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Abstract

Pseudo-effect algebras are partial algebras (£; +,0, 1) with a partially defined addition + which is not
necessary commutative and with two complements, left and right ones. We define central elements of a
pseudo-effect algebra and the centre, which in the case of MV-algebras coincides with the set of Boolean
elements and in the case of effect algebras with the Riesz decomposition property central elements are only
characteristic elements. If E satisfies general comparability, then £ is a pseudo MV-algebra. Finally, we
apply central elements to obtain a variation of the Cantor-Bernstein theorem for pseudo-effect algebras.
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1. Introduction

Recently two non-commutative generalizations of MV-algebras introduced by Chang
[3] have appeared: pseudo MV-algebras of Georgescu and Iorgulescu [13] and gen-
eralized MV-algebras of Rachunek [21] which, in addition, are equivalent. Also a
non-commutative version of BL-algebras, pseudo-BL-algebras, have been introduced
in [6]. Non-commutative algebras are algebraic non-commutative analogues of non-
commutative reasoning. Such reasoning can be met in the everyday life quite often.
Many psychological processes are depending on the order of variables. The result is
not the same when we first put on our shoes and then socks, or conversely. Today
there exists even a programming language [1] based on a non-commutative logic.

Recently in [9,10] we have introduced pseudo-effect algebras as a non-commutative
generalization of effect algebras, which play an important role in mathematical foun-
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dations of quantum mechanics. Effect-algebras were introduced by Foulis and Bennett
[11] as an additive counterpart to D-posets introduced by Kopka and Chovanec [19].

In many cases pseudo-effect algebras are intervals in unital po-groups (G, u) [10],
and every pseudo MV-algebra is an interval in a unital £-group (G, u).

In the present paper we introduce the notion of central elements of pseudo-effect
algebras. For effect algebras this was done in [15]. We show that such elements form
always a Boolean algebra of E. The paper is organized as follows. In Section 2
we define pseudo-effect algebras and their central elements. In the case when the
pseudo-effect algebra satisfies a variation of the Riesz decomposition property, we
characterize central elements as those elements e satisfying e A e1 = 0, Section 3.
In Section 4, we show that any pseudo-effect algebra with general comparability is
a pseudo MV-algebra. If E is monotone a-complete, then the centre is a Boolean
a-algebra, Section 5, and finally, a version of the Cantor-Bernstein theorem will be
proved.

We recall that Jakubfk gave two versions of the Cantor-Bernstein theorem for a-
complete MV-algebras [16] and for pseudo MV-algebras [17]. Another generalization
of the Cantor-Bernstein theorem for cr-complete MV-algebras is given in [4] and for
monotone cr-complete effect algebras in [18] and for orthomodular lattices in [5].

2. Central elements of pseudo-effect algebras

A partial algebra (£ ; + , 0, 1), where + is a partial binary operation and 0 and 1
are constants, is called a pseudo-effect algebra if, for all a,b, c e E, the following
holds:

(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist, and in
this case (a + b) + c = a + (b + c);

(ii) there is exactly one d € E and exactly one e € E such that a + d = e + a = 1;
(iii) if a + b exists, there are elements d,e e E such that a + b = d + a = b + e;
(iv) if 1 + a or a + 1 exists, then a = 0.

If we define a < b if and only if there exists an element c e E such that a + c = b,
then < is a partial ordering on E such that 0 < a < 1 for any a e E. It is possible
to show that a < b if and only if b — a + c = d + a for some c,d e E. We write
c = a I b and d — b \ a. Then

(b \ a) + a = a + (a I b) = b, and a = (b \ a) / b = b \ (a I b).

Ifa<b<c, then

(c \ a) \(b \ a) = c \ b, (a / b) / (a I c) = b l c,

(c \ b) I (c \ a) = b \ a, (a I c) \(b I c) = a I b.
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Let E = ( £ ; + , 0 , 1) be a pseudo-effect algebra. We define x~ := 1 \ x and
x~ := x I 1 for any x e E. For a given element e e E, we denote by [0, e] :—
{x e E : 0 < x < e}. Then [0, e] endowed with + restricted to [0, e] x [0, e] is
a pseudo-effect algebra [0, e] = ([0, e]\ +, 0, e). Then, for any x e [0, e] we have
x~' :— e \ x and x~' := x I e and e = x~' + x = * + *~'. For basic properties of
pseudo-effect algebras see [9, 10].

For example if (G, u) is a unital (not necessary Abelian) po-group with strong
unit M, and T(G, u ) : = [ 0 , u ) = ( j 6 G : 0 < j < u], then (r(G, u); +, 0, M) is a
pseudo-effect algebra if we restrict the group addition + to T(G, u).

We recall that apseudo MV-algebra is an algebra (Af; ©, ~",~ , 0, 1) of type (2, 1, 1,
0, 0) such that the following axioms hold for all x, y, z e M with an additional binary
operation O defined v i a v O * = (x~ © y~)~

(Al) x®(y@z) = (x®y)®z;
(A2) x®0 = 0®x=x;

(A3) *ffil = 1 © * = 1;
(A4) l~ = 0 ; l - = 0 ;
(A5) (x-® y-)~ = (x~ ® y~)-,
(A6) x®r0y=j$f 0j:=x0f ®j = )i0rffix;

(A7) xQ(x-®y) = (x®y~)Oy;
(A8) ( * " ) - = * .

In [7] it was shown that every pseudo MV-algebra is isomorphic to F(G, u),
where (G, u) is a unital ^-group with strong unit u, where a ® b := (a + b) A w,
a 0 i = ( a - « + i ) v O and a~ = « — a and a~ — —a + u.

If M is a pseudo MV-algebra, then the partial operation a + b is defined if and only
if a < b~, and then a + b — a®b, and (M; +, 0, 1) is a pseudo-effect algebra.

DEFINITION 2.1. An element e of a pseudo-effect algebra £ is said to be central (or
Boolean) if there exists an isomorphism

(1) / « : £ - * [0, e] x [0, e~]

such that/«,(e) = (e, 0) and if /«.(*) = (JCJ, x2), then x = *i + x2 for any x e E.

We denote by C(£) the set of all central elements of E, and C(E) is said to be the
centre of E. We recall that 0, 1 e C(E).

PROPOSITION 2.2. Let e be a central element of a pseudo-effect algebra E, and f e

the corresponding mapping from Definition 2.1. Then

0) /«(O = (0,O.
(ii) Ifx < e, thenfe(x) = (x, 0).

(iii) e A e~ = 0.
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(iv) Ify <e~ thenfe(y) = (0,y).
(v) e~ = e~.

(vi) For any xeE,xAe€E and x A e~ e E, and

(2) fe(x) = (x Ae,x A«~).

(vii) Iffe(x) = (xi,x2), then x = xx v x2, X\ Ax2 = 0, andx2 + X\ =x.

PROOF. (i)/e(e~) = /e(<?)~ = (e, 0)~ = (e~«, 0~-) = (0, e~).
(ii) Le t / e (x ) = (xi,x2), x < e. Then (*,, x2) = /*(*) £ /*(«) = («, 0), that is,

JC2 = 0. Hence* = x\ + x2 = x\.
(iii) Let x < e, e". Then (x, 0) = fe(x) < fe{e~) = (0, e"), so that x = 0. (iv)

Let y < e~. Then fe(y) — (y\, y2), and yx < e, yi < y < e~ so that by (iii), y\ = 0
and y = y, + y2 = y2.

