J. Aust. Math. Soc. 74 (2003), 121-143

CENTRAL ELEMENTS AND CANTOR-BERNSTEIN’S THEOREM
FOR PSEUDO-EFFECT ALGEBRAS

ANATOLLJ DVURECENSKIJ
(Received 7 May 2001; revised 4 January 2002)

Communicated by B. Davey

Abstract

Pseudo-effect algebras are partial algebras (E; +, 0, 1) with a partially defined addition + which is not
necessary commutative and with two complements, left and right ones. We define central elements of a
pseudo-effect algebra and the centre, which in the case of M V-algebras coincides with the set of Boolean
elements and in the case of effect algebras with the Riesz decomposition property central elements are only
characteristic elements. If E satisfies general comparability, then E is a pseudo MV-algebra. Finally, we
apply central elements to obtain a variation of the Cantor-Bernstein theorem for pseudo-effect algebras.

2000 Mathematics subject classification: primary 06D35, 03G12, 03B50.
Keywords and phrases: Pseudo-effect algebra, effect algebra, central element, general comparability,
pseudo MV-algebra, monotone o -completeness, Cantor-Bernstein theorem.

1. Introduction

Recently two non-commutative generalizations of MV-algebras introduced by Chang
[3] have appeared: pseudo MV-algebras of Georgescu and Iorgulescu [13] and gen-
eralized MV-algebras of Rachinek [21] which, in addition, are equivalent. Also a
non-commutative version of BL-algebras, pseudo-BL-algebras, have been introduced
in [6]. Non-commutative algebras are algebraic non-commutative analogues of non-
commutative reasoning. Such reasoning can be met in the everyday life quite often.
Many psychological processes are depending on the order of variables. The result is
not the same when we first put on our shoes and then socks, or conversely. Today
there exists even a programming language [1] based on a non-commutative logic.
Recently in [9, 10] we have introduced pseudo-effect algebras as a non-commutative
generalization of effect algebras, which play an important role in mathematical foun-
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dations of quantumn mechanics. Effect-algebras were introduced by Foulis and Bennett
[11] as an additive counterpart to D-posets introduced by Kopka and Chovanec [19].

In many cases pseudo-effect algebras are intervals in unital po-groups (G, u) [10],
and every pseudo MV-aigebra is an interval in a unital £-group (G, u).

In the present paper we introduce the notion of central elements of pseudo-effect
algebras. For effect algebras this was done in [15]. We show that such elements form
always a Boolean algebra of E. The paper is organized as follows. In Section 2
we define pseudo-effect algebras and their central elements. In the case when the
pseudo-effect algebra satisfies a variation of the Riesz decomposition property, we
characterize central elements as those elements e satisfying e A ¢ = 0, Section 3.
In Section 4, we show that any pseudo-effect algebra with general comparability is
a pseudo MV-algebra. If E is monotone o-complete, then the centre is a Boolean
o-algebra, Section 5, and finally, a version of the Cantor-Bernstein theorem will be
proved.

We recall that Jakubik gave two versions of the Cantor-Bernstein theorem for o -
complete MV-algebras [16] and for pseudo MV-algebras [17]. Another generalization
of the Cantor-Bernstein theorem for o-complete MV-algebras is given in [4] and for
monotone o -complete effect algebras in [18] and for orthomodular lattices in [5].

2. Central elements of pseudo-effect algebras

A partial algebra (E;+, 0, 1), where + is a partial binary operation and 0 and 1
are constants, is called a pseudo-effect algebra if, for all a, b, ¢ € E, the following
holds:

(i) a+ band (a+ b) + cexistif and only if b + ¢ and a + (b + ¢) exist, and in
thiscase (a+ b) +c=a + (b + ¢);
(ii) thereis exactly oned € E and exactlyone ¢ € E suchthata+d = e+a=1;
(111) if a + b exists, there are elements d, ¢ € E suchthata+b=d+a=b+ ¢;
(iv) ifl1+aora+ 1exists, thena =0.

If we define a < b if and only if there exists an element ¢ € E such thata+ ¢ = b,
then < is a partial ordering on E such that 0 < a < 1 for any a € E. It is possible
to show that a < bifand only if b = a + ¢ = d + a for some ¢, d € E. We write
c=a/bandd = b\ a. Then

byva)+a=a+@/b)=b, and a=(b\a)/b=b\(a/b).
Ifa < b < c, then
(cya)\(bra)=c\ b, (@a/b)y/(a/c)=b>b7/c,
(c\b)y/(cna)=b\a, (@a/c)\(b/c)=a/b.

https://doi.org/10.1017/51446788700003177 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003177

[3] Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras 123

Let E = (E;+,0, 1) be a pseudo-effect algebra. We define x~ := 1\ x and
x~ :=x/1forany x € E. For a given element ¢ € E, we denote by [0, ¢] :=
{x € E:0<x < e). Then [0, ¢] endowed with + restricted to [0, e] x [0, e] is
a pseudo-effect algebra [0, e] = ([0, e]; +, 0, €). Then, for any x € [0, e¢] we have
x*:=e\xandx™ :=x / eand e = x~* + x = x 4+ x™. For basic properties of
pseudo-effect algebras see [9, 10].

