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An Existence Theory for Incomplete
Designs

Peter Dukes, Esther R. Lamken, and Alan C. H. Ling

Abstract. An incomplete pairwise balanced design is equivalent to a pairwise balanced design with
a distinguished block, viewed as a ‘hole’. If there are v points, a hole of size w, and all (other) block
sizes equal k, this is denoted IPBD((v;w), k). In addition to congruence restrictions on v and w,
there is also a necessary inequality: v > (k − 1)w. _is article establishes two main existence results
for IPBD((v;w), k): one in whichw is ûxed and v is large, and the other in the case v > (k− 1+є)w
whenw is large (depending on є). Several possible generalizations of the problem are also discussed.

1 Introduction

Let v be a positive integer and let K ⊆ Z≥2 ∶= {2, 3, 4, . . .}. A pairwise balanced design
PBD(v ,K) is a pair (V ,B), where
● V is a v-element set of points,
● B ⊆ ∪k∈K(Vk) is a family of subsets of V , called blocks, and
● every two distinct points appear together in exactly one block.
_is object is sometimes also called a linear space with block sizes in K.

_e case when K = {k} is of primary interest. We then use the notation PBD(v , k)
for consistency but shouldmention that themore standard notation is (v , k, 1)-BIBD.
More generally, pairwise balanced designs and (balanced incomplete) block designs
permit an additional parameter λ and ask that every two distinct points appear to-
gether in exactly λ blocks. For the moment, though, our attention is restricted to
λ = 1 and K = {k}. Recall that the case k = 3 yields Steiner triple systems.

In a PBD(v , k), note that there are (k
2) pairs in each block, and that thesemust par-

tition (V2). In addition, for any point x ∈ V , the remaining v − 1 points must partition
into (k − 1)-element ‘neighbourhoods’ in the blocks incident with x. It is helpful to
think of the resulting numerical restrictions as ‘global’ and ‘local’ conditions, respec-
tively, and we record them below (in reverse order).

Proposition 1.1 _e existence of a PBD(v , k) implies

v − 1 ≡ 0 (mod k − 1),(1.1)
v(v − 1) ≡ 0 (mod k(k − 1)).(1.2)
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_e ‘asymptotic suõciency’ of these conditions is a celebrated result due to
Richard M. Wilson.

_eorem 1.2 (Wilson [17]) Given any integer k ≥ 2, there exist PBD(v , k) for all
suõciently large v satisfying (1.1) and (1.2).

_eorem 1.2 lays the foundation for a rich existence theory for a variety of combi-
natorial structures, including PBD(v ,K), graph decompositions, and resolvable de-
signs; see [1, 5–7, 9, 18, 21] and the references therein. Our focus here is a basic (but
challenging) extension.

Let v ≥ w be positive integers andK ⊆ Z≥2. An incomplete pairwise balanced design
IPBD((v;w),K) is a triple (V ,W ,B) where
● V is a set of v points andW ⊂ V is a hole of size w;
● B ⊆ ∪k∈K(Vk) is a family of blocks;
● no two distinct points ofW appear in a block; and
● every two distinct points not both in W appear together in exactly one block.
An equivalent notion is a PBD(v ,K ∪ {w∗}), where the star indicates that there is
exactly one block of sizew ifw /∈ K and at least one block of sizew ifw ∈ K. Given an
IPBD((v;w),K), say (V ,W ,B), the system (V ,B ∪ {W}) is a PBD(v ,K ∪ {w∗}).
A closely related notion is that of a PBD(v ,K), say (V ,B), containing a subde-

sign PBD(w ,K), say (W ,A), where we have W ⊆ V and A ⊆ B. We obtain an
IPBD((v;w),K) as (V ,W ,B∖A). On the other hand, an IPBD with holeW can be
‘ûlled’ with a PBD (or another IPBD) onW , but only when this smaller design exists.

_e case w = v leads to B = ∅ and we exclude this in what follows. _e case w = 1
reduces to PBD(v ,K), since such a hole contains no pairs. For simplicity, we again
restrict our attention to the case K = {k}, although we have a few remarks about the
general case later. By analogywith (1.1) and (1.2), there are naive divisibility conditions
on the parameters.

Proposition 1.3 _e existence of an IPBD((v;w), k) implies

v − 1 ≡ w − 1 ≡ 0 (mod k − 1),(1.3)
v(v − 1) −w(w − 1) ≡ 0 (mod k(k − 1)).(1.4)

We say integers v and w are admissible (for IPBD of block size k) if (1.3) and (1.4)
hold. _ere is another necessary condition taking the form of an inequality.

Proposition 1.4 Every point in V ∖W is incident with exactly v−1
k−1 −w blocks disjoint

from W. _erefore, the existence of an IPBD((v;w), k) with v > w implies

(1.5) v ≥ (k − 1)w + 1.