(v) (e, e~) = fe(e~ + e) = fe(e~) + (e, 0) = (eu e2) + (e, 0) = (e, + e, e2) which
yields e = e\ + e and e2 = e~, that is, ex = 0 and fe{e~) = (0, e~) which gives
e~ = 0 + e~ = e~.

(vi) Let 7rc and ne~ be the projections from [0, e] x [0, e~] onto [0, e] and [0, e~],
respectively. Then pe := ne o fe and pe~ := 7rc~ ofe are homomorphisms from £
into [0, e] and [0, e~], respectively. It is clear that pe(x) < x, e. If now y < x, e,
then by (ii), y = pe{y) < pe(x), so that e A x = pe(x) e E for any * e E.
Similarly, pe~ < x, e~, and if z < x, e~ then by (iv), z — pe~(z) < pe~(x), that is,
pe~(x) = x A e~. Consequently, fe(x) = (JC A e, x A e~), x e E.

(vii) It is clear that x > xux2. Let z > JCI , x2. Then *i = p^(j:i) < pe(z) and
^2 = Pe~(x2) < Pe~{z), so that x = xt + x2 < pe(z) + P^~(z) = z which proves
X! v x2 = ^. It is evident that xx Ax2 = 0.

By (2) we have *i = x A e and x2 — x A e~. Hence by (v), (x A e)~ =
x~ V e~ > x A e~ = x A e~ = x2, which gives x2 -+• xj € E. Then ^ e f e + -^l) =
Pefe) + Pe(x\) = pe(^i) = *i andpe~(x2 + xY) = /JC~(A:2) +p<.~(x,) = x2 which
proves ^2 + * i = X[ +x2 = x. •

In view of Proposition 2.2 (v), if e e C(E), then we will write e1 := e~ = e~.

THEOREM 2.3. Let E be a pseudo-effect algebra. Ife,fe C(E), then e Af e E
andeAf e C{E), and C(E) = (C(E); A, V,', 0, 1) is a Boolean algebra.

PROOF. It is evident that 0, 1 € C(E). Let now e e C(E), then e~ = e" and by
Proposition 2.2 the mapping fe(x) = (x A e, x A e~) is an isomorphism from E onto
[0, e] x [0, e~]. By Proposition 2.2 (vii), we have that the mapping fe-(x) — (x A
e~, x A e) is an isomorphism from E onto [0, e~] x [0, e] such that/e-(e~) = (e~, 0)
a n d if fe-{x) = (x\,x2), t hen x = x2+ x\ = X\+ x2, w h i c h p roves e1 e C{E).
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Assume now e,fe C(E). Then, for every x e E,

(3) x=xAe + xAe'=xAeAf+xAeAf'-\-xAe'Af+xAe'Af'

and in view o f l = e A f + eAf + e'Af + e' A / ' , we have (e A f)~~ =
eAf' + e'Af+e'Af. On the other hand, 1 = / ' + / = f A e + f A
e' +f Ae1 +f A e = e A f + e' A f + e'Af' + eAf,by Proposition 2.6 (ii),
so that (e Af)~ = e A f + e1 A f + e1 Af = (e A/)~. Hence the mapping
feAj{x) = (xAeAf,xAeAf + xAe'Af +x Ae' Af) is a well defined mapping
from E into [0, e Af] x [0, (e A / ) ~ ] which is injective in view of (3). Moreover, if
feAf (x) = (xi, x2), then xi+x2=x, andfeAf (eAf) = (eAf, 0).

Assume*] e [0, eAf],x2 e [0, (eAf)~]. Thenjc, <x^,sothatj: =xi+x2 e E.
Hence (xi+x2) AeAf = xt AeAf +x2AeAf = x\+x2AeAf. On the other side,
*2 < (eAf)~ = eAf+e'Af+e'Afsothatx2Ae< eAf+e'AfAe+e'AfAe =
e Af andx2 AeAf < e Af Af =0.

Similarly, (*, + x2) A e A f + (x^ + x2) A e' A f + (x, + x2) A e' A f =
xi AeAf'+x2 AeAf+Xx Ae1 Af +x2 Ae' Af +JC, Ae1 Af+x2 Ae' Af. But
^i < eAf. Then*! AeAf < eAf AeAf = Oand^i Ae1 Af < eAf Ae1 Af = 0
which proves that/eA/ is surjective.

Finally, we show that feAf (x + y) = feAf (x) + feAf (y) whenever x + y e E.
Calculate

(*) (x+y)AeAf' + (x + y)Ae'Af + (x + y) A e' Af

+ x Ae' Af' + y Ae' Af.

Thenx A / A / < ( J A C A / ' ) " SO that x A e1 Af +y Ae Af e E. We assert

(**) x Ae' Af +yAeAf' = (xAe'Af)v(yAeAf)

= yAeAf'+xAe'Af.

Letz > yAeAf,xAe'Af. ThenzAeAf > yAeAf andzAe1 Af >xAe'Af.
Hence z > Z A « A / ' + Z A C ' A / which proves (**). In a similar way we can prove
that v A e1 Af +x Ae! Af = x Ae1 Af' + y Ae1 A / . Therefore for (*) we have that
it equals to* AeAf'+xAe'Af +y AeAf+x Ae1 Af' + y Ae1 Af +y Ae1 Af.

I n a s i m i l a r w a y , w e h a v e t h a t i t e q u a l s t o . x A e A / ' + j c A e ' A / + * A e ' A
f + y A e Af + y A e1 Af + y A e' Af. Consequently, e Af e C(E), and
x A (e A / ) ~ = x A e Af + x A e1 Af + x A e1 Af. D

PROPOSITION 2.4. Letx e E andee C(E). Then
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(i) j t A « = O if and only ifx < e~ if and only ifx < e~ if and only if e <x~ if
and only if e <x~.

(ii) e + e & E implies e = 0.

PROOF, (i) Let x A e = 0, then x=xAe + xAe~=xAe~<e~. Let x < e~.
Then x A e < e ~ A e = 0. Let x A e = 0. Then x < e~ and e < x~. If e < x~, then
x < e~ = e~. If x A e = 0, then x=xAe + xAe~ that is, x < e~ and e < x~. If

e < x~, then x < e~ and JC A e = 0.
(ii) It follows from (i). •

PROPOSITION 2.5. Leteu... , eneC(E), e,Ae; =0fori^j,andei-\ \-en = l.
Then x = x A e\ + • • • + x A en.

PROOF. If n = 1, then ex = 1. The general case follows mathematical induction.
Let n > 2. Then e = ex-\ h en, e

1 = en+1 e C(E) &x\dx =x Ae + x A en+i =

xAe\ + ---+xAen+xA en+\. D

Let e € C(E), then the mapping pe:E-+ [0, e] defined by

(4) Pe(x) := x A e, x e E,

is a homomorphism from E onto [0, e] whose kernel is [0, e1].

PROPOSITION 2.6. LeteJ e C(E).

