# THE REPRESENTATIONS OF GL $(3, q)$, $\mathbf{G L}(4, q)$, PGL(3,q), AND PGL(4,q) 

ROBERT STEINBERG

1. Introduction. This paper is a result of an investigation into general methods of determining the irreducible characters of $\operatorname{GL}(n, q)$, the group of all non-singular linear substitutions with marks in $\mathrm{GF}(q)$, and of the related groups, $\operatorname{SL}(n, q), \operatorname{PGL}(n, q), \operatorname{PSL}(n, q)$, the corresponding group of determinant unity, projective group, projective group of determinant unity, respectively. This investigation is not complete, but the general problem was answered partially in [9]. In [3], [7], [6], [1], Frobenius, Schur, Jordan, and Brinkmann gave the characters of $\operatorname{PSL}(2, p) ; \operatorname{SL}(2, q), \operatorname{GL}(2, q) ; \operatorname{SL}(2, q), \operatorname{GL}(2, q) ; \operatorname{PSL}(3, q)$, respectively. In this paper in $\S 2$ and $\S 3$, the characters of $\operatorname{GL}(2, q)$ and $\operatorname{GL}(3, q)$ are determined, and, from them, those of $\operatorname{PGL}(2, q)$ and $\operatorname{PGL}(3, q)$ deduced. In $\S 4$, an outline of the determination of the characters of GL $(4, q)$ is given together with the degrees and frequencies of the characters of $\operatorname{GL}(4, q)$ and $\operatorname{PGL}(4, q)$ and a table of the rational characters of $\mathrm{GL}(4, q)$.

The simple properties of the underlying geometry, $\operatorname{PG}(n-1, q)$, of which $\operatorname{PGL}(n, q)$ is the collineation group, are used throughout the work. The most powerful and frequent tool used in the determination of the characters is the Frobenius method ${ }^{1}$ of induced representations [5] which enables one to construct a representation of a group if a representation of a subgroup is known. The explicit formula for the character in this case is $\chi(G)=\frac{m}{g_{G}} \Sigma \psi\left(G^{\prime}\right)$, where $m$ is the index of the subgroup, $g_{G}$ is the number of elements of the group similar to $G, \psi$ is the character of the subgroup, and the summation is made over all elements $G^{\prime}$ which are similar to $G$ and lie in the subgroup. Of fundamental use in the application of this method are the $q-1$ linear characters of $\operatorname{GL}(n, q)$ which correspond to the powers of the determinants of the matrices which define the elements of $\operatorname{GL}(n, q)$. Also very useful are pseudo-characterslinear combinations of irreducible characters with negative coefficients per-missible-and the fact that a pseudo-character, $\chi(G)$, is an irreducible character if and only if $\Sigma|\chi(G)|^{2}=g$ and $\chi(E)>0$, where $E$ is the unit element of the group.

The descent from the characters of $\operatorname{GL}(n, q)$ to those of $\operatorname{PGL}(n, q)$ is immediate because of the following two theorems due to Frobenius [4], [5]:

If $\mathfrak{5}$ is a normal subgroup of a group $\mathcal{F}$, then every character of $\mathbb{S} / \mathfrak{y}$ is also a character of $(5)$.

[^0]In order that a character of (B) may belong to the group $(\mathbb{F} / \mathfrak{S}$, it is necessary and sufficient that it have the same value for all elements of $\mathfrak{S}$. Then, it has also equal values for every two elements of $(\mathbb{H}$ which are equivalent mod $\mathfrak{G}$.

In our case, $\mathfrak{F}$ is the group $\operatorname{GL}(n, q), \mathfrak{S}$ is the cyclic group of the $q-1$ scalar matrices, and $\mathbb{G} / \mathfrak{F}$ is the group $\operatorname{PGL}(n, q)$. For this reason, and also because the group $\operatorname{GL}(n, q)$ is easier to handle, its characters are first determined and then those of $\operatorname{PGL}(n, q)$ obtained from them.

In what follows, $\chi_{q}{ }^{(r)}$ for example, will denote a character of degree $q$, the superscript being used to distinguish between two characters of the same degree. $\mathrm{GL}(1,2 ; q)$ denotes the subgroup $\left(\begin{array}{ll}A_{1} & 0 \\ * & A_{2}\end{array}\right)$ of $\mathrm{GL}(3, q) ; \rho, \sigma, \tau, \omega$ are primitive elements of $\mathrm{GF}(q), \mathrm{GF}\left(q^{2}\right), \mathrm{GF}\left(q^{3}\right), \mathrm{GF}\left(q^{4}\right)$ respectively, such that $\rho$ $=\sigma^{q+1}=\tau^{q^{2}+q+1}=\omega^{q^{2}+q^{2}+q+1}$ and $\sigma=\tau^{q^{2}+1}$.
2. The characters of $\mathrm{GL}(2, q)$ and $\operatorname{PGL}(2, q)$. The group $\mathrm{GL}(2, q)$ is of order $q(q-1)^{2}(q+1)$ and each of its elements is similar to a matrix of one of the following four types [2]:

$$
A_{1}:\left(\begin{array}{ll}
\rho^{a} & \\
& \rho^{a}
\end{array}\right), A_{2}:\left(\begin{array}{ll}
\rho^{a} & \\
1 & \rho^{a}
\end{array}\right), A_{3}:\left(\begin{array}{ll}
\rho^{a} & \\
& \rho^{b}
\end{array}\right)_{a \neq b}, B_{1}:\left(\begin{array}{ll}
\sigma^{a} & \\
& \sigma^{a q}
\end{array}\right)_{a \neq \text { mult. }(q+1)}
$$

The number of classes of each type and the number of elements in each class is given by Table I. The total number of classes is $(q-1)(q+1)=k$.