Proof A point x ∈ V ∖W is incident with v−1
k−1 blocks. Each such block covers at

most one point in W , and conversely every point in W is together in exactly one
block with x. It follows that, of the blocks containing x, exactly w of them intersect
W . So v−1

k−1 ≥ w.
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Remark Equality in (1.5) holds if and only if every block intersects the hole.
In what follows, the block size k is taken to be a ûxed but arbitrary integer at least

3. Obviously, the case k = 2 is trivial. For k = 3, the necessary conditions (congruence
and inequality) are known to be suõcient. _is was originally proved in two separate
cases: (i) the Doyen–Wilson _eorem [4] on Steiner triple systems containing sub-
systems; and (ii) Mendelsohn and Rosa’s adaptation [11] to cases where v and w do
not admit Steiner triple systems. Also, see _eorem 6.9 in Colbourn and Rosa’s book
[3] for a uniûed treatment.

_eorem 1.5 (Extended Doyen–Wilson _eorem [4, 11]) An IPBD((v;w), 3) with
0 < w < v exists if and only if v ≥ 2w+1, v andw are both odd, and 3 ∣v(v−1)−w(w−1).

Remarks _ere is an extension of_eorem 1.5 to higher λ; this is sometimes known
as ‘Stern’s _eorem’. _e case k = 4 with λ = 1 has also been solved; see [14].

_e papers [13–15] are also key references on this problem. Unlike many earlier
methods, these papers lean heavily on recursive design-theoretic techniques. _e
‘Doyen–Wilson’ portion of _eorem 1.5 is re-proved in this way, and the case k = 4,
λ = 1 is completely settled. In fact, those papers observemany powerful constructions
(overlapping ours somewhat) for IPBDs. But, unfortunately, the lack of certain small
ingredients for general k limits their use for our purposes. Even when a recursion is
possible for some k, it is tricky to construct examples covering themost general forms
of the global condition (1.4) and inequality (1.5).

Here, we overcome these challenges and establish twomain results in the direction
of an asymptotic existence theory for incomplete pairwise balanced designs. First, we
obtain existence for all large admissible v relative to a ûxed admissible hole size w.

_eorem 1.6 Given ûxed integers k ≥ 2 and w ≡ 1 (mod k − 1), there exist
IPBD((v;w), k) for all suõciently large v satisfying (1.3) and (1.4).

Second, we obtain existence for all large admissible v and w when the inequality
(1.5) is weakened very slightly.

_eorem 1.7 Let k ≥ 2 be a ûxed integer. For any real є > 0, there ex-
ists IPBD((v;w), k) for all suõciently large v and w satisfying (1.3), (1.4), and
v > (k − 1 + є)w.

Remark In the above statement, ‘suõciently large’ depends on є.
Note that _eorem 1.6 also follows from the unpublished thesis of Gustavsson [7]

and the preprint by Keevash [8]; however, our proof uses only basic constructions.
_eorem 1.7 is far stronger than what the bound given from [7] would imply, but re-
quires largew. It seems likely that the new random construction in [8] can be adapted
to IPBDs, even with large holes. On the other hand, we feel there is still value in direct
constructions. In fact, our proofs tie together many diòerent types of combinatorial
designs.

_eoutline of our presentation is as follows. Weûrst prove a version of_eorem 1.6
in which the global condition (1.4) is replaced by the stronger hypothesis that v ≡ w
modulo a large period. _is is a fairly standard use of ‘transversal designs’ and ‘group
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divisible designs’. Next, we observe there is existence for all suõciently large v ,w
which achieve equality in (1.5). _is is immediate from a standard equivalence with
‘resolvable designs’.

Now, a crucial next step is the use of ‘incomplete group divisible designs’ to realize
an example with any prescribed congruence classes for v and w. (In fact, this holds
for an arbitrary large modulus and with a control on v/w.) Together with the ûrst
step, this completes the proof of _eorem 1.6. To prove _eorem 1.7, we make use of
(weighted) transversal designs and a ‘postage stamp’ calculation. Most of the previous
results are needed as ingredients.

_e conclusion discusses the remaining open cases and some possible extensions
of the problem.

2 Transversal Designs and GDDs

Let T denote an integer partition of v. A group divisible design of type T with block
sizes in K, denoted GDD(T ,K), is a triple (V , Π,B) such that
● V is a set of v points,
● Π = {V1 , . . . ,Vu} is a partition of V into groups so that T = {∣V1∣, . . . , ∣Vu ∣},
● B ⊆ ∪k∈K(Vk) is a set of blocks meeting each group in at most one point, and
● any two points from distinct groups Vj appear together in exactly one block.

O�en in this context, exponential notation such as nu is used to abbreviate u parts
or ‘groups’ of size n. For instance, a transversal design TD(k, n) is a GDD(nk , k). In
this case, the blocks are transversals of the partition. A TD(k, n) is equivalent to k−2
mutually orthogonal latin squares of order n, where two groups are reserved to index
the rows and columns of the squares. Here is the famous existence theorem for TDs.

_eorem 2.1 (Chowla, Erdős, and Strauss [2]) Given k, there exist TD(k, n) for all
suõciently large integers n.

In general, a group divisible design of type T = gu is called uniform. _ere is a
satisfactory asymptotic existence result for such objects, stated here for later use.

_eorem 2.2 (Draganova [5] and Liu [10]) Given g and K ⊆ Z≥2, there exist
GDD(gu ,K) for all suõciently large u satisfying

g(u − 1) ≡ 0 (mod α(K)) and g2u(u − 1) ≡ 0 (mod β(K)),

where α(K) = gcd{k − 1 ∶ k ∈ K} and β(K) = gcd{k(k − 1) ∶ k ∈ K}.