(0 PeAf = PePf —PfPe-
(ii) IfeAf =0,thene + f =evf =f + e andpevf(x) = pe(x) +pf(x) =

pf(x)+pe(x), x e E.
(iii) # 7 < e, then e\f=fAe'=f/e, and peAf>{x) = pe(x) \ pf(x) =

/ pe{x), x e E.

PROOF, (i) follows from (4).
(ii) If e A f = 0 , then by Proposition 2.4, e + f e E and / + e e E, and

e+f >evf <f +e. Hencepe^(e+f)=pevf(e) + pe^(f) = e+f <evf.
In an analogous way f + e < ev f.

Let x e E. Then pev/(x) = x A (e v / ) and p^A/'^) = x A e' Af. Since
JC = X Ae Af +XAeAf'+XAe'Af +XAe'Af'=XAe + XAf + P(evf)'(x),
so that /) ,v/W=JcAe + jcA/.If now z >xAe,xAf, then z = z Ae Af +z A
eAf' + zAe'Af +zAe'Af>zAe + zAf > x A e + x Af, which proves

(iii) Let / < e. Then e = f +f I e = e\f +f ande = eAf+eAf' =
eAf' + eAf so that e Af =f/e = e\f=eAf. D
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PROPOSITION 2.7. Leteu... ,en e C(E), e, A e, = Ofor i ^ j .

(0 « : = V7-i e> = e> + • • • + e»
A

x A e = Y (x A e,) = x A ex + • • • + x A en, x e E.

(ii) Ifxi < etfor i = 1 , . . . , n, thenxx -\ \-xn = x\ V • • • Vx n = x,, H [-•*,„,
where (i\,.. • , in) is any permutation of(l,... , h ) .

(iii) / /a o ,€ C(E),then

x A l\J Oi\ = \/(x A at), x e E.
\;=i / 1=1

PROOF, (i) If n — 1, 2, the assertion follows from Proposition 2.5 (ii). Let now
the statement is true for any integer i < n, n > 2. Then e = \/"=i e> v e»+i —

(ex + \- en) + en+\ because (V"=i g«) A e«+' = ^ due t o t n e induction assumption.
Hence x A e = x A (V"=i £;) V x A en+i = x A e ! + - - - + x A e n + x A en+\.

(ii) Since « = ex + • • • + en € E, then x = x, + • • • + xn € E, and x > x,
for any i. Assume z > xt for i = 1 , . . . ,n. Then by (ii) of Proposition 2.6

Consequently, x = xi V • • • v xn = x,, + • • • + xin.
(iii) It is sufficient to assume n = 2. Then define e\ = ax A a2, e2 = ax A a2, and

e3 = a\ A a2. Hence by (i)

x A (ai V a2) = x A (ex V e2 V e3) = (x A e^ V (x A e2) V (x A e3)

= ((x A e,) V (x A e2)) V ((x A e2) V (x A e3))

= x A (ei V e2) v x A (e2 v e3) = (x A a,) v (x A a2). D

PROPOSITION 2.8. Let e € C(E) and f < e. Then f e C(E) if and only if
f e C([0, e]).

PROOF. Let/ € C(E). T h e n * = / + e A / ' and the product [0 , / ] x [0,eAf]
is isomorphic with [0, e] under the mapping / / (* ) := (x A / , x Af~'),x € [0, e], so
that/ eC([0,e]),

Conversely, le t / e C([0, e]). Then E = [0, e] x [0, e~] and [0, e] = [0 , / ] x
[0,/~*]. Since 1 = e + e~ = / + / ~ ' + e~, then/~ = /~* + e" = e A f "• + e~.
On the other hand, / ~ = / ~ A « + / ~ A e ~ = f~ A e + e~ while e e C(E) so that

J J J J *

Takex 6 £. Thenx A / ~ = X Af~Ae+x A / ~ Ae~ = x A/~* + x Ae~. Hence
the mappings : E ->• [0 , / ] x [0 , /~] defined by </>(x) := (x A / , X A / ~ ) , X 6 £,
is an isomorphism in question while E = [0, e] x [0, e~] and x = x A e + xA«~ =
x AeAf + x AeAf~' +x Ae~ = x A / + x A/~« + x Ac~ = x A / + x A / ~ . D
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We note that in the case that £ is a quantum logic, for definitions see, for ex-
ample, [8], then the centre of E coincides with the set of all compatible elements
of E.

It is worth to recall that the notion of a central element can be defined also for unital
po-groups. We say that an element e e G of a unital po-group (G, u) is central if (i)
0 < e < u and (ii) e is a central element in the pseudo-effect algebra F(G, «) = [0, «].
In the case that (G, u) is Abelian and with the Riesz interpolation property, then central
elements coincide with characteristic elements [14, page 129].

A pseudo-effect algebra E is said to be directly indecomposable if E is non-trivial
and whenever E = E\ x E2, then either E\ or E2 is trivial.

PROPOSITION 2.9. A pseudo-effect algebra E is directly indecomposable if and only
if C(E) = {0,1}.

PROOF. Assume E is directly indecomposable and let e e C(£) . Then E =
[0, e] x [0, e'\ which means e e {0, 1}.

Conversely, let C(E) = (0, 1}. The elements (1, 0) and (0, 1) are central elements
in Ei x E2. If now E = E\ x E2 and if <p is an isomorphism from E onto Et x E2,
set e = </>~'((l, 0)). Then e~ = e~ = <f>~l((0, 1)), and x A e, x A e1 e E for any
x e E. Hence 4>{x) = <j>(x) A <j>(e) + <f){x) A 0(e) ' = 4>({x Ac) + ( i A e')) which
proves x =xAe + xAer. Hence fe(x) := (x A e, x A e1) is an isomorphism of E
onto [0, e] x [0, e'], so that, e e C(E). Therefore e e [0, 1} and <p(e) e {0, 1} which
proves E is directly indecomposable. •

We recall that a poset E is an antilattice if an infimum of two elements exists only
for comparable elements. Each linearly ordered poset is antilattice.

COROLLARY 2.10. Every linearly ordered or antilattice pseudo-effect algebra is
directly indecomposable.

PROOF. It follows from Proposition 2.9, while in view of 0 = e A e1 e {e, e1}, the
centrum of a linearly ordered pseudo-effect algebra or of an antilattice pseudo-effect
algebra is trivial, that is, C(E) = (0, 1). •

3. Pseudo-effect algebras and Riesz decomposition properties

When we move from (commutative) effect algebras to pseudo-effect algebras, then
the notion of the Riesz decomposition property can be extended to different and
non-equivalent forms. Following [9], we introduce for pseudo-effect algebras the
following forms of the Riesz decomposition properties:
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(a) For a,b € E, we write a comb to mean that for all ax < a and bx < b, a\ and
b\ commute.
(b) We say that E fulfills the Riesz interpolation property, (RIP) for short, if for any

ax,a2,b\,b2 6 E such that aua2 < b\,bi there is a c e E such that a\, a2 < c <
bub2.
(c) We say that E fulfills the weak Riesz decomposition property, (RDP0) for short,

if for any a,b\,b2 e E such that a < b\ + b2 there are dt, d2 e E such that d\ < b\,
d2 < hi and a = d\ + d2.
(d) We say that E fulfills the /?/es£ decomposition property, (RDP) for short, if for

any a\, a2, b\, b2 e E such that a\ + a2 — b\ + b2 there are d\, d2, d-x,, d4 € E such
that d\ + d2 = ai, d3 + dA = a2, d\ + d3 — bu d2 + d4 = b2.
(e) We say that E fulfills the commutational Riesz decomposition property, (RDP^

for short, if for any au a2, bu b2 € E such that a.\ +a2 = b\ +b2 there are dx, d2, d3, d4 e
E such that (i)d\+d2 = audi+d* = a2,d\+d^ = b\,d2+da, = b2, and(ii)fi?2com(i3.
(f) We say that E fulfills the strong Riesz decomposition property, (RDP2) for short,

if for any au a2, b\,b2 e E such that a\ + a2 = b\ + b2 there are d\, d2, dj, d* e E
such that (i)di+d2 = ^1,^3+^4 = a2, d\+di = b\,d2 + d4 = b2, and(ii)J2Ad3 = 0.

