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Abstract. In this paper we construct upper bounds for the solutions u(x, ¢) and
its gradient |Vu| of a class of parabolic initial-boundary value problems in terms of
the solution ¥(x) of the S’-Venant problem. These bounds are sharp in the sense that
they coincide with the exact values of u and |Vu| for appropriate geometry and
appropriate initial conditions.
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1. Introduction and main results. The goal of this paper is to construct sharp
upper bounds for the solution u(x, f) of the following parabolic initial-boundary
value problem

AWP)—u, =0, x:=(x1,....,xy) €, t>0, (1.1)
ux, ) =0, xed, t>0, (1.2)
u(x,0) =g(x) >0, x € Q. (1.3)

In (1.1), B=const. > 1 and Q is a bounded domain in RN, N > 2, with smooth
boundary 3Q. In (1.3), g(x) is a given nonnegative C!-function with g(x) =0,
x € 9. In the linear case (8 = 1) u(x, ) may be interpreted as the temperature of a
homogeneous body 2 at time ¢ with initial temperature g(x) and with zero tem-
perature on the lateral surface. If § > 1, problem (1.1), (1.2), (1.3) is a model in
reaction diffusion theory. Throughout the paper we assume that (1.1), (1.2), (1.3)
has a classical solution. In the linear case L. E. Payne drew our attention to the
following result valid for a convex domain

T W(X) 7’
ux, ) < kcos(2 1 1lﬁﬂﬂ)exp( v t), xeQ, t>0, (1.4)
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i i
Vulx, )| <k expl| — tIVU(x)], x € 02, t > 0. 1.5
N e I ) (1)

In (1.4), (1.5), ¥(x) is the solution of the S’-Venant problem

AY =2, xeQ, (1.6)

Y =0, x € 0. (1.7)

Moreover Ymax := maxg ¥(x), and k is a positive constant to be chosen such that
(1.4) holds initially, i.e. such that

g(x) <k Cos(g /- :/p’:)) xeQ. (1.8)

The upper bounds (1.4), (1.5) are sharp in the sense that we have equality when Q
degenerates to an infinite slab, i.e. when € is located between two parallel hyper-

planes, and if g(x) = k COS(%\/I_—%)

In the second section of this paper we construct other upper bounds for
u(x, t), x € Q and for |Vu|, x € 992, valid again in the linear case § = 1, but without
the assumption that 2 is convex. More precisely we have the following result:

THEOREM 1. The solution u(x, t) of (1.1), (1.2), (1.3) with B = 1 and its gradient
Vu satisfy the following inequalities

4j2
ux, 1) <k w(x)exp{— l}, xeQ, t>0, (1.9)
NQ(T%
4j2
[Vu(x, 1)| < kIVw(X)lexpy———=t¢, X € 3R, t >0, (1.10)
N0
with
4 = 4
w(x) := (1 — w(§)> Jvalj |1 — V() . (1.11)
Noj 2 Nojg

In (1.11) J,(x) stands for the Bessel function of order v and j(> 0) is its first zero:
Ju(j) = 0, ¥(x) is the stress function defined by (1.6), (1.7), and oy is the maximal
stress defined as

o) = m£x|V1p|. (1.12)

In (1.9), (1.10), k is a positive constant to be selected such that (1.9) holds initially,
i.e., such that

g(x) < kw(x), x € Q. (1.13)
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We note that the upper bound for u(x, ¢) in (1.9) is constructed in such a way that it
coincides to the exact value of u(x, ) when 2 is an N-ball of radius R with the initial

data
X\, (I
X x
In this case we have indeed
X\, (x /2
u(x, 1) = <?> J¥<j?>exp{—ﬁt}, xe, t>0. (1.15)
Moreover we may compute |x|/R and R in terms of the stress function y and oy. We
have
gy 2
Y(x) = N(R —|x[9), x € Q, (1.16)
VY| = > x| (1.17)
- N 9 .
from which we obtain
2R
0y 1= m§x|V1//| =" (1.18)
N 4
M_ M 2 (1.19)
R R? No;