TABLE I

| Element | Number of classes | Number of elements <br> in each class |
| :---: | :---: | :---: |
| $\mathrm{A}_{1}$ | $q-1$ | 1 |
| $\mathrm{~A}_{2}$ | $q-1$ | $(q-1)(q+1)$ <br> $\mathrm{A}_{2}$ <br> $\mathrm{~B}_{1}$ |

Now, if we consider each matrix as a linear transformation of $\operatorname{PG}(1, q)$, we get a representation of degree $q+1$ representing the permutation of the points of $\operatorname{PG}(1, q)$. The character of any element of $\mathrm{GL}(2, q)$ is just the number of points left fixed by it. This permutation group is doubly transitive and hence splits into the unit representation and an irreducible representation [9] of degree $q$. Multiplication of each of these characters by each of the $q-1$ linear characters given by the powers of the determinants gives us $q-1$ irreducible characters of degree 1 and $q-1$ of degree $q$. (See Table I.)

We next consider the subgroup $\operatorname{GL}(1,1 ; q)=\left(\begin{array}{ll}A_{1} & 0 \\ * & B_{1}\end{array}\right)$ of index $q+1$. Clearly, any character of $A_{1}$ or $\mathrm{GL}(1, q)$ multiplied by any character of $B_{1}$ or $\mathrm{GL}(1, q)$ is a character of $\mathrm{GL}(1,1 ; q)$. If we use the linear characters of GL( 1,$1 ; q$ ) obtainable in this way as a basis for Frobenius's method of induced
characters, we get $\frac{1}{2}(q-1)(q-2)$ irreducible characters of degree $q+1$ of $\mathrm{GL}(2, q)$. (See Table I.)

Finally, the linear characters of the cyclic subgroup $\left(\begin{array}{cc}\sigma & \\ \sigma^{q}\end{array}\right)^{a}$ of index $q(q-1)$ induce in $\operatorname{GL}(2, q)$ the following representations $\Psi_{q(q-1)}{ }^{(n)}$ of degree $q^{2}-q$, all of which are reducible:

$$
A_{1}:\left(q^{2}-q\right) \epsilon^{n a(q+1)}, \quad A_{2}: 0, \quad A_{3}: 0, \quad B_{1}: \epsilon^{n a}+\epsilon^{n a q},
$$

where $\epsilon^{q^{2}-1}=1$ and $n=1,2, \ldots, q-1$. But, if we form $\chi_{q}{ }^{(0)} \chi_{q+1}{ }^{(0, n)}-$ $\boldsymbol{\chi}_{\beta+1}^{(o, n)}-\psi_{q(q-1)}{ }^{(n)}$, we get an irreducible character provided $n \neq$ mult. ( $q+1$ ). We thus have $\frac{1}{2} q(q-1)$ irreducible characters of degree $q-1$ and this completes the list since we now have in all $(q-1)(q+1)=k$ characters. They are shown in Table II.

TABLE II
Characters of $\operatorname{GL}(2, q)$

| Element | $\chi_{1}{ }^{(n)}$ | $\chi_{q}{ }^{(n)}$ | $\chi_{q+1}{ }^{(m, n)}$ | $\chi_{q-1}{ }^{(n)}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} n=1,2, \ldots, q-1 \\ \epsilon^{q-1}=1 \end{gathered}$ | $\begin{gathered} n=1,2, \ldots, q-1 \\ \epsilon^{q-1}=1 \end{gathered}$ | $\begin{gathered} m, n=1,2, \ldots, q-1 ; \\ m \neq n ;(m, n) \equiv(n, m) \\ \epsilon^{q-1}=1 \end{gathered}$ | $\begin{gathered} n=1,2, \ldots, q^{2}-2 ; \\ n \neq \text { mult. }(q+1) \\ \epsilon^{q^{2}-1}=1 \end{gathered}$ |
| $\mathrm{A}_{1}$ | $\epsilon^{2 n a}$ | $q \epsilon^{2 n a}$ | $(q+1) \epsilon^{(m+n) a}$ | $(q-1) \epsilon^{n a(q+1)}$ |
| $\mathrm{A}_{2}$ | $\epsilon^{2 n a}$ | 0 | $\epsilon^{(m+x) a}$ | $-\epsilon^{n a(q+1)}$ |
| $\mathrm{A}_{3}$ | $\epsilon^{n(a+b)}$ | $\epsilon^{n(a+b)}$ | $\epsilon^{m a+n b}+\epsilon^{n a+m b}$ | 0 |
| $\mathrm{B}_{1}$ | $\epsilon^{\boldsymbol{n a}}$ | $-\epsilon^{\text {na }}$ | 0 | $-\left(\epsilon^{n a}+\epsilon^{n a q}\right)$ |

