]; see also [23]). Here we do not use such
approximations.

In this section we assume that p = ¢ = 2, r; = 7,;* for each j.

Thus V', = V,. Let z be an arbitrary but fixed non-real complex number.
Let ¢; be a fixed point in [,° = (¢;_1, @;). Thus —0 = a4 < ¢; £ 0. Let
v,(z) = dim AN (Ti(r;, 2, I,) — 2I),a;(z) = dim A (Ty(r;, 2, (¢;-1, ¢,)) — zI)
and 8,(z) = dim A (T (r;, 2, (c;, a;)) — 2I). Here A denotes *‘the null space
of” and I denotes the identity operator. Let .S, (¢, z) denote the 1 X #; funda-
mental matrix solution

(Sjl(t! Z),S;z(t, Z)15j3(tyz))v t E Ij

of the differential equation 7;y = zy in the interval I, such that (i) S;1(¢, 2) is
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a 1 X v,(z) row vector with entries in Lo(I;), (ii) S;2(¢, 3) is a 1 X (a,(z)
— v,(2)) row vector with entries in Lq(a;_1, ¢;), (iii) S;3(4, z) isal X (n; —
a;(z)) row vector with entries in Ls(c;, ;). This can obviously be done, be-
cause a;(z) + B;(z) = v;(z) + n,; (see, for example, [22]). Let S; (s, 2),
S,2(s, 2) and S;5(s, 2) denote the cofactors of the row vectors S, (¢, ), S;2(¢, 2)
and S;;(¢, z) respectively in the matrix:

S]'(Sv Z)
Si, (Sv Z)

$,479 s, 2)
S;(t, 2)
Let S(#, 2) denote the 1 X (yi(z) + - -+ 4 v:()) row vector defined for

t € I by:

S(t,z) = (0,-++,0,8,(t2),0,--,0) ifte I,

where there are vi(z) + - -+ 4+ v,_1(z) zeros before S;, and v,.:(z) + - - - +
v.(z) zeros after. Note here that this S(¢, z) is different from that in § 5. Let
A (t, s, z) be a function of (¢,s) € I X I defined as follows:

Sﬂ(t! 2)571 T(sv Z) + Sf3(tr Z)S]‘R T(S1 Z)
Pio(s)W(S;(s, 2))

K (t,s,2) =

if (t,s) € I; X I;,s <L
_ = Sp(t,2)S," (5, 2)
Pi(s)W(S,(s, 2))
=0 if (¢,s) € Iy X I, k5#].
Suppose now that 7 is the self-adjoint operator defined by
(6.22) Ty =1y + By + x"™DV(y),
D(T) = {y € Z1(7,2,1): P[V(y) + CH(r)D*(3|x)] = 0}.

Here P is an M X N (N = 2M) constant matrix of rank M such that
PC1(r)P* = 0, and B satisfies:

if (t,S)E IjXIj,S>t.

(B* — B)y = x™DC'(v)(y|D%x), v € L.(I).

Thus by Theorem 3.11, 7" = 7*. We shall compute (7" — z)~.
Let us define an operator 7' by

Ty =1y, (1) ={y € D:(r,2,I): PV(y) = 0}.
This is a self-adjoint operator because PC-1(r)P* = 0, and N = 2M. First
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we note that

! 1
2 vi(e) = 2 @) = M = N/2,

This follows from the fact that 7" is a self-adjoint extension of the direct sum
operator @1 Ty(r;, 2, I,), and the fact that

(35 760, 3 ve) ame >0

are the deficiency indices of the direct sum operator. First we shall compute
R, = (T' — z)~! and then use this to compute R, = (T — z)~L

Take any f € Ly(I) such that for each I;, f|;; has compact support in I,
and let ¢ = R,f. Then, using the same method as in [23], we see that

g = S 2)b+ fI%(t, s, 2)f(s)ds

for some (yi(z) 4+ - - - 4+ v,(2)) X 1 constant column vector b. Since b|;; has
compact support in I,°,

V( flf( ., S, z)f(s)ds) = fI V(- s,2)f(s)ds.
Hence, since g € 2(T),

PV(S(-,2))b = — f V(X (-, s, 2))f(s)ds.