In a PBD(v , k), it is easy to see that every point belongs to the same number r = v−1
k−1

of blocks. _is quantity is called the replication number. _at r is an integer follows
from (1.1). In fact, a restatement of _eorem 1.2 is that PBDs exist for all suõciently
large andnumerically allowed replication numbers. More precisely, let us deûne r0(k)
such that there exist PBD((k − 1)r + 1, k) for all r ≥ r0(k) satisfying r(r − 1) ≡ 0
(mod k). From this, we note that there exist PBDs with arbitrary large and consecu-
tive replication numbers 0, 1 (mod k). _is is helpful in what follows.
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Onemotivation for GDDs is that their groups act as a partition into holes; each can
be ‘ûlled’ with PBDs (or smaller GDDs). For example, a PBD(v , k) is equivalent both
to a GDD(1v , k) and also to a GDD((k − 1)r , k). _e second equivalence follows in
one direction from deleting a point with all incident blocks, and in the other direction
by adding a new point and ûlling groups. _ere are similar equivalences under the
presence of a hole.

Proposition 2.3 _e following are equivalent:
● IPBD((v;w), k);
● GDD(1v−ww1 , k);
● GDD((k − 1) v−w

k−1 (w − 1)1 , k).

Another feature of GDDs is that they admit a natural ‘expansion’ of their groups.
_is is made precise in the next construction. _e idea is simply to independently
replicate the points of a ‘master’ GDD, replacing its blocks by ‘ingredient’ GDDs of
the right type.

Lemma 2.4 (Wilson’s fundamental construction [20]) Suppose there exists a GDD
(V , Π,B), where Π = {V1 , . . . ,Vu}. Let ω∶V → Z≥0, assigning nonnegative weights to
each point in such a way that for every B ∈ B there exists a GDD([ω(x) ∶ x ∈ B],K).
_en there exists a GDD(T ,K), where

T = [ ∑
x∈V1

ω(x), . . . , ∑
x∈Vu

ω(x)] .

Combining this construction with the earlier remark about consecutive replica-
tion numbers is a powerful combination. One application we use is a construction of
certain non-uniform GDDs.

Lemma 2.5 Let m ≥ r0(k) with m ≡ 0 (mod k). _ere exists a constant s0 =
s0(m, k) such that, for all integers s ≥ s0 and any integer t satisfying 0 ≤ t ≤ s and
s ≡ t ≡ 0 (mod k − 1), there exist GDD(sm t1 , k).

Proof By assumption on m, there exist PBDs of block size k and consecutive
replication numbers m,m + 1. Equivalently, we have GDD((k − 1)m , k) and
GDD((k − 1)m+1 , k).
By _eorem 2.1, there exist TD(m + 1, s

k−1 ) for s suõciently large with s ≡ 0
(mod k − 1). Truncate one group of such a TD (that is, give weight zero to some
points) so that there are t

k−1 points remaining, 0 ≤ t ≤ s with t ≡ 0 (mod k − 1). _e
result is a

GDD(( s
k−1)

m( t
k−1)

1
, {m,m + 1}) .

Using this as the master, apply Lemma 2.4 with constant weight ω = k − 1. _e
ingredients exist by choice of m, and so we obtain a GDD(sm t1 , k).

We are now ready to prove a preliminary ‘sparse’ result on ûxed hole sizes.
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Proposition 2.6 Let m ≥ r0(k) with m ≡ 0 (mod k). For any w ≡ 1 (mod k − 1),
there exist IPBD((v;w), k) for all suõciently large v ≡ w (mod mk(k − 1)).

Proof Suppose v−w ≡ 0 (mod mk(k−1)). Appealing to Lemma 2.5, we can choose
a large enough so that there exists a GDD((ak(k − 1))m(w − 1)1 , k) and also so that
ak ≥ r0(k). Fill the m large groups with copies of a GDD((k − 1)ak , k). _is re-
sults in a GDD((k − 1)amk(w − 1)1 , k), which, by Proposition 2.3, is equivalent to an
IPBD((v;w), k). Note that a can be incremented, and the result follows.

Remark Although the modulus depends only on k, the ‘suõciently large’ depends
on w.

3 Resolvable Designs

A PBD(v , k) is resolvable if its blocks B can be resolved into partitions of V , each of
which is called a parallel class. _e number of parallel classes must of course agree
with the replication number r, since every point is in exactly one parallel class for
each incident block.
Combining k ∣v with (1.1), the necessary numerical condition for resolvable

PBD(v , k) is

(3.1) v ≡ k (mod k(k − 1)).

_e reader can easily verify that the global condition (1.2) is automatically implied.
For example, resolvable PBD(v , 2) are equivalent to one-factorizations of the com-

plete graph of order v, for which (3.1) – that v be even – is well known to be suõcient.
_e asymptotic existence of resolvable designs (of ûxed block size) was a celebrated

achievement.

_eorem 3.1 (Ray Chaudhuri andWilson [12]) Given any integer k ≥ 2, there exists
resolvable PBD(v , k) for all suõciently large v satisfying (3.1).