We have the implications

(RDP2) =» (RDP,) => (RDP) => (RDP0) ^ (RIP).

The converse of any of these implications does not hold. For commutative effect
algebras we have

(RDP2) =• (RDP,) o (RDP) <» (RDP0) => (RIP).

The following result was proved in [9, Lemma 3.2].

LEMMA 3.1. If E satisfies (RDP0), then a A b = 0 implies a + b,b + a and a V b
exist in E and are all equal.

THEOREM 3.2. Let a pseudo-effect algebra E satisfy (RDP). Then e e E is central
if and only if e A e~ = 0 if and only if e A e~ = 0.

PROOF. Let e e C(E), then e A e~ = 0 = e A e~~. In view of Proposition 2.2 (iii)
and (v), e A e" = 0 if and only if e A e~ = 0.

Conversely, let e A e~ = 0. Then x < 1 = e + e~ for any x e E. There are
x\ < e and x2 < e~ such that x = x\ + x2. We show that if yx < e and y2 < e~
and * = yx + y2, then xx = v, and x2 = y2. Due to (RDP), there are four elements
c\\, C12, C21, c22 e E such that *i = en + c12, x2 = c2x + c22, y{ = cn + c2x and
y2 = d 2 + c22. Since ci2 < xx < e and c\2 < v2 < e~, we conclude Q 2 = 0.
Similarly, c2i = 0. Hence X\ = C\\ = y\ and x2 = c22 = y2.
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Define/?,^) = xx if* = x}+x2 (x e E). Thenp, : E -> [0, e\. If*i € [0, e] and
x2 e [0, e~], then^i Ax2 = 0, so that by Lemma 3.1,* = *i +x2 = x2+xx = *i v*2 ,
and hence pe(x) = x\. Consequently, pe restricted to [0, e] is the identity.

We show that pe is a homomorphism. Let x + y € E and * = *i + x2 and
y = y, + y2, where *i , yi < e, x2, y2 < e~. Then * + y = xx + x2 + yx + y2. Since
x2 A yi = 0, then x + y = X\ + y\ + x2 + y2. On the other hand, let x + y = zi + z2.
where Zi < e and z2 < e~. Hence there are four elements d u , d\2, J2i, 2̂2 such that

x]+yi=dn+du, Zi=du+d2u

^2 + ^2 = d2x + d22, z2 = t/12 + ^22-

We claim dl2 = 0. Since dn < *i + y\, then di2 = d' + d", where <i' < xx and
J" < yx. Then rf' < jct < e and d' < du < z2 < e~ so that d' = 0, and d" < yx < e
and d" < z2 < e~ proving^" = 0 and therefore dn — 0. In a similar way we can prove
d2x = 0 which yields xx+yx= z\ and x2 + y2 = z2, so that, pe is a homomorphism.

Since by Proposition 2.2 (v), e~ = e~, we can write e' := c~ = e~, and let
pe,{x) = x2 if* = *i +x2 (x € E). Then p? is a homomorphism from E onto [0, e7].

Consequently, the mapping fe:E-> [0, e] x [0, e7] defined by

fe(x) = (pe(x), Pe'ix)), X e E

is an isomorphism with/e(e) = (e, 0), so that e e C(E). In addition,

pe(x) —xx =x Ae, xeE. •

4. General comparability

We say that a pseudo-effect algebra E satisfies general comparability if, given
x,y e E, there is a central element e e E such that p<,(x) < pe(y) and /v (* ) >
/v(y ) . This means that the coordinates of the elements x = (pe{x),pe,{x)) and
y = (Pe(y), Pe>(y)) can be compared in [0, e] and [0, e1], respectively.

For example, (i) every linearly ordered pseudo-effect algebra trivially satisfies
general comparability; (ii) also any Cartesian product of linearly ordered pseudo-
effect algebras. For an 'MV-analogue' of the next result see [2, Proposition 3].

PROPOSITION 4.1. Let M be a a-complete pseudo MV-algebra and x 6 M. Then
the element e := V^li (* !©•• •© *«)> where xn = x for every n, is a central element
ofM such that pe(x) = x. Iff is any central element of M such that pf (x) = x, then
e < / • Moreover, M satisfies general comparability.
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PROOF. Let M be a a-complete pseudo MV-algebra. According to [7, Theo-
rem 4.2], M is commutative, that is, an MV-algebra. Let + be its partial addition
defined via a + b = a 0 b if and only if a < b*. Let (G, u) be the unital £-group such
that M = F(G, u); such a group is guaranteed by Mundici's representation of MV-
algebras, see [20]. Then G is Dedekind complete, and by [ 14, Lemma 9.8], the element
e = Vfeifa* A M) e C(E) (compare with Theorem 3.2), and pe(x) = x. Moreover,
if Pf(x) = x for some/ e C(E), then e < f. Applying now [14, Theorem 9.9],
(G, u) satisfies general comparability, so M satisfies general comparability. •

THEOREM 4.2. Let E be a pseudo-effect algebra satisfying general comparability.
Then E is a lattice, and E can be organized into a pseudo MV-algebra such that the
partial addition derived from E as the pseudo MV-algebra coincides with the original
+ taken in the pseudo-effect algebra.

PROOF. Let x, y e E and let e e C(E) such that pe(x) < pe(y) and pAx) >
pAy)- Then* = pe(x) + pAx) >pe(x)+pAy) =:veE.

Claim 1. v = x A y.

PROOF. We have y = pe(y) + pAy) > Pe(x) + pAy) = v, that is, v < x, y. Let
z < x,y. Then pe(z) < pe(x) and /vOO < Pe-iy), that is, z = pe(z) + /v(z) <
pe(x) +p•()') = v, that is, v = x A y. •

Claim 2. w := pe(y) + /vOO e E and w = x V y.

PROOF. Since pe(y) A /v(x) = 0, then w := pe(y) + Pe>(,x) € E. We conclude
now x V y = w. We have x = pe(x) + p<?{x) < pe(y) + Pe>(x) = w and y =
Pe(y) + Pciy) < Peiy) + pAx) = w. If now z > x, y, then pe(z) > pe(y) and
pAz) >pAx) that is, z =pe(z)+pAz) >w. D

Claim 3. x \ (x A y) = (x V y) \ y and y \ (x A y) = (x V y) \ x.