The M X M matrix PV(S(, z)) (N = 2M) cannot be singular. Therefore,
if we define

Gt s5,2) =AU s, 2) — SU, 2)PVS(C, D))V, s, 2))
for (¢,s) € I X I, then

6.28) g=R.f= f{ G (1, s, 2)f(s)ds

for every f € Lo(I) such that for each I;, f|;; has compact support on I°.
It is easy to see that the above also holds for every f € L,(I) (cf. Lee [23]).

We now find (" — 2)~!. As before, take any f € L.(I) such that on each
I,, |1, has compact support on I;* and put ¢ = (T" — 2)~f. Thus (T’ — 2)g =
f. Therefore

(r—2)g=f—Bg— x"()DV(g).
Thus, since (r — 2)g € L.(I),
R.(r —2)g = R.f — (R.0 B)g — «(R.x")DV (g).
Let R,(r — 2)g = h. Thus (r — 2)(h — g) = 0. Since h — g € Ly(I) we must
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have h — g = S(¢, 2)b for some (y1(z) + - - - + v,(z)) X 1 constant column
vector b. Therefore

(6.24) ¢= =St 2)b + R.f — (R.0B)g — u(Rx")DV(g).

We must determine b, (R, 0 B)g and V(g) in the above expressions. The
operator B is too general to handle. Thus, as in § 5, we assume that B is of
finite dimensional range. Assume further that B has the form as (5.20),
where in this case p = 2. Thus (6.24) can be rewritten:

(6.25) ¢g= =St )b+ R.f— ¥ (RY) — «(Rx")DV(g).
Let us define the (M + N +d + m) X (M + N + d 4+ m) matrix §(z) =
(8,(z)) with matrix (k, j)-entry §;;(z) as follows:
01(z) = P, 012(3) = Oprscary, 014(2) = Oprxay,  013(z) = PC-1(r)D*,
81 (2) = Iy + JV(RXT)D, b22(z) = V(S(-, 2)),
823(2) = Oxsem,  021(2) = V(RYT),
b31(2) = (Rx[$™)"D, 83(2) = (PIS(, 2)),
8353(2) = Ouscmr  831(3) = (RAWT) + I,
0n(z) = Iy + x| (R:x™))D",
i2(2) = (x[S(,2)), du(z) = L,
bu() = (ARYT).

Then using (6.25) and in view of & (1") we have the following equations:

() V(g) + 01:(2) (glx) = 0.

821(2) V(g) + 822(2)b + 824(2) (¢l¥) = V(R.]).

831(2) V(g) + 852(2)b + 654 (3) (gl¥) = (R.fIP).

811(2) V(g) + 812(2)b + 813(2) (glx) + 81(2) (€l¥) = (R.flx).
The above equation implies that §(z) cannot be singular. If we define

0(s) = V(F (., 5,9),

then, since each f|;, has compact support in I,°, we see that (R, f) = (f|Q).
Thus (6.25) can be rewritten

(626) sz = (sz) (t)
Oﬂl)(l

— LR.X"))D: S(t, 2): Oy (R4 ()17 (2) E;{(ng 0

(fI(R.)*x

https://doi.org/10.4153/CJM-1978-053-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-053-7

PERTURBATION 629

Let us define a function % (1, s, 2) for (¢, s) € I X I by
6.27) G (t,s,2) = g(t, $,2)

OJIXI
CURATY D 0t (BT (O 15 () | €
[(Rox ) (OD: S(t,2): Onerr: (R ) ()67 (2) (R D) (5)

((R)*x) (s)
Then

(6.28) R.f= f G (t,s,2)f(s)ds

for every f € Ly(I) such that each f|;; has compact support in I,°. Since
T = T*, we can show that G (¢, s, 2) = 9 (s, t, 2). From this we can conclude
that (6.28) holds for every f € L,(I). Thus we have the following.

THEOREM 6.18. If B s the same as in (5.20) and if T is the self-adjoint operator
in (6.22) then the resolvent R, of T is an integral operator with the kernel G (t, s, z)
gien in (6.27).

Remark. We do not treat expansion theorems in this paper. In the case when
I =1, 7 = 7,* and B is of finite dimensional range, the corresponding expan-
sion theorems are given in Dijksma and De Snoo [9], where point-wise con-
vergence is allowed.

Acknowledgement. 1 am very grateful to Professor J. W. Macki for many
helpful discussions of these results.
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