It is an important observation that resolvable designs are in some sense equivalent
to incomplete designs with ‘large’ holes. Let us assume here and in what follows that
k ≥ 3; the case of block size two is trivial for IPBD.

Proposition 3.2 _ere exists an IPBD((v;w), k) with v = (k − 1)w + 1 if and only if
there exists a resolvable PBD(v −w , k − 1).

Proof Let (V ,W ,B) be an IPBD achieving equality in (1.5). _en every block in-
tersects W . Truncating W results in a PBD(v − w , k − 1), say with blocks B′. _ese
blocks resolve intow = v−w

k−2 parallel classes of the formRx = {B− x ∶ x ∈ B ∈ B}, one
class for every point in W .

_is process is reversible. Given a resolvable PBD(n, k − 1), just add w = n−1
k−2 new

points and extend the blocks of each parallel class with a common new point. _e
result is an IPBD((n +w;w), k).
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When combined with _eorem 3.1, we get a straightforward asymptotic solution
for IPBDs in the case of maximum holes.

Corollary 3.3 For w suõciently large and w ≡ 1 (mod k − 1), there exist
IPBD((v;w), k) for v = (k − 1)w + 1.

Remark _e v constructed here satisûes v ≡ 1 − w (mod k). _is is our ûrst ex-
ample outside of the class v ≡ w (mod k), and, as we will see later, this is enough to
‘seed’ a construction for any admissible congruence classes.

Suppose we wish to let v be slightly larger than (k − 1)w + 1. If, for instance, v =
(k−1)(w+1)+1, then every point inV ∖W is incident with exactly one block disjoint
fromW . _is can be achieved with one parallel class of blocks of size k and the rest of
size k − 1. To this end, we are led to consider resolvability in group divisible designs.

Naturally, we declare aGDDwith blocksB and pointsV to be resolvable ifB can be
resolved into partitions of V , here also called parallel classes. An asymptotic existence
result for resolvable GDDs of uniform type was recently proved.

_eorem 3.4 ([1]) Given g ≥ 1 and k ≥ 2, there exist resolvable GDD(gu , k) for all
suõciently large integers u satisfying

gu ≡ 0 (mod k) and
g(u − 1) ≡ 0 (mod k − 1).

In general, if there exists a PBD(g , k), then groups of a resolvable GDD(gu , k − 1)
can be ûlled to produce IPBD((gu +w;w), k), where w = g(u−1)

k−2 . We have v = gu +
w = (k − 1)(w + r) + 1, where r = g−1

k−1 is the replication number of the hypothesized
PBD(g , k).

4 Incomplete Group Divisible Designs

An incomplete group divisible design, or IGDD, is a quadruple (V , Π, Ξ,B) such
that V is a set of v points, Π = {V1 , . . . ,Vu) is a partition of V into ‘groups’, Ξ =
{W1 , . . . ,Wu} with Wi ⊆ Vi called ‘holes’ for each i, and B ⊆ (V

≥2) is a set of blocks
such that
● two points get covered by a block (exactly one block) if and only if they come from
diòerent groups, say Vi and Vj , i ≠ j, and they do not both belong to the corre-
sponding holes Wi andWj .
As with GDDs, the type of an IGDD can be written by listing, using exponential

notation when appropriate, the pairs (∣Vi ∣; ∣Wi ∣) of group size and corresponding hole
size. A (uniform) incomplete group divisible design of type (g; h)u with block size k is
abbreviated IGDD((g; h)u , k). Note that this is equivalent to an edge-decomposition
of the multipartite graph u ⋅ Kg − u ⋅ Kh into cliques Kk .

We state the necessary ‘divisibility’ conditions on uniform IGDDs.
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Proposition 4.1 _e existence of an IGDD((g; h)u , k) implies
g(u − 1) ≡ h(u − 1) ≡ 0 (mod k − 1),(4.1)

(g2 − h2)u(u − 1) ≡ 0 (mod k(k − 1)).(4.2)

We say that integers g , h, and u are admissible (for IGDD of block size k) if (4.1)
and (4.2) hold.
Also, a similar counting argument as for Proposition 1.4 give

hu(g − h)(u − 1)
k − 1

(k − 1
2

) ≤ (g − h)2(u
2
),

or simply

(4.3) g ≥ (k − 1)h.
From the theory of ‘edge-colored graph decompositions’ (see [9]), we have an

asymptotic existence result (in u) for uniform IGDDs. _e proof is a straightforward
extension of that of_eorem 2.2, with details now included in [16]. For completeness,
we sketch a proof in Section 5.

_eorem 4.2 Given integers g , h, k with k ≥ 2 and g ≥ (k − 1)h, there exists an
IGDD((g; h)u , k) whenever u is suõciently large satisfying (4.1) and (4.2).

As expected, groups of an IGDD can be ûlled with examples of IPBD. _e excess
points on each group get identiûed.

Construction 4.3 Suppose there exists an IGDD((g; h)u , k) and an IPBD((x; y), k)
with g−h = x−y and y ≥ h. _en there exists an IPBD((v;w), k)with v−w = u(x−y)
and w = (u − 1)h + y.

Remark If a subdesign on one group is deleted from the resulting IPBD, we obtain
an instance of a ♢-IPBD, in which there are two intersecting holes. Such objects are
deûned and used in [15].