The theorems of Frobenius [4], [5] mentioned in the introduction immediately give us the characters of $\operatorname{PGL}(2, q)$. For $q$ even they are as in Table III. For $q$ odd, there are in addition the two characters

$$
\begin{aligned}
& A_{1}: 1, A_{2}: 1, A_{3}:(-1)^{a+b}, B_{1}:(-1)^{a} \\
& A_{1}: q, A_{2}: 0, A_{3}:(-1)^{a+b}, B_{1}:(-1)^{a+1}
\end{aligned}
$$

and
TABLE III
Characters of $\operatorname{PGL}(2, q)$

| Element | $\chi_{1}$ | $\chi_{q}$ | $\chi_{q+1}{ }^{(n)}$ | $\chi_{q-1}{ }^{(n)}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} n=1,2, \ldots,\left[\frac{1}{2}(q-1)\right] \\ \epsilon^{G-1}=1 \end{gathered}$ | $\begin{gathered} n=1,2, \ldots \ldots,\left[\frac{1}{2}(q+1)\right] \\ \epsilon^{g+1}=1 \end{gathered}$ |
| $\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~A}_{2} \\ & \mathrm{~A}_{2} \\ & \mathrm{~B}_{1} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | 0 1 -1 | $\begin{gathered} q+1 \\ 1 \\ \epsilon^{n(b-a)}+\epsilon^{-n(b-a)} \\ 0 \end{gathered}$ | $\begin{gathered} q-1 \\ -1 \\ 0 \\ -\left(\epsilon^{n a}+\epsilon^{n a q}\right) \end{gathered}$ |

3. The characters of $\operatorname{GL}(3, q)$ and $\operatorname{PGL}(3, q)$. The group $\operatorname{GL}(3, q)$ is of order $q^{3}(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$ and each of its elements similar to one of the following types [2]:

$$
\begin{aligned}
& A_{2}:\left(\begin{array}{lll}
\rho^{a} & & \\
& \rho^{a} & \\
& & \rho^{a}
\end{array}\right), A_{2}:\left(\begin{array}{lll}
\rho^{a} & & \\
1 & \rho^{a} & \\
& & \rho^{a}
\end{array}\right), A_{3}:\left(\begin{array}{lll}
\rho^{a} & & \\
1 & \rho^{a} & \\
& 1 & \rho^{a}
\end{array}\right), A_{4}:\left(\begin{array}{lll}
\vdash^{\prime} & & \\
& \rho^{a} & \\
& & \rho^{b}
\end{array}\right), \\
& A_{5}:\left(\begin{array}{lll}
\rho^{a} & & \\
1 & \rho^{a} & \\
& & \rho^{b}
\end{array}\right), A_{6}:\left(\begin{array}{lll}
\rho^{a} & & \\
& \rho^{b} & \\
& & \rho^{c}
\end{array}\right), B_{1}:\left(\begin{array}{ccc}
\rho^{a} & & \\
& \sigma^{b} & \\
& & \sigma^{b q}
\end{array}\right), C_{1}:\left(\begin{array}{lll}
\tau^{a} & & \\
& \tau^{a q} & \\
& & \tau^{a q^{2}}
\end{array}\right),
\end{aligned}
$$

where $a \neq$ mult. $\left(q^{2}+q+1\right)$ in $C$. The number of elements in each class and the number of classes of each type are given in Table IV. The total number of classes is $q(q-1)(q+1)=k$.

TABLE IV

| Element | Number of Classes | Elements in each Class |
| :---: | :---: | :---: |
| $\mathrm{A}_{1}$ | $q-1$ | 1 |
| $\mathrm{~A}_{2}$ | $q-1$ | $(q-1)(q+1)\left(q^{2}+q+1\right)$ |
| $\mathrm{A}_{3}$ | $q-1$ | $q(q-1)^{2}(q+1)\left(q^{2}+q+1\right)$ |
| $\mathrm{A}_{4}$ | $(q-1)(q-2)$ | $q^{2}\left(q^{2}+q+1\right)$ |
| $\mathrm{A}_{5}$ | $(q-1)(q-2)$ | $q^{2}(q-1)(q+1)\left(q^{2}+q+1\right)$ |
| $\mathrm{A}_{6}$ | $\frac{1}{6}(q-1)(q-2)(q-3)$ | $q^{3}(q+1)\left(q^{2}+q+1\right)$ |
| $\mathrm{B}_{1}$ | $\frac{1}{2} q(q-1)$ | $q^{3}(q-1)\left(q^{2}+q+1\right)$ |
| $\mathrm{C}_{1}$ | $\frac{1}{3} q(q-1)(q+1)$ | $q^{3}(q-1)^{2}(q+1)$ |

Here, as before, the permutation of the points of the underlying geometry gives us a double-transitive permutation group, in this case of degree $q^{2}+q+1$. We thus get the unit representation and an irreducible representation of degree $q^{2}+q$. The geometric entities each of which consists of a point and a line through it are also permuted by the elements of $\mathrm{GL}(3, q)$, and this furnishes us with a representation of degree $(q+1)\left(q^{2}+q+1\right)$. The orthogonality properties of group characters tell us that the character of this representation contains the unit character $\chi_{1}$ once and $\chi_{q^{2}+q}$ twice and an irreducible character [9] of degree $q^{3}$. Multiplying each of the characters of degrees $1, q^{2}+q, q^{3}$ by each of the $q-1$ linear characters given by the powers of the determinants, we obtain $q-1$ irreducible characters of each of these degrees, as in Table V .

TABLE V

| Element | $\chi_{1}{ }^{(n)}$ | $\chi_{q^{3}+q^{(n)}}$ | $\chi_{Q^{2}}{ }^{(n)}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{A}_{1}$ | $\epsilon^{3 n a}$ | $\left(q^{2}+q\right) \epsilon^{3 n a}$ | $q^{3} \epsilon^{3 n a}$ |
| $\mathrm{A}_{2}$ | $\epsilon^{3 n a}$ | $q \epsilon^{3 n a}$ | 0 |
| $\mathrm{A}_{3}$ | $\epsilon^{3 n a}$ | 0 | 0 |
| $\mathrm{A}_{4}$ | $\epsilon^{\boldsymbol{n}(2 a+b)}$ | $(q+1) \epsilon^{n(2 a+b)}$ | $q \epsilon^{n(2 a+b)}$ |
| $\mathrm{A}_{5}$ | $\epsilon^{n(2 a+b)}$ | $\epsilon^{\boldsymbol{n}(2 a+b)}$ | 0 |
| $\mathrm{A}_{6}$ | $\epsilon^{n(a+b+c)}$ | $2 \epsilon^{n(a+b+c)}$ | $\epsilon^{n(a+b+c)}$ |
| $\mathrm{B}_{1}$ | $\epsilon^{n(a+b)}$ | 0 | $-\epsilon^{n(a+b)}$ |
| $\mathrm{C}_{1}$ | $\epsilon^{n a}$ | $-\epsilon^{n a}$ | $\epsilon^{n a}$ |