We are then lead to

4y \T [ 4 ) 472
u(x,t) = <1 _N—fz) J¥<j 1 - N—Zfz exp{—Niy2 t}. (1.20)
0 0 0

This shows that both inequalities (1.9), (1.10) are sharp in the sense that we have
equalities if 2 is an N-ball and if the initial data satisfy (1.13) with equality sign. The
remainder of Section 2 deals with the case where (1.1) is replaced by the equation

Au—u = —flu), xe, t>0, (1.21)

under some data restrictions. Section 3 addresses the following conjecture:

CONJECTURE. Let u(X, t) be the solution of (1.1), (1.2), (1.3) in a convex domain
Q with B > 1. We then have

u(x. 1) < (3 max — V00) [k — (1= B2, xeQ, 10, (1.22)
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Vu(x, 0] < |Vy| [k — (1 — pa2]™7, x o, 1> 0. (1.23)

In (1.22), (1.23), y(x) is the positive solution of the one-dimensional auxiliary problem
0 #2727 =0, x € (0. y/Yma). (1.24)
»x(0)=0, »0)=1, (1.25)

where the parameter M is selected such that

y(V 1//max) =0.

Moreover k is a positive constant to be chosen such that (1.22) holds initially, i.e. such
that

g(X) k™7 p(V/Vmax — ¥(X)), X € Q. (1.26)

This conjecture is supported by the fact that we have equality in (1.22) in the one-
dimensional case N = 1, if the initial data g(x) satisfies (1.26) with equality sign. The
proof will be established in the particular case 8 = 2. The upper bounds for u(x, t)
given by (1.9) and (1.22) are constructed in analogy to earlier results established by
L. E. Payne, G. A. Philippin, and J. R. L. Webb in [3, 4, 6] for solutions of elliptic
boundary value problems. The proof of (1.9) (and hopefully of (1.22)) follows the
same pattern as in [4]. We first show that the comparison function

D(x, 1) := w(x) ex 4 t (1.27)
, ) = p NZO'(% .
satisfies the parabolic differential inequality
AD—-,<0, xeQ, t>0. (1.28)

The inequality (1.9) will then follow by a standard comparison theorem, cf. e.g. [7].
For the proof of (1.28) we need the following lemma established by Weinberger in
(8]:

LEmMMA 1. The quantity

x(x) = |V +%w, X € Q, (1.29)

where Y(x) is the stress function defined in (1.6), (1.7) takes its maximum value on
the boundary 02 of 2, i.e. we have

%w(x) <05 — VY%, xeQ, (1.30)

with equality if and only if Q is an N-ball.
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For the proof of (1.22), we hope to make use of the following lemma established
by Payne in [2]:

LEMMA 2. If Q is convex, the quantity
0= |Vy|]> +4y, x € Q, (1.31)
takes its maximum value at the critical point of , i.e., we have

VY1 < 4(¥max — V). X € Q, (1.32)

with equality if and only if Q2 is an infinite slab.

2. The proof of Theorem 1. We have to check the differential inequality

AP —-—P, <0, xe, t>0, 2.1
with
O(x, 1) ;= 4j2 t 2.2
(Xs )_ W(X)exp{_mo_(z) }a ( . )
w(x) = [V(X)]%J¥(jV(X)), (2.3)

4
v(x) = [1— ;/ijg) , (2.4)

that will be satisfied if the following inequality holds
4j2

Aw
*Nea?

w<0, xe€Q. (2.5)

To check (2.5) we shall make use of the following well known identities for J,(x):

XT(X) = V() = X (), (2.6)

X1 (X) = 200,(%) — X1 (). 2.7)

Differentiating w(x) defined in (2.3), we obtain in view of (2.6)

2—N _y N 2N
W, = { 3 v_%J¥ —}—jv¥ &Tz}v,k = —jvTNJ%'v,k. (2.8)