Let us use the extremal IPBDs in Corollary 3.3 as ingredients, so that we are taking
x = (k − 1)y + 1. Substituting this and y = w − (u − 1)h into v − w = u(x − y), one
obtains an identity connecting the parameters u and h. _at is, we have

(4.4) u[(k − 2)(w − (u − 1)h) + 1] = v −w ,
or equivalently, a�er some simpliûcation,

(4.5) u(u − 1)(k − 2)h = u(k − 2)w +w + u − v .
Note that this equation is linear in h for each u. Another equivalent expression to be
used later is

(4.6)

(u − 1)(g + h) = (u − 1)(g − h) + 2h(u − 1)
= (u − 1)(x − y) + 2(w − y)
= v +w − x − y
= v +w − 1 − ky.
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Given v andw, if we have a solution to (4.5) such that g , h, u are admissible for IGDD
and with y ≥ h, then Construction 4.3 can be invoked to obtain IPBD((v;w), k).
Observe, though, that only ûnitely many values of v are constructible in this way for
a given ûxed w.
Fortunately, Construction 4.3 is suõciently general if we only care about achieving

desired congruence classes for v and w. We are speciûcally interested in the modulus
M = mk(k − 1) from Proposition 2.6, but the statement below applies modulo any
multiple of k(k − 1).

Proposition 4.4 Suppose k ≥ 2 is an integer, and we are given integers v0 ,w0 satisfy-
ing the necessary divisibility conditions (1.3) and (1.4). Let M ≡ 0 (mod k(k − 1)) be
a positive modulus. _en there exists an IPBD((v1;w1), k) for inûnitely many v1 ≡ v0
and w1 ≡ w0 (mod M).

Proof _e idea is as follows. First, pick h and u strategically in certain congruence
classes (mod M) as a function of k, v0 ,w0. _is selection is done separately based
on prime power divisors of M, appealing to the Chinese remainder theorem for a
simultaneous selection (mod M). _en, working from h and u, we compute a large
integer y ≡ w0 − (u − 1)h (mod M), followed by x = (k − 1)y + 1 and g = h + x − y.
_is set-up allows us to invoke Construction 4.3 to produce IPBD((v1;w1), k) with
w1 = (u − 1)h + y and v1 −w1 = u(x − y). Each of w1 and v1 can be made arbitrarily
large by increasing the choice for y.

_e essential step remaining is a selection of h and u so that the needed IGDDs for
the construction are admissible. So consider a congruence version of (4.5), namely,

u(u − 1)(k − 2)h ≡ u(k − 2)w0 +w0 + u − v0 (mod pt),

where pt ∥ M is a prime power exact divisor. It is convenient to choose u such that
the right-hand side becomes independent of w0. To this end, put

(4.7) u ≡
⎧⎪⎪⎨⎪⎪⎩

−(k − 2)−1 if gcd(p, k − 2) = 1,
(v0 −w0)((k − 2)w0 + 1)−1 otherwise,

where the congruence is modulo pt . For such integers u, the congruence on h be-
comes much simpler. In the case p ∣k − 2, we have simply u(u− 1)(k − 2)h ≡ 0, which
is of course solved by h ≡ 0. In the case gcd(p, k − 2) = 1, we have (u − 1)h ≡ v0 − u.
_is admits the solution

h ≡ (k − 2)v0 + 1
1 − k

,

since by (1.3), k − 1 divides the numerator and leads to an integer expression. Modulo
M, the Chinese remainder theorem gives a simultaneous solution for u and h. See
Table 1 for a summary of the choice of parameters.

Wenow check the necessary conditions for IGDDs. Note that u−1 ≡ −(k−2)−1−1 ≡
−(−1) − 1 = 0 (mod pt) for any pt ∥ k − 1 from (4.7). So (4.1) holds. To verify (4.2),
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gcd(p, k − 2) = 1 p ∣k − 2
h ≡ ((k − 2)v0 + 1)/(1 − k) 0
u ≡ −(k − 2)−1 (v0 −w0)((k − 2)w0 + 1)−1

y ≡ w0 − (u − 1)h
x ≡ (k − 1)y + 1
g ≡ h + x − y.

Table 1: Choice of parameters for hitting congruence classes mod pt ∥ M.

we compute

(g − h)(g + h)u(u − 1) ≡ u(x − y) ⋅ (u − 1)(g + h)
≡ (v0 −w0) ⋅ (v0 +w0 − 1 − 2ky) by (4.4) and (4.6),
≡ v0(v0 − 1) −w0(w0 − 1) using (1.3),
≡ 0 (mod k(k − 1)) by (1.4).

_erefore, _eorem 4.2 ensures the ingredient IGDD exists for suõciently large such
u. It follows that Construction 4.3 yields IPBD((v1;w1), k)withw1 = h(u−1)+y ≡ w0
and v1 −w1 = u(x − y) ≡ v0 −w0 (mod M).

Remark It is interesting that the choice of congruence class for h in Table 1 is in-
dependent of w0. It can be chosen as a function of k and v0, and before a value of u is
speciûed. In this way, it is possible to strengthen Proposition 4.4 so that w and v also
land near prescribed integers that nearly satisfy equality in (1.5). Details are omitted,
since we do not make use of this in what follows.