(where $n=1,2, \ldots q-1$ and $\epsilon^{q-1}=1$ ).
We next consider the subgroup of index $q^{2}+q+1$ :

$$
\mathrm{GL}(1,2 ; q)=\left(\begin{array}{ccc}
A_{1} & 0 & 0 \\
* & A_{2} \\
* &
\end{array}\right) .
$$

It is clear that any character of $A_{1}$ (or $\left.\mathrm{GL}(1, q)\right)$ multiplied by any character of $A_{2}$ (or $\left.\mathrm{GL}(2, q)\right)$ is a character of $\mathrm{GL}(1,2 ; q)$. By multiplying linear characters of $\mathrm{GL}(1, q)$ by the characters of degree $1, q, q+1, q-1$ of $\mathrm{GL}(2, q)$ determined in $\S 2$, we get characters of these degrees of $\operatorname{GL}(1,2 ; q)$. These characters induce in $\operatorname{GL}(3, q)$ a set of characters from which we can extract $(q-1)(q-2)$ irreducible characters of degree $q^{2}+q+1,(q-1)(q-2)$ of degree $q\left(q^{2}+q+1\right)$, $\frac{1}{6}(q-1)(q-2)(q-3)$ of degree $(q+1)\left(q^{2}+q+1\right)$, $\frac{1}{2} q(q-1)^{2}$ of degree $(q-1)\left(q^{2}+q+1\right)$. See Table VI and Table VII.

TABLE VI

| Element | $\chi_{q}{ }^{2}+q+1{ }^{(m, n)}$ | $\chi_{q}\left(q^{2}+q+1\right)^{(m, n)}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & A_{1} \\ & A_{2} \\ & A_{3} \\ & A_{1} \\ & A_{6} \\ & A_{0} \\ & B_{1} \\ & C_{1} \end{aligned}$ | $\begin{gathered} \left(q^{2}+q+1\right) \epsilon^{(m+2 n) a} \\ (q+1) \epsilon^{(m+2 n) a} \\ \epsilon^{(m+2 n) a} \\ (q+1) \epsilon^{(m+n) a+n b}+\epsilon^{2 n a+m b} \\ \epsilon^{(m+n) a+n b}+\epsilon^{2 n a+m b} \\ \Sigma_{(a, b, c) \epsilon^{m a+n(b+c)}} \epsilon^{m a+n b} \\ 0 \end{gathered}$ | $\begin{gathered} q\left(q^{2}+q+1\right) \epsilon^{(m+2 n) a} \\ q \epsilon^{(m+2 n) a} \\ 0 \\ (q+1) \epsilon^{(m+n) a+n b}+q \epsilon^{2 n a+m b} \\ \epsilon^{(m+n) a+n b} \\ \Sigma_{(a, b, c) \epsilon^{m a+n(b+c)}}-\epsilon^{m a+n b} \\ 0 \end{gathered}$ |

(where $m, n=1,2, \ldots q-1 ; m \neq n$ and $\epsilon^{q-1}=1$ ).

TABLE VII

| Element | $\chi_{(q+1)\left(q^{2}+q+1\right)}{ }^{(l, m, n)}$ | $\chi_{(q-1)\left(q^{2}+q+1\right)}(m, n)$ |
| :---: | :---: | :---: |
|  | $\begin{gathered} l, m, n,=1,2, \ldots, q-1 ; l \neq m \neq n \neq l ; \\ \epsilon^{q-1}=1 \end{gathered}$ | $\begin{gathered} m=1,2, \ldots, q-1 ; n=1,2, \ldots, q^{2}-2 ; \\ n \neq \underset{c}{\text { mult. }}(q+1) \\ \epsilon^{2^{2}-1}=1 \end{gathered}$ |
| $\mathrm{A}_{1}$ $\mathrm{~A}_{2}$ $\mathrm{~A}_{3}$ $\mathrm{~A}_{4}$ $\mathrm{~A}_{5}$ $\mathrm{~A}_{6}$ $\mathrm{~B}_{1}$ $\mathrm{C}_{1}$ | $\begin{gathered} (q+1)\left(q^{2}+q+1\right) \epsilon^{(l+m+n) a} \\ (2 q+1) \epsilon^{(l+m+n) a} \\ \epsilon^{(l+m+n) a} \\ (q+1) \Sigma_{(l, m, n)} \epsilon^{(l+m) a+n b} \\ \Sigma_{(l, m, n)} \epsilon^{(l+m) a+n b} \\ \Sigma_{(l, m, n)} \epsilon^{l a+m b+n c} \\ 0 \end{gathered}$ | $\begin{gathered} (q-1)\left(q^{2}+q+1\right) \epsilon^{(m+\pi) a(q+1)} \\ -\epsilon^{(m+n) a(q+1)} \\ -\epsilon^{(m+n) a(q+1)} \\ (q-1) \epsilon^{(n a+m b)(q+1)} \\ -\epsilon^{(n a+m b)(q+1)} \\ 0 \\ -\epsilon^{m a(q+1)}\left(\epsilon^{n b}+\epsilon^{n b q}\right) \\ 0 \end{gathered}$ |

By $\Sigma_{(l, m, n)} \epsilon^{(l+m) a+n b}$, we mean the symmetric function in $l, m$, and $n$ which has $\epsilon^{(l+m) a+n b}$ as its typical term.