In (2.8) and in the remainder of this computation we omit the argument of the Bessel
functions which is always jv(x). Differentiating again and making use of (2.6), (2.7),
we obtain
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N —
Aw = 7 2]J~|Vv| 27 J/ |Vy|? —]v 7 JwAv
= —jv’fJ%{|Vv| + vAv} 4+ vT|Vv| J’V+2
= I (N = D)V —vav) — 2V o Jia. (2.9)
Next we compute from (2.4)
2,
= — 2.10
Vsk NO'(Z)V ( )
|V = 4vyl? (2.11)
N2ogv? '

4 Vr|?
Av=—sy [v2—| 1”” (2.12)

Nogv3 Noj

Inserting (2.4), (2.11), (2.12) into (2.9) and making again use of (2.7), we obtain

47 4jy |V
AW+NzaO w = Vg 2{NJ\—]VJ\ 2}{1)203_1
4] v 2
2 Jvo{4y — N v <0, Q, 2.13
Noo? ~{w [og — IV¥IA1} <0, x e (2.13)

where the last inequality follows from Lemma 1. This achieves the proof of (1.9).
The proof of (1.10) follows from (1.9) since we have equality in (1.9) for x € 922.
It is worthwhile to mention that the inequalities (1.4), (1.5), (1.9) and (1.10) are

easily modified when u(x, ) solves (1.1)—(1.3) with (1.1) replaced by

Au—u = —flu), xe, t>0, (2.14)

where f(s) is a differentiable function assumed to satisfy the conditions
f0) =0, (2.15)
sf(s) = f(s) > 0,5 > 0. (2.16)

Clearly (2.16) implies that the quantity f{s)/s is a nondecreasing function of s. We
want of course the solution u(x, t) of (2.14), (1.2), (1.3) to exist for all time. This will
be the case if some further restrictions on f'and g are imposed. Such restrictions are
stated in either one of the following two Lemmas derived in [5].

LEMMA 3. Let ¢1(X) and Ly be the first eigenfunction and the first eigenvalue of the
clamped vibrating membrane in Q:

A¢1+)L1¢1 :0, XGQ, ¢1 >0, XEQ, ¢1 :0, XGSQ, (217)

where ¢y is normalized by the condition maxq ¢(X) = 1. Assume that the initial data
g(x) in (1.3) is sufficiently small in the following sense
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f%‘)d], (2.18)

with Ty := maxq £%. We then conclude that u(x, t) solving (2.14), (1.2), (1.3) exists

x)
for all time. Moreover we have the following inequality

S ) A0

e ukx,t) — T

, 0 <t < oo (2.19)

LEMMA 4. Let Q be convex and let d be the inradius of 2. Suppose that the initial
data g(x) in (1.3) is sufficiently small in the following sense

2
/ (FF;) < 4”72, (2.20)

1/2
with T'y := maxQH 2>+ 4”%2 |Vg|> . Then we can again conclude that u(x, t) exists for
all time. Moreover we have the following inequality

S ) AT

e ukx, ) T I’

0<t<o0. (2.21)

Lemma 3 or 4 may be used to derive the following inequality for u(x, ¢)

Au—u, = —flu) = —'/% u > —Au, (2.22)
with
A ::f([‘Lll) or f(FLZZ) (2.23)
Let now U(x, f) be the solution of
AU—-U,+AU=0, xeQ, t>0, (2.24)
Ux,1)=0, xed, t>0, (2.25)
Ukx,0)=g(x)>0, xe Q. (2.206)

Clearly we have u(x,t) < U(x, 1), x € 2, t > 0. Moreover the techniques already
used to obtain (1.4), (1.9) may be used again to derive upper bounds for U(x, ¢). This
leads to the following results:

THEOREM 2. Let u(x, t) be the solution of (2.14), (1.2), (1.3) where f satisfies the
conditions (2.15) and (2.16), and g satisfies the assumptions in Lemma 3 or 4. We
then conclude that the inequalities (1.4), (1.5) remain valid if the exponential factor

exp[ — #:m t} is replaced by exp[ (A - #:m)l}, where A is given by (2.23). Moreover
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the inequalities (1.9), (1.10) remain valid if the exponential factor exp{—]\‘,‘,{—;l} is
0
replaced by exp{ (A 42 )l} where A is given by (2.23).