Example 4.5 We illustrate the selection of parameters in the case k = 6, and
M = k(k − 1) = 30. _ere are twelve numerically admissible congruence class pairs
(v0 ,w0). _e selection of parameters dictates

u ≡ −4−1 ≡ 11 (mod 15), u ≡ v0 −w0 (mod 2), and
h ≡ −(4v0 + 1)/5 (mod 15), h ≡ 0 (mod 2).

In the speciûc case (v0 ,w0) ≡ (26, 11), we compute u ≡ 11, h ≡ 24, g ≡ 9, y ≡ 11,
x ≡ 26 (mod M). A�er the construction, we obtain an IPBD((v1;w1), 6) with w1 =
(u− 1)h+ y ≡ 11 and v1 = w1 +u(x − y) ≡ 26, as desired. Note that the needed IGDDs
exist, since u ≡ 1 (mod 5) and (g + h)(g − h)u(u − 1) ≡ 0 (mod 30).

5 Proofs

We ûrst consider _eorem 4.2, which constructs IGDD((g; h)u , k) for all large ad-
missible u. _is is a straightforward extension of Lamken and Wilson’s argument
[9, §8] for uniform GDDs (in which h = 0). Further details for IGDDs (general h)
can be found in [16], and so we only sketch the setup and calculations.
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Proof of_eorem 4.2. For a positive integer n, we abbreviate {1, 2, . . . , n} by [n].
Deûne the ‘color set’ S = Sg ,h ∶= [g]2 − [h]2. Consider also the family of func-
tions f ∶ [k] → [g] with at most one element in the range belonging to [h]. _ere
are (g − h)k + kh(g − h)k−1 such functions. Each such function f induces an edge-
colouring of the complete (bi-directed) graph Kk by colors in S. Speciûcally, the arc
(x , y), for x , y ∈ [k] receives color ( f (x), f (y)). Let Gg ,h ,k be the family of all such
edge-colored copies of Kk induced by some f .
Consider the complete S-colored (directed) graph, which we denote by K†

u . We
claim that an IGDD((g; h)u , k) is equivalent to a decomposition of K†

u into graphs
in Gg ,h ,k . In this correspondence, each group of the IGDD is represented with a
vertex of K†

u , and each ‘level’ in a group is an element of [g]. A legal block in the
IGDD((g; h)u , k) (with group levels given by f , say) is equivalent to a placement of
some graph in Gg ,h ,k (with coloring induced by f ) as a block on some k of the vertices
in K†

u . Note that the condition that f maps at most one vertex into [h] ensures that
pairs of points from the hole are not covered by such a block.

Next, we deûne some vectors indexed by the color set S. For G ∈ Gg ,h ,k , deûne the
‘edge-vector’ µ(G) ∈ ZSg ,h as the number of edges of G of each color. For G ∈ Gg ,h ,k
and a vertex x of G, deûne the degree-vectors τ+(G) (and τ−(G)) as the number of
outgoing (respectively incoming) arcs of each color incident with x.

We now observe that the all-ones vector 1 ∈ ZS is a positive rational combination
of the µ(G), G ∈ G. To see this, we ûrst partition S as a disjoint union S1 ∪ S2, where
S1 = ([g] − [h])2, and S2 contains colors using [h]. If we consider the average of
µ(G) over allG avoiding the hole, every element of S1 appears equally o�en and every
element of S2 appears exactly 0 times. If we consider instead the average of µ(G) over
all G intersecting the hole, we compute that every color in S1 appears exactly

(c1 , c2) ∶= ( (k − 1)(k − 2)
(g − h)2 ,

k − 1
(g − h)h )

times as an element of S1 and S2, respectively. Note that (4.2) is equivalent to c1 ≤ c2.
Hence, some positive combination of these averages equals 1, as desired.
Finally, we let α denote the generator of the ideal {A ∶ A(1; 1) ∈ ∑G(τ+(G);

τ−(G))Z} and let β denote the generator of the ideal {B ∶ B1 ∈ ∑G µ(G)Z}. By
Lamken and Wilson’s asymptotic existence theory for edge-colored decompositions
[9], it follows that we have the needed decomposition of K†

u into Gg ,h ,k for suõciently
large integers u satisfying u− 1 ≡ 0 (mod α) and u(u− 1) ≡ 0 (mod β). We refer the
reader to [16] for the calculations showing that these conditions on u are equivalent
to (4.1) and (4.2).

We now turn to _eorem 1.6. Since in this case we do not care about inequality
(1.5), the proof can simply ûll holes in two steps.

Proof of_eorem 1.6. Letw ≡ 1 (mod k − 1), and take a large v satisfying (1.3) and
(1.4). We would like to construct an IPBD((v;w), k).

Let M = mk(k − 1), from the end of Section 2. By Proposition 4.4, there exist
IPBD((v1;w1), k) with v1 ≡ v and w1 ≡ w (mod M). We may assume that both v
and w1 are large enough so that, by Proposition 2.6, there exist IPBD((w1;w), k) and
IPBD((v; v1), k). _e required design exists by ûlling.
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Before proving _eorem 1.7, we require two lemmas on ingredient designs. _ese
are both essentially extracted from earlier results. Note various parameters are recy-
cled with a slightly diòerent use.