PROOF. Calculate

pe(x \ (X A y)) = pe(x \(j>e(x)+pAy))=Pe(x) \ pe(x) = 0,

pAx \ (x A y)) = pAx) \ pAy), Peiy \ (x A y)) = pe(y) \ pe(x),

pAy \ (x A y)) = pAy) \ pAy) = 0,

P*((x vy)\x)= pe((Pe(y) + pAx)) \ x) = pt(y) \ pe(x),

pA(x vy)\x)= pAx) \ PAx) = 0,

Pe((x V y) \ y) = pe(y) \ pe(y) = 0,

pA(x Vy)\y)= pAx) \ pAy),

which proves Claim 3. •
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Finally, according to [10, Proposition 8.7], Claim 3 is a necessary and sufficient
condition in order to convert E into a pseudo MV-algebra ( £ ; © , " ,~ ,0 , 1); we define

a © b :— (a~ \ ( a ~ A b))~, a,beE.

In such the case, the original + and the derived one from © coincide. •

5. Monotone a-complete pseudo-effect algebras

We say that a pseudo-effect algebra E (i) is monotone a-complete if any sequence
x\ < x2 < • • • in E has a supremum \/™=lxn in E; (ii) is a-complete if £ is a
cr-complete lattice; (iii) satisfies the countable Riesz interpolation property, (cr-RIP)
in abbreviation if, for countable sequences [xu x2,. •.} and [y\, y2,...} of elements
of E such that xt < y} for all /, j , there exists an element z e E such that x, < z < yj
for all i,j; (iv) is Archimedean if nx := x + • • • + x is defined in E for any integer
n > l,thenjc = 0 .

It is evident that (CT-RIP) implies (RIP), and E is monotone cr-complete if and only
if each nonincreasing sequence of elements in E has an infimum. Moreover, if £ is a
lattice, then E is monotone cr-complete if and only if E is cr-complete.

PROPOSITION 5.1. Let E be a pseudo-effect algebra with (RIP). Then E has (a-RIP)
if and only if whenever

(a) X\ < x2 < • • • in E andy\,y2 e E, or
(b) x\,x2 e E andyi > y2 > • • • in E, or
(c) X\ < x2 < • • • and y\ > y2 > • • • in E,

andxi < yj for all i,j there exists z £ E such that Xi < z < yj for all i,j.

PROOF. It follows the same steps as that in [14, Lemma 16.2]. •

PROPOSITION 5.2. Let E be a pseudo-effect algebra. Assume also that \Jj a, and
(\f,a,) +x € E, then \f,(a,; + * ) € E and (\J,a,) +x = V,(«i +*)• If\/,a,,
x + (V,. a,-) e E, then \f,(x + at) e Eandx + ( V, a,) = V.-U + «.)•

PROOF. We have ( V , at) +* > at+x for each i. If now z > a,+ x for all i, then
z \ x > a,, that is, z \ x > V, a, and z > ( V , <*•) +x- n

PROPOSITION 5.3. Let E be a monotone a-complete pseudo-effect algebra. Then E
is Archimedean. If, in addition, E satisfies (RIP), then E has countable interpolation.
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PROOF. Assume xn : = nx = x + • • • + x be defined in E for any n > 1. Then

xn < *n+i and there exists x0 •= V ^ l i x»- Since xn < x~ for every n, then x0 < x~,

so that xQ+x e E. Hence by Proposition 5.2,

OO 00

= \/(xn+x) = \J xn =x0,
n = l n=l

which proves x = 0.
If now E has (RIP), then by Proposition 5.1, E has countable interpolation. •

The notion of monotone a-complete pseudo-effect algebras is important while
there are even (commutative) effect algebras which are monotone a -complete but not
a lattice.

EXAMPLE 5.4. There exists a monotone cr-complete effect algebra which is not a
lattice.

PROOF. Let X be an uncountable set and fix two distinct elements a,b e X. Let E
be the set of all functions f : X -*• I such that / (x) = (f (a) + f (b))/2 for all but
countably many x e X and 0 < / (*) < 2 for any x e X. Then E is an effect algebra
which is monotone a -complete but not a lattice. For example, let u be the function
which is the constant function 1 and let v be a mapping in E such that v{a) = 0 and
v(b) = 2 while v(x) = 1 for all x € X \ {a, b}. Then u and v have no infimum in E
(see [14, Example 16.1, Example 16.8]). •

We say that two elements a and b of a pseudo-effect algebra E are compatible, and
write a <-> b if there are three elements a\,b\,c e E such that a = a\ + c, b = b\ + c,
and ai + b\ + c = b\ 4- a\ + c, a\ A b\ = 0.

PROPOSITION 5.5. Let e e C(£) arad * € £. 77ien x <* e, and

(i) * = x A e ' + x A e , e = eAx~ +x Ae, e — eAx+eAx~, x —eAx+xAe'.
(ii) x Ae1 = x \{x Ae) = (x Ae) I x, e Ax~ = e \ (eAx), eAx~ = (eAx) / x.

(iii) xVf = xAef+eAx~+xAe = eAx~-\-xAe'+xAe = xAe'+x~Ae+x~Ae.
(iv) (xve) \ e = x \(xAe),(x Ve) \ x = e \ (x Ae), ande I (xWe) = (x Ae) I x,

x I (x V e) = (x A e) I x.

PROOF, (i) x = x A e1 + x A e by Proposition 2.2. On the other hand, pe{e) =
e = e A (x + x~) = pe(x) + pe(x~) =xAe + x~Ae and e = e A (x~ + x) =
pe(x~ +x) =pe(x~) +pe(x) = eAx~ + eAx.

(ii)* \(xAe) e E. If* \ ( J : A « ) = a, then* = a + (x Ae), but* =x Ae'+x Ae
which gives a = x A e1. Similarly, (x A e) / x = x A e', and also for other two
equalities in (ii).
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(iii) We have e = eAl = eA(x~+x)=x~Ae + xAe. Since x A e1 < e', then
x A e' + e e E and x, e < x A e' + e. Moreover, if z > x A e1, e, then pe(z) > e and
Pe>(z) > Pe>(x A e') = x A e1 which proves (x A e') V e = x A e' + e. It is clear that
x ve < x Ae'+x~ Ae-\-eAx. If now y > x, e, theny > J A ^ candy > (x Ae')v e
which proves xVe = xAe'+x~Ae + xAe.

On the other hand, x~ A e < x~, we have x~ A e + x e E. Then x~ A e + x > x
and x~Ae + x=x~Ae + xAe + xAe' = e + xAe'>e. Therefore, if u > x, e,

then pe(u) > e and p^iu) > Pe'M = x A e' which entails u > x~ A e + x that is,

(iv) By (iii) (x V e) \ e — x A e' = x \ (x A e) = (x A e) I x and x I (x V e) =
X / (x + x~ A e) = x~ A e = (e Ax) / x.

From (iii) we have (x v e) \ x — x~ A e = e \ (x A e). In a similar way we can
prove the last equalities in (iv).

From the above we have also x <->• e. •

We recall that according to Proposition 5.5, if e is a central element of E, then
e <-> x for any x 6 E. The converse statement is not true, for example, in any
MV-algebra M every two elements are compatible, and C(M) = M if and only if M
is a Boolean algebra, see Theorem 3.2.