Finally, we turn to the cyclic subgroup of order $(q-1)\left(q^{2}+q+1\right)$ :

$$
\left(\begin{array}{lll}
\tau & & \\
& \tau^{q} & \\
& & \tau^{q^{2}}
\end{array}\right)^{a}
$$

The linear characters of this subgroup induce the following in the group GL(3,q):

$$
\begin{array}{lll}
A_{1}: q^{3}(q-1)^{2}(q+1) \epsilon^{n a\left(q^{2}+q+1\right)}, & A_{2}: 0, & A_{3}: 0, \\
A_{5}: 0, & A_{6}: 0, & B_{1}: 0,
\end{array} C_{1}: \epsilon_{4}: 0, \epsilon^{n a q}+\epsilon^{n a q^{2}} .
$$

If from this character we subtract $\left[\chi_{q^{1}}{ }^{(0)}-\chi_{q^{2}+q^{(0)}}+\chi_{1}{ }^{(0)}\right] \chi_{(q-1)\left(q^{9}+q+1\right)}{ }^{(0, n)}$, we get:
$A_{1}:(q-1)^{2}(q+1) \epsilon^{n a\left(q^{2}+q+1\right)}, \quad A_{2}:-(q-1) \epsilon^{n a\left(q^{2}+q+1\right)}, \quad A_{3}: \epsilon^{n a\left(q^{2}+q+1\right)}$ $A_{4}: 0, \quad A_{5}: 0, \quad A_{6}: 0, \quad B_{1}: 0, \quad C_{1}: \epsilon^{n a}+\epsilon^{n a q}+\epsilon^{n a q^{2}}$. This is an irreducible character if $n \neq$ mult. $\left(q^{2}+q+1\right)$. Since $(n) \equiv(n q) \equiv\left(n q^{2}\right)$, we thus get $\frac{1}{3} q(q-1)(q+1)$ irreducible characters of degree $(q-1)^{2}(q+1)$.

This completes the list of characters since we have now obtained $q(q-1)$ $(q+1)=k$ irreducible characters.

In obtaining the characters of $\operatorname{PGL}(3, q)$, again two cases must be distinguished: $q=3 t+1$ or $q \neq 3 t+1$. The revision of classes and characters in each case is straightforward and we shall content ourselves with a list of the number of characters of each degree. (See Table VIII.)

TABLE VIII
Characters of $\operatorname{PGL}(3, q)$

| Degree | 1 | $q^{2}+q$ | $q^{3}$ | $q^{2}+q+1$ | $q\left(q^{2}+q+1\right)$ | $\begin{aligned} & (q+1) \times \\ & \left(q^{2}+q+1\right) \end{aligned}$ | $\begin{aligned} & (q-1) \times \\ & \left(q^{2}+q+1\right) \end{aligned}$ | $\begin{gathered} (q-1)^{2} \times \\ (q+1) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency |  |  |  |  |  |  |  |  |
| $q=3 t+1$ | 3 | 3 | 3 | $q-4$ | $q-4$ | $\frac{1}{6}\left(q^{2}-5 q+10\right)$ | $\frac{1}{2} q(q-1)$ | ${ }^{\frac{1}{3}(q-1)(q+2)}$ |
| $q \neq 3 t+1$ | 1 | 1 | 1 | $q-2$ | $q-2$ | $\frac{1}{6}(q-2)(q-3)$ | $\frac{1}{2} q(q-1)$ | ${ }_{3}^{\frac{1}{3} q(q+1)}$ |

4. The characters of $\mathrm{GL}(4, q)$ and $\operatorname{PGL}(4, q)$. The group $\mathrm{GL}(4, q)$ is of order $q^{6}(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ and each of its elements is similar to one of the following twenty-two types [2]:

$$
\begin{aligned}
& A_{1}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{a} & & \\
& & \rho^{a} & \\
& & & \rho^{a}
\end{array}\right), \quad A_{2}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & \rho^{a} & \\
& & & \rho^{a}
\end{array}\right), \quad A_{3}:\left(\begin{array}{llll}
\rho^{a} & & \\
1 & \rho^{a} & & \\
& & \rho^{a} & \\
& & 1 & \rho^{a}
\end{array}\right) \text {, } \\
& A_{4}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& 1 & \rho^{a} & \\
& & & \rho^{a}
\end{array}\right), \quad A_{5}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& 1 & \rho^{a} & \\
& & 1 & \rho^{a}
\end{array}\right), \quad A_{6}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{a} & & \\
& & \rho^{a} & \\
& & & \rho^{b}
\end{array}\right) \text {, } \\
& A_{7}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & \rho^{a} & \\
& & & \rho^{b}
\end{array}\right), \quad A_{8}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& 1 & \rho^{a} & \\
& & & \rho^{b}
\end{array}\right), \quad A_{9}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{a} & & \\
& & \rho^{b} & \\
& & & \rho^{b}
\end{array}\right) \text {, } \\
& A_{10}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & \rho^{b} & \\
& & & \rho^{b}
\end{array}\right), A_{11}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & \rho^{b} & \\
& & 1 & \rho^{b}
\end{array}\right), A_{12}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{a} & & \\
& & \rho^{b} & \\
& & & \rho^{c}
\end{array}\right) \text {, } \\
& A_{12}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & \rho^{b} & \\
& & & \rho^{c}
\end{array}\right), A_{14}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{b} & & \\
& & \rho^{c} & \\
& & & \rho^{d}
\end{array}\right), \quad B_{1}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{a} & & \\
& & \sigma^{b} & \\
& & & \sigma^{b q}
\end{array}\right) \text {, } \\
& B_{2}:\left(\begin{array}{llll}
\rho^{a} & & & \\
1 & \rho^{a} & & \\
& & & \sigma^{b} \\
& & & \\
& & \sigma^{b q}
\end{array}\right), \quad B_{3}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \rho^{b} & & \\
& & \sigma^{c} & \\
& & & \sigma^{c q}
\end{array}\right), \quad C_{1}:\left(\begin{array}{llll}
\sigma^{a} & & \\
& \sigma^{a q} & \\
& & & \\
& & & \\
& & & \\
& & & \sigma^{a q}
\end{array}\right) \text {, } \\
& C_{2}:\left(\begin{array}{llll}
\sigma^{a} & & & \\
& \sigma^{a q} & \\
1 & & \sigma^{a} & \\
& 1 & & \sigma^{a q}
\end{array}\right), C_{3}:\left(\begin{array}{cccc}
\sigma^{a} & & & \\
& \sigma^{a q} & & \\
& & \sigma^{b} & \\
& & & \sigma^{b q}
\end{array}\right), D_{1}:\left(\begin{array}{llll}
\rho^{a} & & & \\
& \tau^{b} & & \\
& & \tau^{b q} & \\
& & & \tau^{b q^{2}}
\end{array}\right), E_{1}:\left(\begin{array}{llll}
\omega^{a} & & \\
& \omega^{a q} & \\
& & \omega^{a q^{2}} \\
& & & \omega^{a q^{3}}
\end{array}\right)
\end{aligned}
$$

Now, we shall make use of the underlying geometry to obtain five irreducible characters. To do this, we consider the following five geometric entities: the $\mathrm{PG}(3, q)$; a point; a line; a point and a line through it; a point, a line through it, and a plane through the line. It will be noted that these five entities correspond to the five partitions of $4:(4),(13),\left(2^{2}\right),\left(1^{2} 2\right),\left(1^{4}\right)$, respectively. In fact, $\mathrm{GL}(4, q), \mathrm{GL}(1,3 ; q), \mathrm{GL}(2,2 ; q), \mathrm{GL}(1,1,2 ; q)$ and $\mathrm{GL}(1,1,1,1 ; q)$ are the subgroups of $G L(4, q)$ which leave fixed one of each of these entities, respectively. Each of these sets of entities will be permuted by the elements of
TABLE IX

| Element | Unit | Point | $q\left(q^{2}+q+1\right)$ | Line | $q^{2}\left(q^{2}+1\right)$ | Point-line | $q^{3}\left(q^{2}+q+1\right)$ | Point-Line-Plane | $q^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{1}$ | 1 | $(q+1)\left(q^{2}+1\right)$ | $q\left(q^{2}+q+1\right)$ | $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $q^{2}\left(q^{2}+1\right)$ | $(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $q^{3}\left(q^{2}+q+1\right)$ | $(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $q^{6}$ |
| $\mathrm{A}_{2}$ | 1 | $q^{2}+q+1$ | $q^{2}+q$ | $2 q^{2}+q+1$ | $q^{2}$ | $q^{3}+3 q^{2}+2 q+1$ | $q^{3}$ | $3 q^{3}+5 q^{2}+3 q+1$ | 0 |
| $\mathrm{A}_{3}$ | 1 | $q+1$ |  | $q^{2}+q+1$ | $q^{2}$ | $q^{2}+2 q+1$ | 0 | $2 q^{2}+3 q+1$ | 0 |
| $A_{4}$ | 1 | $q+1$ | $q$ | $q+1$ | 0 | $2 q+1$ | 0 | $3 q+1$ | 0 |
| $\mathrm{A}_{5}$ | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| $\mathrm{A}_{6}$ | 1 | $q^{2}+q+2$ | $q^{2}+q+1$ | $2 q^{2}+2 q+2$ | $q^{2}+q$ | $q^{3}+4 q^{2}+4 q+3$ | $q^{3}+q^{2}+q$ | $4 q^{3}+8 q^{2}+8 q+4$ | $q^{3}$ |
| $\mathrm{A}_{7}$ | 1 | $q+2$ | $q+1$ | $2 q+2$ |  | $4 q+3$ | $q$ | $8 q+4$ | 0 |
| $\mathrm{A}_{8}$ | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 4 | 0 |
| $A_{9}$ | 1 | $2 q+2$ | $2 q+1$ | $q^{2}+2 q+3$ | $q^{2}+1$ | $2 q^{2}+6 q+4$ | $q^{2}+2 q$ | $6 q^{2}+12 q+6$ | $q^{2}$ |
| $\mathrm{A}_{10}$ | 1 | $q+2$ | $q+1$ | $q+3$ | 1 | $3 q+4$ | $q$ | $6 q+6$ | 0 |
| $\mathrm{A}_{11}$ | 1 | 2 | 1 | 3 | 1 | 4 | 0 | 6 | 0 |
| $\mathrm{A}_{12}$ | 1 | $q+3$ | $q+2$ | $2 q+4$ | $q+1$ | $5 q+7$ | $2 q+1$ | $12 q+12$ | $q$ |
| $\mathrm{A}_{13}$ | 1 | 3 | 2 | 4 | 1 | 7 | 1 | 12 | 0 |
| $\mathrm{A}_{14}$ | 1 | 4 | 3 | 6 | 2 | 12 | 3 | 24 | 1 |
| $\mathrm{B}_{1}$ | 1 | $q+1$ | $q$ | 2 | $-q+1$ | $q+1$ | -1 | 0 | -q |
| $\mathrm{B}_{2}$ | 1 | 1 | 0 | 2 | 1 | 1 | -1 | 0 | 0 |
| $\mathrm{B}_{3}$ | 1 | 2 | 1 | 2 | 0 | 2 | -1 | 0 | $-1$ |
| $\mathrm{C}_{1}$ | 1 | 0 | -1 | $q^{2}+1$ | $q^{2}+1$ | 0 | $-q^{2}$ | 0 | $q^{2}$ |
| $\mathrm{C}_{2}$ | 1 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 |
| $\mathrm{C}_{3}$ | 1 | 0 | -1 | 2 | 2 | 0 | -1 | 0 | 1 |
| $\mathrm{D}_{1}$ | 1 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 |
| $\mathrm{D}_{2}$ | 1 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | -1 |