Lemma 5.1 For suõciently large m with m ≡ −1 (mod k) and m ≡ 1 (mod k − 2),
there exist both GDD((k − 1)mr1 , k) and GDD((k − 1)m+1r1 , k), where

r = (k − 1)(m − 1)
k − 2

.

Proof Start with a resolvable PBD((k − 1)m, k − 1). Delete a parallel class of blocks
to obtain a GDD((k − 1)m , k − 1), which has r parallel classes. Extend each class by a
single extra point, and the result is a GDD((k − 1)mr1 , k).

Next, take a resolvable GDD(k(k−1)(m+1)/k , k − 1), which is seen to exist for the
stated values of m by _eorem 3.4 and a short calculation. _ere are (k−1)m

k−2 = r + 1
parallel classes; extend each one and turn the groups into blocks. _e result is an
IPBD(((k − 1)(m + 1) + r + 1; r + 1), k), or equivalently, a GDD((k − 1)m+1r1 , k).

Remark It is important to note that the congruences on m admit solutions, even if
2 ∣k.

Lemma 5.2 Let s be an integer with s ≡ 0 (mod k − 1) and s ≡ −1 (mod k). _ere
exist both GDD((k − 1)ms1 , k) andGDD((k − 1)m+1s1 , k) for all suõciently large m ≡
−1 (mod k).

Proof _is follows from_eorem 1.6 a�er verifying admissibility of the relevant pa-
rameters.

We are now ready for the proof of our main result.

Proof of_eorem 1.7 Suppose we are given parameters v ,w satisfying (1.3), (1.4)
and v > (k − 1 + є)w. For convenience, we instead construct GDD((k − 1)ab1 , k),
where b = w − 1 and (k − 1)a = v −w. In terms of the new parameters, the inequality
becomes a > (k − 2 + є)(b + 1)/(k − 1). So, it is suõcient to prove the existence of
GDD((k − 1)ab1 , k) for all suõciently large integers a and b with b ≡ 0 (mod k − 1),
a(a − 2b − 1) ≡ 0 (mod k), and a > (k − 2 + є)b/(k − 1).

Let m satisfy both lemmas, so that there exist GDD((k − 1)mx 1 , k) and
GDD((k − 1)m+1x 1 , k) for each x ∈ R ∶= {k − 1, k2 − 1, r}. We may also demand
that m is of order 1/є. Observe that r ∈ R is taken as in Lemma 5.1, while the two
small values in R meet the conditions for s in Lemma 5.2.

Let z denote the least residue of b modulo k(k − 1). By _eorem 1.6, there is an
integer u0(z, k) so that there exists GDD((k−1)uz1 , k) for all admissible u ≥ u0(z, k).
We need only consider k possible congruence classes for z; hence, we have u0(k) =
max{u0(z, k) ∶ 0 ≤ z < k(k− 1), k− 1 ∣z} as a universal value independent of the class.
Put y = b − z, so that y ≡ 0 (mod k(k − 1)).
By_eorem2.1, there exists TD(m+2, n) for n ≥ n0(m). Now, for suõciently large

a, we canwrite a = mn+p, where k ∣n, n ≥ n0(m), and both n, p ≥ u0(k). Truncating
all but p points fromone group of the TD,we obtain aGDD(nm p1n1 , {m + 1,m + 2}).
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Apply Wilson’s fundamental construction to this GDD. To each point in the ûrst
m + 1 groups, give weight k − 1; in the last group, assign weights in R. As ingredients,
we use GDD((k − 1)mx 1 , k) and GDD((k − 1)m+1x 1 , k) for x ∈ R.

_e result is a GDD with block size k having m groups of size (k − 1)n, one group
of size (k − 1)p, and one group size running through n ∗ R, the set of n-fold sums of
integers chosen from R. We now analyze this set. Since the least two elements of R
have diòerence k(k − 1) and since the largest element r is independent of n, it follows
a�er a calculation that n ∗ R covers

(5.1) (k − 1){n, n + k, n + 2k, . . . , n( m − 1
k − 2

− 1)}

for large n. Let ymax denote the right endpoint of the arithmetic progression (5.1); we
estimate ymax later. For large n, we can express any y ∈ k(k − 1)Z with (k − 1)n ≤ y ≤
ymax as a combination in n∗R. In particular, this holds for y = b− z as chosen above.

Now, ûll each of the ûrst m groups with GDD((k − 1)nz1 , k) and ûll the (m+ 1)-st
group with GDD((k − 1)pz1 , k). Identify all the lone groups of size z, and include
these points in the (m + 2)-nd group. We obtain a GDD((k − 1)mn+p(y + z)1 , k).
With a = mn + p, b = y + z, the construction realizes values with a/b as small as

(m + 1)n
ymax

< ( k − 2
k − 1

)( 1 + O(1/m)) < k − 2 + є
k − 1

,

as required.