PROPOSITION 5.6. Let a pseudo-effect algebra E have (CT-RIP). Let\J™=x e, e C(E)
for e{ e C(E), i > 1. Then

(
V « J = V < j t A e ^ xeE-
.=1 / 1=1

PROOF. First we show that

(6) /\(x \ (x A e,)) = x \ tx A (\f e,\ J .
We have x \ (x A et) > x \ (x A ( V , «;))• Let now d < x \(x A e,) for each i. By

Proposition 5.5,

d < x \ (x A et) = (x v et) \ x < I Jc V I y «i I I \ Jc = Jc \ I x A

which proves (6).
It is clear that (\/j et) A * > e, A * for each i. Let now e> A x < z for each i. Then

e, A x < z, x for each /. Applying (cr-RIP), there exists an element za & E such that
et Ax < zo < z,x. Hence x \ z0 < x \ (e, Ax). Thus x \ z0 5 x \ (x A (V, e,))
which gives x A (\Jt et) < Zo < z and consequently (5) is proved. D
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PROPOSITION 5.7. Let a pseudo-effect algebra E have (CT-RIP). Lete = \J°°=X ete E
foret e C{E), i > 1. Then, for every x e E,XA(\/°°=1 et) = V~i(* Ae>)>x V e e E>
and x «->• e.

PROOF. We have e, A x < x, e for all i. Let xQ e E be any element such that
e,; A x < x0 < e, x for every i; such an element always exists due to (CT-RIP).

Claim 1. x — (x \ x0) + x0, e = (e \ x0) + x0, (x \ x0) + (e \ x0) +x0 e E.

PROOF. Indeed, we have e, < (x \ (e, A x))~ < (x \ xo)~ so that e < (x \ xQ)~
which gives (x \ x0) + e e E.

Similarly, c, < (x \ (e, A x))~ < (x \ xo)~ so that e < (x \ xo)~ which gives
e + (x \ x0) e E.

It is evident that (x \ x0) + e > x, e and e + (x \ x0) > x, e. D

Claim 2. /\(-(* \ (x A et)) — x \ x0.

PROOF. It is evident that x \ (x A et) > x \ x0 for every i. Let d < x \ (x A et)
for each i. Then by Proposition 5.5, d < x \ (x A e,) = (x V e,) \ e,. Then
d+et < x V e, < (x \ x0) + e so that e, < d / ((x \ x0) + e) and e < d I ((x \xo) + e)
which gives d + e < (x \ x0) + e and d < x \ x0. D

Claim 3. \Z((x A et) = x0-

PROOF. Assume x A e, < y for every i. Then x A e, < y, x0 so that there exists
yo e E such that x A e, < yo < y, xo for every i. Then x \ y0 < x \ (x A e,). By
Claim 2, x \ y0 < /\t(x \ (x A e,)) = x \ x0 so. that x0 < y0 < y. D

Claim 4. (x \ x0) A (e \ x0) = 0.

PROOF. Assume z < x \ x0 and z < e \ x0. Then z + x0 < x, z + x0 < e, and
xAet < Z+XQ < e, x for each/. Using Claims 1-3, we have z +x0 = \ZiixAet) =x0,
that is, z = 0. •

Claim 5. x A e = x0.

PROOF. Let u < x,e. Then U,XQ < x, e and there exists u0 6 E such that
u,x0 < Mo < x, e, in particular, x A et < u0, and using Claims 1-3, we have
Mo = V,(x A ed = xo that is, M < M0 = x0 andx0 = x A e. •

Claim 6. XQ + X \ x0 e E,xQ +x \ x0 = x and (e \ xQ) + (x \ XQ) + x0 e E.
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PROOF. By Claim 1, e + (x \ xQ) e E so that (e \ x0) + (x0 + (x \ x0)) e E and
xo + x \ x0 e E. Applying Proposition 5.2, we have

x0 + x \xo = \J((x A e,) + (x \ x0)).

We show that, for each i, x A et+ x \ x0 = x \ x0 + x A et. We recall that due to
Claim 5 and Proposition 5.2, x \ x0 + x A e, e E for all i.

pei(x A ei+x \ x0) = x A e,;+ (x A e,) \ (JC0 A et) = x A et = pei(x \ xo+x A et),

A et+x \ x0) = p^.(x \ x0) = pe.(x \ xo+x A et).

Applying again Proposition 5.2, we have for (•)

(*) = \J(x \ x0 + x A et) — x \ x0 + y (x A gf) = x \ x0 + xQ = x.
i i

Consequently, e+x \ x0 = (e \ xo)+xo+(x \ x0) = (e \ xo)+(x \ xo)+xo e E. D

Claim 7. x v e = x \ XQ + e.

PROOF. We have x, e < x \ x0 + e so that by (iii) of Proposition 5.5,

x v e,• = x A e\ + e, < x \ x0 + e.

Assume x v e,• < v for all i. Then there exists v0 such that x v e, < v0 < v, x \ xo + e.
Then x v e,• = x \ (x A e,) + e, > (x \ x0) + e, e E. Since x \ x$ + e e E, we
can apply Proposition 5.2 and \fi((x \ x0) + et) = x \ xQ + \J tet =x \ x0 + e < v0

which yields v0 = x \ x0 + e < v, that is,x\xo + e = xVe. •

Claim 8. /\t(e \ (x A «,-)) = e \ x0.

PROOF. It is clear that e \ (x A e,) > e \ x0. Assume w < e \ (x A e,)- There
exists an element w0 e E such that w, e \ x0 < w0 < e \ (x A e,-) for each /. Hence
w0 + x A et < e so that A: A e, < w0 / e and by Claim 5, JC0 < it>o / e> that is,
WQ+ x0 < e and w0 < e \ x0. D

Claim 9. xVe = e\xo+x.

PROOF. By (iii) of Proposition 5.5, x v e,. = e, A x~ + x = et \(x A et) + x <

e \ x0 + x. Then et \ (x A et) < e \ x0 < e \ (x A e,) (Claim 8).

We now show that V , ( e ' N (•* A ei)) = e \ xQ. Assume w > et \ (x A et) for
each i. Then there exists w0 e E such that e, \ (x A et) < WQ < w, e \ x0. Therefore
(e \ x0) \ w0 < (e \(x A g,-)) \ (*i \ (x A e,)) = e \ eh that is, ((e \ x0) \ w0) +
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et < e and e, < ((e \ x0) \ w0) I e, and e < ((e \ x0) \ w0) I e. Consequently,
(0 \ x0) \ w0) + e < e, that is, e \ x0 = u>0 < w which proves e \ x0 = V,(e' \ (•* A

c,)). Applying Proposition 5.2, e \ x0 + x = Vi(ei ^ (x A gi) + •*) = Vi(ei V JC) =
evj. •

Claim 10. x <->• e.

It follows from the previous Claims. •

PROPOSITION 5.8. Let E be a pseudo-effect algebra, a = V, a, e E. Then

/\(a \ at) = 0 = / \ ( a , / a).