$\mathrm{GL}(4, q)$ and in this way permutation representations of degree $1,(q+1)$ $\left(q^{2}+1\right),\left(q^{2}+1\right)\left(q^{2}+q+1\right),(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ and $(q+1)^{2}\left(q^{2}+1\right)$ ( $q^{2}+q+1$ ) will be obtained. All except the first of these five characters are reducible, but they can be combined to give five irreducible characters as follows [9]:

$$
\begin{aligned}
& 1=1 ;(q+1)\left(q^{2}+1\right)-1=q\left(q^{2}+q+1\right) ; \\
& \quad\left(q^{2}+1\right)\left(q^{2}+q+1\right)-(q+1)\left(q^{2}+1\right)=q^{2}\left(q^{2}+1\right) ; \\
& (q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)-\left(q^{2}+1\right)\left(q^{2}+q+1\right)-(q+1)\left(q^{2}+1\right)+1= \\
& \quad q^{3}\left(q^{2}+q+1\right) ; \\
& (q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)-3(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right) \\
& \quad \quad\left(q^{2}+1\right)\left(q^{2}+q+1\right)+2(q+1)\left(q^{2}+1\right)-1=q^{6} .
\end{aligned}
$$

Multiplication of each of these characters by the $q-1$ linear characters given by the powers of the determinants gives $q-1$ irreducible characters of each of these degrees. Table IX lists the basic characters and shows the "fixed entity" situation.

We next consider characters induced by those of subgroup GL(1, 3; $q$ of index $(q+1)\left(q^{2}+1\right)$. In a manner analogous to those obtained of GL $\left(3,{ }^{,} q\right)$ from $\operatorname{GL}(1,2 ; q)$, we get irreducible characters of the degrees and frequencies ${ }^{2}$ shown in Table X :

TABLE X

| Degree | Frequency |
| :---: | :---: |
| $(q+1)\left(q^{2}+1\right)$ | $(q-1)(q-2)$ |
| $q(q+1)^{2}\left(q^{2}+1\right)$ | $(q-1)(q-2)$ |
| $q^{3}(q+1)\left(q^{2}+1\right)$ | $(q-1)(q-2)$ |
| $(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2}(q-1)(q-2)(q-3)$ |
| $q(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2}(q-1)(q-2)(q-3)$ |
| $(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2}(q-1)(q-2)(q-3)(q-4)$ |
| $(q-1)(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{4} q(q-1)^{2}(q-2)$ |
| $(q-1)^{2}(q+1)^{2}\left(q^{2}+1\right)$ | $\frac{1}{3} q(q-1)^{2}(q+1)$ |

In the same way, the subgroup $\mathrm{GL}(2,2 ; q)$ yields the irreducible characters shown in Table XI:

TABLE XI

| Degree | Frequency |
| :---: | :---: |
| $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2}(q-1)(q-2)$ |
| $q^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2}(q-1)(q-2)$ |
| $q\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $(q-1)(q-2)$ |
| $(q-1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2} q(q-1)^{2}$ |
| $q(q-1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{2} q(q-1)^{2}$ |
| $(q-1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ | $\frac{1}{8} q(q-1)(q+1)(q-2)$. |

[^1] in [10].

As a bi-product of the set of characters of degree $(q-1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ we obtain $\frac{1}{2} q(q-1)$ characters of this degree each of which is the sum of two irreducible characters which are not among those that we have already obtained. Let us denote them by $\chi^{(n)}, n=1,2, \ldots, \frac{1}{2} q(q-1)$.

Finally, the linear characters of the cyclic subgroup of order $q^{4}-1$,

$$
\left(\begin{array}{llll}
\omega & & & \\
& \omega^{q} & & \\
& & \omega^{q^{2}} & \\
& & & \omega^{\sigma^{3}}
\end{array}\right)^{a},
$$

induce in $\operatorname{GL}(4, q)$ a set of characters of degree $q^{6}(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$. Each of these is reducible, but by a suitable use of the characters already obtained, i.e., by multiplication, addition and subtraction, a set of $\frac{1}{4} q^{2}(q-1)(q+1)$ irreducible characters of degree $(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$ can be extracted from them. Again there is a bi-product: $\frac{1}{2} q(q-1)$ pseudocharacters of degree $(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$ each of which is the difference of two irreducible characters. Denote them by $\psi^{(n)}$. Then, if the proper correlation is made be-