 N2g2
N(TO

3. The conjecture. This section addresses the conjectured inequalities (1.22) and
(1.23) with 8 > 1. These inequalities will be fully established for 8 =1 and for g =2
only. The upper bound in (1.22) is constructed in such a way that it coincides to the
exact solution 7(x, t) of the one-dimensional problem

(n/s)xx - 7]! = 0’ RS (0’ V wmax )7 l > O’ (31)
(0,0 = n(y/Ymax, 1) = 0, 1>0, (3.2)
n(x,0) = y(x) > 0, x € (0, y/¥max ). (3.3)

with appropriate initial data y(x). The auxiliary problem (3.1), (3.2), (3.3) may be
solved by separating the variables. To do this we write

n(x, 1) = y(x) (1) 3.4

The auxiliary functions y(x) and t(¢) then satisfy

()/)’i)// = rlﬁ = —% = const., (3.5)
i.e., we have
0P + 2% =0, x € (0, v/Ymax): (3.6)
with
Y'(0)=0. (3.7

For convenience y(x) will be normalized such that
»(0) = 1. (3.8)
The parameter A is then selected such that

y(\/ Ipmax =0. (39)

Moreover () satisfies the differential equation
t+ 227 =0, 1> 0. (3.10)

Let now

¥ = Ymax — X, X € (0, v/Vmax), (3.11)
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be the stress function of the one-dimensional S’-Venant problem. Solving (3.11) for

X, we obtain

X =4/ Ymax — Iﬂ(x)

We then construct a comparison function z(x, ¢) as follows:

2(X, 1) := Y/ Ymax — Y(X)T(0), x € Q, 1> 0,

(3.12)

(3.13)

where ¥(x) in (3.13) is the stress function of @ defined in (1.6), (1.7). We want to

show that z(x, ¢) satisfies the parabolic inequality

AP =2z, <0, xeQ, t>0.
To this end we define

O'(X) = Vimax — W(X)a X € £,

and we compute
A =z = PHAGH () + (o)),

AGP(0(x)) = 0P IVol* + 0F) Ao = —A%y|Vol* + (F) Ao,

with
o z_w,k
7k 20_ 9
VY|
Vol|? = ,
Vol 402

Ao — L (BY Yo\ _ L[, _IVYP
- 2\ o o? T o 402 )"

We then obtain

1
A @) +225(0) = 15 WWmax — ¥ — IVYPIR0) + - (A0,

Since we have by Lemma 2
Apmax — YOI = VY <0, x € Q,

we conclude from (3.16), (3.21) that (3.14) will be satisfied if we have

P30+ 0P (@) 2 0,
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or equivalently if the inequality

BO())P 2 (x) +22x <0, x € (0, v/¥max) (3.24)

is satisfied. The success of our method depends therefore on the possibility to check
(3.24). This can easily be done in the linear case since we have

y(x) = cos Ax, (3.25)
w(t) = e, (3.26)
in the case 8 =1 with A = NI so that (3.24) takes the form
/
%—f— A2x = —atan(Ax) + A°x <0, (3.27)

which is clearly satisfied. This establishes Payne’s result (1.4), (1.5).