Example 5.3 We sketch the construction in the case of block size k = 4 for which a
much more complete analysis is given in [14]. Let m ≡ 3 (mod 4); we work from
six ingredient GDDs, having types 3mx 1 and 3m+1x 1 for x ∈ {3, 15, 3(m − 1)/2}.
In the ûrst pass, take m = 11; these speciûc GDDs reduce to just four and are not
hard to construct. Now, for n ≥ 7222, there exist TD(13, n) and, a�er truncation,
a GDD(n11p1n1 , {12, 13}). Apply Wilson’s fundamental construction and we get a
GDD((3n)11(3p)1 y1 , 4), where y is any sum of n terms from {3, 15}. It is clear that
such y cover the range 3n, 3n + 12, . . . , 15n. In the last step of the construction,
ûll groups of size 3n and 3p with the non-hole points of IPBD((3n + z; z), 4) and
IPBD((3p+ z; z), 4) for various z ∈ {1, 4, 7, 10}. _e result is a design with 33n+ 3p+
y + z points and hole size y + z, where y is as large as 15n. We thus obtain existence
for large admissible v ,w with v/w ≥ (48n + 3p + z)/(15n + z) ⪆ 16/5. For examples
with this limit nearing 3, we choose larger m, impacting n and the ‘suõciently large’
cut-oò for v ,w.

6 Concluding Remarks

We have seen that a combination of resolvable designs, transversal designs, and (in-
complete) GDDs results in a nearly complete existence theory for incomplete pairwise
balanced designs.

We are hopeful that, perhaps with some new constructions, the bound in _eo-
rem 1.7 can be improved to settle existence for almost every pair in the ‘admissible
cone’.
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Conjecture 6.1 Let k ≥ 2 be an integer. _ere exists an IPBD((v;w), k) for all suõ-
ciently large pairs v ,w satisfying (1.3), (1.4), and (1.5).

A certain pair of extra small designs, if they exist, can enrich the proof of _eo-
rem 1.7. Speciûcally, suppose there exist PBD(v , k) for v = k(k − 1)(k − 2) + 1 and
v = (k−1)3+1. (_ey are admissible and presently known to exist for k = 3, 4, 5, 6.) Let
g and h, respectively, denote these two values of v. From_eorem 3.4, we have the ex-
istence of resolvable GDD(g(k−1)m/g , k− 1) and resolvable GDD(h(k−1)(m+1)/h , k− 1)
for certain large integers m. One can compute that the number of parallel classes of
each is r− ∶= r − k(k − 1), where r is as in Lemma 5.1. By hypothesis, we can ûll the
groups with PBD(g , k) and PBD(h, k). _en, extending each parallel class, one ob-
tainsGDD((k−1)mr1− , k) andGDD((k−1)m+1r1− , k). Now, letR′ = {k−1, k2−1, r− , r},
and observe that n ∗ R′ is now the full arithmetic progression from n(k − 1) to nr for
suõciently large n. _e only remaining ‘slack’ in the argument occurs in ûlling the
group of size (k − 1)p. In any case, this enhanced technique is a possible approach
to proving Conjecture 6.1 in certain cases, and it oòers a diòerent proof for the case
k = 3 avoiding many more technical constructions.

Recall that an IPBD((v;w), k) is equivalent to a GDD(1v−ww1 , k). In more gen-
erality, one can ask for an asymptotic existence theory for GDD(guw1 , k) for some
ûxed parameter g. Early investigations on this can be found in [19]. _e necessary
divisibility conditions are

gu ≡ w − g ≡ 0 (mod k − 1) and
g(gu(u +w − 1)) ≡ 0 (mod k(k − 1)).

_inking of w as ‘large’, its upper bound is given by g(u − 1) ≥ (k − 2)w. Extend-
ing Proposition 3.2 in the natural way, the case of maximal w is obtained through
resolvable GDD(gu , k − 1).

Proposition 6.2 _ere exists a GDD(guw1 , k) with g(u − 1) = (k − 2)w if and only
if there exists a resolvable GDD(gu , k − 1).

For this case ofmaximal holes, there are only a ûnite number of possible exceptions
for each g by the main result of [1] on resolvable GDDs. For ûxed g, we see no serious
obstacle in extending our techniques to obtain a similar result as _eorem 1.7.
Another direction of interest is the study of IPBD((v;w),K) where K is a set of

block sizes. We expect that _eorem 1.6, for ûxed hole sizes, has a straightforward
extension to this more general case. On the other hand, it is not even clear what to
aim for if both w and v are allowed to grow. _e inequality (1.5) simply becomes

(6.1) v ≥ (minK − 1)w + 1.

However, some congruence classes may require a variety of block sizes and forbid
sharpness in (6.1). In the thesis [16], existence of IPBD((v;w),K) has been shown for
large v ,w satisfying a much stronger inequality than (6.1).
Consider the case where K contains three consecutive block sizes. Note that the

necessary divisibility conditions disappear, since α(K) = 1 and β(K) = 2. So any
integers v and w satisfying (6.1) are admissible for IPBD((v;w),K). In this case, it is
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straightforward to adapt the proof of_eorem 1.7 to get a strong partial result. Details
are le� to future work.
Finally, the ‘higher λ’ version of this problem is noteworthy in that it motivates

study of ‘thickly-resolvable’ designs. Rather than blocks resolving into partitions, we
may ask that blocks resolve into families covering every point exactly λ times. Al-
though this appears at ûrst glance to simply be a weakening of the resolvability prop-
erty, the necessary condition k ∣v is also weakened to k ∣λv for these objects.
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