TABLE XII
Characters of $\operatorname{PGL}(4, q)$

| Degrees | Frequencies |  |  |
| :---: | :---: | :---: | :---: |
|  | $q=4 t$ or $4 t+2$ | $q=4 t+1$ | $q=4 t+3$ |
| 1 | 1 | 4 | 2 |
| (10) (111) | 1 | 4 | 2 |
| $(10)^{2}(101)$ | 1 | 4 | 2 |
| $(10)^{3}(111)$ | 1 | 4 | 2 |
| (10) ${ }^{6}$ | 1 | 4 | 2 |
| (11)(101) | 1-2 | 1-5 | 1-3 |
| (10) $(11)^{2}(101)$ | 1-2 | 1-5 | 1-3 |
| (10) ${ }^{3}(11)(101)$ | 1-2 | 1-5 | 1-3 |
| (11) (101) (111) | $\frac{1}{2}(1-2)(1-3)$ | $\frac{1}{2}(1-6-13)$ | $\frac{1}{2}(1-3)^{2}$ |
| (10)(11)(101)(111) | $\frac{1}{2}(1-2)(1-3)$ | $\frac{1}{2}(1-6-13)$ | $\frac{1}{2}(1-3)^{2}$ |
| $(11)^{2}(101)(111)$ | $\frac{1}{2}(1-2)(1-3)(1-4)$ | $\frac{1}{24}(1-5)(1-49)$ | $\frac{1}{24}(1-3)(1-6-11)$ |
| $(1-1)(11)(101)(111)$ | $\frac{1}{4}(10)(1-1)(1-2)$ | $\frac{1}{4}(1-1)^{3}$ | ${ }^{\frac{1}{4}(1-1)^{3}}$ |
| $(1-1)^{2}(11)^{2}(101)$ | $\frac{1}{3}(10)(1-1)(11)$ | $\frac{1}{3}(10)(1-1)(11)$ | $\frac{1}{3}(10)(1-1)(11)$ |
| (101)(111) | $\frac{1}{2}(1-2)$ | 1-3 | 1-2 |
| $(10)^{2}(101)(111)$ | $\frac{1}{2}(1-2)$ | 1-3 | 1-? |
| (10) (101)(111) | 1-2 | 2-6 | 2-4 |
| $(1-1)(101)(111)$ | $\frac{1}{2}(10)(1-1)$ | $\frac{1}{2}(1-1)^{2}$ | $\frac{1}{2}(1-1)^{2}$ |
| $(10)(1-1)(101)(111)$ | $\frac{1}{2}(10)(1-1)$ | $\frac{1}{2}(1-1)^{2}$ | $\frac{1}{2}(1-1)^{2}$ |
| $(1-1)^{2}(101)(111)$ | $\frac{1}{3}(10)(11)(1-2)$ | $\frac{1}{8}(1-1)(10-3)$ | $\frac{1}{8}(11)(1-2-1)$ |
| $(1-1)^{2}(111)$ | $\frac{1}{2}(10)$ | 1-1 | 10 |
| $(10)^{2}(1-1)^{2}(111)$ | $\frac{1}{2}(10)$ | 1-1 | 10 |
| $(1-1)^{2}(11)(111)$ | $\frac{1}{4}(10)^{2}(11)$ | $\frac{1}{4}(1-1)(11)^{2}$ | $\frac{1}{4}(1-1)(11)^{2}$ |

tween the $\chi^{(n)}$ 's and the $\psi^{(n)}$ 's, it turns out that $\frac{1}{2}\left(\chi^{(n)}+\psi^{(n)}\right)$ and $\frac{1}{2}\left(\chi^{(n)}-\psi^{(n)}\right)$ are irreducible characters. In this way we obtain $\frac{1}{2} q(q-1)$ irreducible characters of each of the degrees $q^{2}(q-1)^{2}\left(q^{2}+q+1\right)$ and $(q-1)^{2}\left(q^{2}+q+1\right)$. This completes the character list since we have now obtained $q^{4}-q=k$ of them.

In cutting down the characters of $\operatorname{GL}(4, q)$ to get those of $\operatorname{PGL}(4, q)$, three cases are distinct: $q$ even, $q=4 t+1, q=4 t+3$. Table XII gives the degrees and frequencies in each of these cases. For convenience in notation, we shall mean by $\frac{1}{3}(10-11)$, for example, $\frac{1}{3}\left(q^{3}-q+1\right)$, etc.

## References

[1] H. W. Brinkmann, Bull. Amer. Math. Soc., vol. 27 (1921), 152.
[2] L. E. Dickson, Linear Groups in Galois Fields (Leipzig, 1901).
[3] G. Frobenius, Über Gruppencharaktere, Berliner Sitz. (1896), 985.
[4] ——UUber die Darstellung der endlichen Gruppen durch Lineare Substitutionen, Berliner Sitz. (1897), 994.
[5] ——Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen, Berliner Sitz. (1898), 501.
[6] H. Jordan, Group-Characters of Various Types of Linear Groups, Amer. J. of Math., vol. 29 (1907), 387.
[7] I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch Gebrochene Lineare Substitutionen, J. für Math., vol. 132 (1907), 85.
[8] A. Speiser, Die Theorie der Gruppen von endlicher Ordnung (Berlin, 1937).
[9] R. Steinberg, A Geometric Approach to the Representations of the Full Linear Group over a Galois Field, submitted to Trans. Amer. Math. Soc.
[10] ——, Representations on the Linear Fractional Groups, Thesis, University of Toronto Library.

## University of California at Los Angeles


[^0]:    Received March 13, 1950.
    This paper is part of a Ph.D. thesis written at the University of Toronto under the direction of Professor Richard Brauer.
    ${ }^{1}$ See [8] for a complete account of the properties of group characters used here.

[^1]:    ${ }^{2}$ The actual characters of $\operatorname{GL}(4, q)$ with a more detailed account of the methods are available