PROOF. It is straightforward. •

PROPOSITION 5.9. Let E satisfy (CT-RIP). If a = V~i a< 6 E and c - atf°r any '•

i(fli x c)> V,(c / ai) e ^- a«^« \ c = V;(a; \ c), c / a = V,(c / a<)-

PROOF. Since c < a, < a, then a, \ c < a \ c for any i. Let at \ c < v for
any i. Then there exists an element v0 e E such that a, \ c < u0 < v, a \ c.
Hence, (a \ c) \ vQ < (a \ c) \ (a, \ c) = a \ a,-. By Proposition 5.8, we have
(a \ c) \ v0 — 0, that is, a \ c = v0 < v, so that a \ c = V,(ai v c)-

In a similar manner we can prove the second equality. •

THEOREM 5.10. Let a pseudo-effect algebra E satisfy (o -RIP). Lete — V~, e, e E,
where et e C(E), i > 1. Then e e C(E).

PROOF. We recall that e~ = e~. Indeed, e~ = / \ , e~ = / \ , e,". Using Proposi-
tion 5.7, e' A e = V,(g' A «i) < V,(^ A gi) = 0. Let ^ 6 £ and x0 = \J,(* A e,).
C/a/m 7. J: \ (J: A e) = x A e~ = e~ A x = (x A e) / x.

PROOF. In view of Proposition 5.7, x~ v e e E, and (x~ v e)~ = x A e~ e E. On
the other hand, using Claim 2 of the proof of Proposition 5.7, we have

x \ (x A e) = x \ x0 = /\(x \ (x A e,)) = f\(x A e~) = x A y/\ e~ = x A e~.
i i i

It is possible to show (x A e) / x — [\{{{x A et) I x). Define pe(x) := x A e and
pAx) :=x Ae~. Thenpe(x)+pAx)=x =pAx)+Pe(x)- •

Claim 2. Ify < x, then (x \ y) A e = (x A e) \ (y A e).

https://doi.org/10.1017/S1446788700003177 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003177


138 Anatolij DvureCenskij [18]

PROOF. We have ix A y) A e = V i ( ( * \ y) A et) = V.CC* A e{) \ (y A e,)) >

ix A et) \ (y A e). Applying Proposition 5.9, we have

(*) \Jiix A et) \ (y A e)) = ( \/ix A et) \ (y A e) )

— ix A e) \iy A e) < ix \ y) A e.

On the other hand, (x \ y) A e = V/U* A e,) \ (y A e,)) < (x A e) \(y A et).
Assume d < ix A e) \ (y A e,) for each i. Then there exists do € E such that
d, ix \ y) A e < do < ix A e) \iy A et) for any i. Therefore, do + (y A e,) < x A e,
y A e, < do I ix A e), so that

(**) y A e < do I ix A e) and do < ix A e) \ (y A e).

Combining (*) and (**), we have (x \ e) A e = (x A e) \ (y A e). •

Claim 3. Ifx + ye E, then ix+y)Ae = xAe + yAe.

PROOF. Due to Claim 2, x A e = ((x + y) \ y) A e = ((* + y) A e) \ (y A e). •

Claim4. Ifx+y€ E, then ix + y) A e1 > x A e1 + y A e'.

PROOF. ix+y)Ae'= [\iiix + y)Ae[) =/\iixAei + yAei)>xAe' + yAe'. D

Claim 5. Ifx < e, y < e', then x+y=xvy = y+x.

P R O O F . Due to e + e1 = 1 = e1 + e, we h a v e x +y,y +x € E, a n d x + y > x , y.

Assume z > x, y. There exists zo e £ such that z,x + y > zo > x + y. Then

Peizo) >x,pAzg) > y, thatis, zo — peizo) + pAzo) >x +y, that is, x +y =xvy.
Weha\ex + y = peix + y) + pAx + y) = pAx + y) + Peix + y) > y+x. But

y + x > x,y,theny + x > x V y = x + y. D

Claim 6. Ifx < e, y < e1, then ix + y) A e' = x A e' + y A e!.

PROOF. Using Claim 5, we have

x+y = Peix + y) + PAX +y)> pdx) + peiy) + pAx) + pAy)

= peix)+pAx) +pdy) +pAy) =x + y,

which proves pAx + y) = pAx) + pAy)- D

Claim 7. E = [0, e] x [0, e~].
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P R O O F . D e f i n e f e ( x ) : = ( J C A C . X A e 1 ) , x e E . T h e n x = x A e + x A e ' a n d
if fe(x) = fe(y), then x — y. According to Claim 3 and Claim 6, fe is an injective
homomorphism from E into [0, e] x [0, e~], fe(e) = (e, 0) and due to Claim 5, fe is
surjective. D

Summarizing all claims, we finally have e e C(E). •

THEOREM 5.11. Let a pseudo-effect algebra E be monotone o-complete. Let
e = V" i e< € E, where e, € C(E), i > 1. 77ten e e C(E), and

x A\\/ ei\=\/(x Aet),

PROOF. Since by Theorem 2.3, C(E) is a Boolean algebra, without loss of gener-
ality we can assume et < e2 < • • •. Therefore, e e E. In addition JC A e, e E, which
entails x0 := Vi(* A ei) ™ defined in E, and x0 < x, e.

Using a slightly modified proof of Proposition 5.7, we can show that if x£ is any
element of £suchthatjc Ae, < x£ < x, e for any i, then x0 =x£. In addition, Claim 1,
Claim 2, Claim 4, Claim 6, and Claim 8 in the proof of Proposition 5.7 are also true,
and x \ x0 = AiC* ^ (x A gi)) = -*o / ; c- hence x \ x0 + x0 = x = x0 + x0 I x.

Claim 1. eAe! = 0.

PROOF. Assume z < e, e1, then zo = \fj(z A et) < z < e, e'. Therefore, z A et < e,
and z A ei < ZA < e1 < e'i so that zo = 0- Then z \ Zo < e \ zo and by Claim 4 of
Proposition 5.7, we have z \ Za = (z \ Zo) A (e \ zo) = 0, that is, z = 0.

Define two mappings qe : E —• [0, e] and q? : E -+ [0, «'] by

Qe(x) •= \f(x A et) =: x0, q^(x) := x \ x0

i

for any x € E. Then qe(e) = e and ^ ( e ) = 0. D

C/a/m 2. Ifx + y e E, then qe(x + y) = qe(x) + qeiy), and qe is monotone.

PROOF. Calculate, qe(x + y) = V,-((* + y) A ei) = V,(^ A e, + y A et) <
qe(x) + qt(y) 6 E.

Assume (x + y) A et < z for any i, and fix an integer i0 > 1. Then x0, y6 < z and
^ACi+yAe^ < zforanyi > /0- HencexAg, < z \(yAgjo),thatis,xo < z \(xAe»,)
and y A e^ < x0 I z which gives y0 < x0 I z and x0 + y0 < z. •

Claim 3. Ifx + y € E, then q?(x + y) > <fcQc) + qsiy), and q^ is monotone.
Indeed, q*(x + y) = /\i((x+y) Acj) = A,(^ A^ + y A^) > x Ae' + yAe' e E.
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Claim 4. Ifx < e, y < e1, then qe(x) — x and qAy) = y.
Calculate, qe(x) = x0 and q?(x) = x \ x0 < e, e' which by Claim 1 means

x \ x0 = 0. Similarly we prove qAy) = y.
Claim 5. Ifx < e and y < e>, thon x + y — x V y = y + x.