The situation is more complicated when 8 > 1 because y(x) cannot be expressed
in terms of elementary functions. For this reason we represent y(x) in a Taylor series
of the form

Y =1+ ayx™. (3.28)
k=1

Clearly this series contains only even powers of x. Let us consider the case g =2
which is simple. In this case we have

P =1+ exx™, (3.29)
k=1
with
k
Cok = Zazw—/)az.w (3.30)
=0

Inserting (3.28), (3.29) into (3.6), we obtain

o0
200 + 22 + Y [2k(2k + ez + Man_o ]2 =0, (331)
k=2
i.e. we have
)\2 k
), = - o — . . — 1 2 . ' 2
k= T okk — 1) 2 ;amk pay, k=123, (3.32)

The values of ay; may be recursively computed from (3.32). We obtain

22 24 7 28

Z, a4=—@, a6=—m)\., agz—m,... (333)

a) = —
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i.e. we have

e D
4 48 3048

1
15-48

yx)=1- (Ax)® — (ax)b—. .. (3.34)

where A is such that y(v/¥max) = 0. Now we want to check inequality (3.24) with
B = 2 that takes the form

o0
2y + 2 x = 2kayx™ ' <0, x € (0. v/Ymax)- (3.35)
k=2
Clearly (3.35) will be satisfied if we can show that ay, <0, Vk =2, 3,4, ... This step

will be established by induction. Let us assume that a, ay, ..., ayx—1y are all nega-
tive. Then from (3.32) we obtain

)\2 k
M = = Y 42 ) '
22k — 1) 2 ; o(k—jdaj > 202k + 2020012, (3.36)
ie.
a a 2a; + »” )”Za 1 b 0 (3.37)
< — _ _ | = — _ _ < )
2%k %2 20+ e 5 k=2 K2k = 1) ,

which completes the proof. To conclude this example we compute t(¢) from (3.10)

1

T([) = m, > 0, (338)

and we select the constant k& > 0 such that

kg(x) < y(v/¥max — ¥(x)), x € Q. (3.39)

It then follows from a standard comparison theorem [7] that the solution u(x, ) of
(1.1), (1.2), (1.3) satisfies the inequality

YWmax = V) o, (3.40)

1t S 9
u(x, ) A+ k

when 8 = 2. Finally we note that any truncation of the series (3.34) yields an upper
bound in (3.40). To conclude this paper we consider the general case 8 > 1. Clearly we
have again (3.31) where ay; and ¢y are the Taylor coefficients of y(x) and of y#(x):

vy =1+ Z axx’", (3.41)
k=1

o0
AR =1+ exx™, (3.42)
k=1
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Moreover, J. P. C. Miller has established in [1] that the Taylor coefficients ay; and

¢ in (3.41), (3.42) are related as follows
1 k—1
Cok = E;[ﬂ(k —J) —Jleyange—p, k=1,2,3,...
Combining (3.43) with

)\(2

Cok = —mazk—z,

and solving for ay;, we obtain

Zﬁ(k J) J

ayoay—p, k=1,2,3,...,

from which we compute recursively

)\'2
a = —%,
4
as = gl =38 1L
A0 2
ag = 6'/83[ —3(B—1)+30(8—1)7],
8
as = grgall = 66(8 1) = 2018 - 1)? = 630(8 — 1)°],
etc.

Now we want to check inequality (3.24) that can be rewritten as
%(y’“)/ F2 <0, x € (0, /iman).
To this end we write
o
P =14 dux™,
k=1
where the coeflicients dy; are related to ay; according to Miller’s formula

= .
dy = /;[(ﬂ = Dk =) = dyjarp—p. k=1.2.3.....
Using (3.49) and the values ay, a4, ag, ag already computed we obtain
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R SCER)
d) = —T,
MB-1)
== 35
y 2058 - 1D(B+D (3.50)
6 — _Tv
0 3B —1)3B+ (158 +2)
5T 81 ’
etc.
The condition (3.47) then takes the form
%(yﬂ_l)’ 42— %{4514)9 4 6dex’ + 8dgxT + -} <0, (3.51)

and will be satisfied for istance if dy, dg, ds, ... are all nonpositive. This seems to be
the case from (3.50), but remains open.
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