PROOF. Since x < e and y < e1, we have x + y, y + x e E, and x + y > x, y.
Assume z > x,y. Then qe(z) > qe(x) = x and ^ (z ) > <7̂ (y) = y which gives
2 = qdz) + qAz) >x+y, that is, x + y = x V y.

We assert that q^(x + y) — y. Indeed, x + y = qe(x + y) + q^ix + y) >
qAx) + qeiy) + <?•(*) + q^iy) = x + y.

Assume now x + y = y + d for some d e E. Then x = qe(x + y) = qe(y + d) =
^e(rf) and y — q^(x + y) = q^{y + d) > y + 9^(rf) which implies x + y = >' + fi?>
y + ^(c?) = y + x. But y +x > x,y, then y + * > j c v y = ; c + ; y . D

Claim 6.Ifx+yeE, then q^(x + y) = q^ix) +
Calculate and use Claim 5,

x+y= qe(x + y) + qAx + y) > qe{x) + qe(y) +

= qe(x) + qsix) + qe(y) + q^iy) = x + y.

Claim 7. Iffe : E -> [0, e] x [0, e1] is defined by fe(x) = (qe(x), qA*)), x e E,
then f e is an isomorphism and e e C(E).

Indeed, fe(e) = (e, 0), and if fe(x) = (xu x2), then x = x5 + x2, and by Claim 2
and Claim 6, fe is an injective homomorphism. Assume x < e and y < e1, then
x + y e E and/e(;t + y) = (x, y), which proves that e is a central element of E.

Therefore, x A e e E, so that x A e = x0, and in addition, qe = pe, where pe is
defined by (4). •

6. The Cantor-Bernstein theorem for pseudo-effect algebras

In the present section, we apply the notion of central elements to show that an
analogue of the Cantor-Bernstein theorem for pseudo-effect algebras can be obtained.
We will study the case when the centre of a pseudo-effect algebra £ is a Boolean
cr-subalgebra of E with the central decomposition property.

We say that a finite or countable sequence {e,} of central elements of a pseudo-
effect algebra £ is a central decomposition of unity if e, A e, = 0 for any i ^ j ,
and \fjZi = 1. £ is said to satisfy the central decomposition property if (i) any
sequence of central elements {/,} has a supremum in E and belongs to C(E) and
x A (V,//) = Vi(* A / i ) f°r any x 6 E, and (ii) if {e,} is a central decomposition
of unity and JC, < e, for any i, then x = V,*' e &• That is if {e,}, is a sequence of
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central elements of E, then e = V, et e E and e € C(E). For example, any monotone
a -complete pseudo-effect algebra has such a property, see Proposition 6.1 below and
Theorem 5.11, and every linearly ordered pseudo-effect algebra has the centrum
C(E) = {0, 1} which is a Boolean a-algebra but E is not necessarily monotone a-
complete and it has this property as well as any Cartesian product of finitely many
linearly ordered pseudo-effect algebras.

PROPOSITION 6.1. (i) Let e\y ... en be a finite central decomposition of unity
in a pseudo-effect algebra E. The mapping <f> : E -*• Y\l=ii^' e>\ S^ven by 4>(x) —
(x A «,•),-, x 6 X, is an isomorphism.

(ii) Let {e,}, be a countable central decomposition of unity in a monotone a-
completepseudo-effect algebra E. The mapping <j> : E -*• flilO- ei\ given by<j){x) =
(xAei)i,x € E, is an isomorphism, and E satisfies the central decomposition property.

PROOF, (i) It follows from Proposition 2.7.
(ii) It is clear the mapping <j> is an injective homomorphism. Assume now x, < e,

for any i. By (ii) of Proposition 2.7, x" = X] + • • • + xn e £ for any n > 1. Then
x = \fnx" = V , * ' 6 & anc* <f>(x) = (x A e{)i — (Xi)i which proves that <j> is
surjective. The central decomposition property follows now from Theorem 5.11. •

PROPOSITION 6.2. Let E and F be two pseudo-effect algebras and let f e C(F).
Assume that h is an isomorphism from E onto [0, / ]. Ife € C(E), then h(e) € C(F).

PROOF. In view of Proposition 2.8, it is sufficient to show that h{e) e C([0,/]).
Put/o := h(e). Then /„""' = / ~ ' . For any y g [0 , / ] , y Afo,y A/0~r 6 [0 , / ] ;
indeed, we have h(x) = y for a unique x € E and x A e e E, x A e~ e E, so that
h(x Ae) = h(x) A h(e) = e A / 0 and h(x A e~) = h(x) Ah(e~) = y A/,,7. Therefore
the mapping <f> : [0, / ] - • [0, / 0 ] x [0, f~f ] defined by <f>f (y) = (yAfo,yA /0~7),
y 6 [0, / ], is an isomorphism in question proving /o € C([0, / ]). •

THEOREM 6.3 (Cantor-Bernstein). Let E and F be pseudo-effect algebras satisfy-
ing the central decomposition property. Let e 6 C(E) and f € C(F) and let there
are two isomorphisms of pseudo-effect algebras a : E —*• [ 0, / ] and /} : F —*• [0, e\.
Then E and F are isomorphic pseudo-effect algebras.

PROOF. Without loss of generality we can assume that 0 < e < 1 and 0 < / < 1.
Define recursively two sequences {en}™=0 and {/n}JJi0 by

e0 = 1, en+i =

/ o = 1. fn+i = a(en).
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Due to Proposition 6.2, en € C(£) and /„ e C(F) for each n > 0. In addition,
eo > î > e2 > • • • in £ and / 0 > f\ > /2 > • • • in F. By the assumptions, the
elements e^ = / \ ^ , en and/oo = /\™=ofn are defined in £ and F, respectively, and,
in addition, e^ € C(E) and/*, e C(F). For all n we have en+2 = (/J o a)(en) and
/n+2 = (a o /})(/•„). The mapping )3 o a is an isomorphism of £ onto [0, e2], and it
preserves countable infima and suprema. Therefore, (/J oa)(ew) = (j8oa)(/\n en) =
A«(^ ° «)(«n) = An

 e«+i- Analogously, fx = (a o )9)(/00), and ««, = 0 if and only
if/oo = 0 while a(e<x>) = /oo and fiifoo) = e^. It is evident that the sequences
(<?oo, e0 \ ex, ei \ ez,...) and (/oo, /o \ / i . / i \ /2, • • •) are decompositions of unity
in E and F, respectively.

Moreover, if x e E and y e F, then [0, *] is isomorphic with [0, a(x)] and [0, y]
is isomorphic with [0, fi(y)]. The restrictions of a and fi~l induce isomorphisms

[0, ex] = [0, f^, [0, e2n_2 \ eln-i] = [0, f2n-i \ fin),

[0, e2n-i \ e2n] = [0,/2n_2 \ /2«-i]-

By assumptions,

00 OO

E = [0, eoo] x [ ] [0 , en \ en+l] and F = [0,/oo] x P][0,/„ \ / n + 1 ] ,

consequently E = F. •

REMARK 6.4. (1) Theorem 6.3 generalizes the result of [4] for a-complete MV-
algebras.

(2) Theorem 6.3 generalizes the result of Jenca [18] for monotone cr-complete
(commutative) effect algebras.
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