For example if (G, 1) is a unital (not necessary Abelian) po-group with strong
unit u, and I'(G, u) := [0, u} = {g € G:0 < g < u}, then (I'(G, u); +,0, u) is a
pseudo-effect algebra if we restrict the group addition + to ' (G, u).

We recall that a pseudo MV-algebra is an algebra (M; ®,~,”, 0, 1) of type (2, 1, 1,
0, 0) such that the following axioms hold for all x, y, z € M with an additional binary
operation © defined viay @x = (x~" @ y™)~
Al x8(@)=x®y) Dz
(A2) x8®0=0®x =x;

A3) xdl=10x=1;

A4 1"=0;1"=0;

(AS) x" @y )" =G"@y);

(A6) x®x" " Oy=y®y OQx=x0y ®y=y0x~ ®x;
A7) x0@"®y)=x®y)OVy;

(A8) (x7)” =ux.

In [7] it was shown that every pseudo MV-algebra is isomorphic to I'(G, u),
where (G, u) is a unital £-group with strong unit u, where a @ b := (a + b) A u,
aOb=(@-u+b)vl0anda~ =u—aanda™ = —a+ u.

If M is a pseudo MV-algebra, then the partial operation a + b is defined if and only
ifa<b ,andthena+ b =a® b, and (M; +, 0, 1) is a pseudo-effect algebra.

DEFINITION 2.1. Anelement e of a pseudo-effcct algebra E is said to be central (or
Boolean) if there exists an isomorphism

(D fe: E—[0,e] x [0, €7]
such that f,.(e) = (e, 0) and if f.(x) = (x;, x2), thenx = x; + x, forany x € E.

We denote by C(E) the set of all central elements of E, and C(E) is said to be the
centre of E. We recall that 0, 1 € C(E).

PROPOSITION 2.2. Let e be a central element of a pseudo-effect algebra E, and f,
the corresponding mapping from Definition 2.1. Then
@® f(e)=(0,¢).
(ii)) Ifx <e, then f.(x) = (x,0).
(iiil) ene” =0.
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(iv) Ify <€ thenf.(y)=(0,y).
(v) e =e.
(vi) Foranyx e E,.xANe€ Fandx Ne~ € E, and

2 fx)=(xAe xAe).
(vil) Iff.(x) = (x1,x3), thenx = x| V x2, X; AXx2 =0, and x; + x; = x.

PROOF. (i) f.(e”) = fo(e)” = (e,0)” = (™,07) = (0, 7).

(ii) Let fe(x) = (x1, x2), x < e. Then (x1, x2) = f.(x) < f.(e) = (¢, 0), that is,
x; = 0. Hence x = x; + x5 = x;.

(iii) Let x < e,e”. Then (x,0) = f.(x) < f.(e7) = (0, €7), sothat x = 0. (iv)
Lety < e”. Then f.(y) = (y1,¥2), and y; < e, y1 <y < € so that by (iii), y1 =0
andy = y1 + y2 = y2.

(V) (e,e)=f.le"t+e)=f.(e)+ (e, 0) = (e, &)+ (e, 0) = (&1 + ¢, ;) which
yields ¢ = €, + e and e, = €7, that is, ¢; = 0 and f.(e”) = (0, ¢7) which gives
e =04+e"=¢".

(vi) Let 7, and 7~ be the projections from [0, e] x [0, ¢~] onto [0, e] and [0, 7],
respectively. Then p, := 7,0 f, and p.,~ = 7~ o f, are homomorphisms from E
into [0, €] and [0, ¢7], respectively. It is clear that p.(x) < x,e. If now y < x, e,
then by (ii), y = p.(y) < p.(x), sothat e Ax = p,(x) € E for any x € E.
Similarly, p~ < x, e, and if z < x, €~ then by (iv), 2 = p~(2) < p.~(x), that is,
Pe(x) =x A e”. Consequently, f.(x) =(x Ae,x Ae™),x € E.

(vii) It is clear that x > x;,x;. Let z > x;,x;. Then x; = p.(x;) < p.(2) and
Xy = Pe{X2) € pe-(2), s0 that x = x; + x; < p(2) + p~{(z) = z which proves
x; V x; = x. Itis evident that x; A x, = 0.

By (2) we have x; = x Aeand x, = x A e”. Hence by (v), x Ae)” =
xXT Ve ZxNne =xANe =x; which gives x3 +x; € E. Then p{x2 + x1) =
Pe(x2) + pe(x1) = pe(x1) = xy and p~(x; + x1) = p~(x2) + p~(x1) = x which
proves x; +xy = x; +x; = x. -

In view of Proposition 2.2 (v), if e € C(E), then we will write ¢ := ¢~ = ¢".

THEOREM 2.3. Let E be a pseudo-effect algebra. If e, f € C(E),thenenf € E
ande A f € C(E), and C(E) = (C(E); A, V,',0,1) is a Boolean algebra.

PROOF. It is evident that 0, 1 € C(E). Let now e € C(E), then ¢~ = ¢~ and by
Proposition 2.2 the mapping f.(x) = (x A e, x A €7) is an isomorphism from E onto
[0, ] x [0, €7]. By Proposition 2.2 (vii), we have that the mapping f.-(x) = (x A
€™, x A e)is an isomorphism from E onto {0, e”] x [0, €] such that f.-(e™) = (e~, 0)
and if f.-(x) = (xy, x2), then x = x; + x; = x; + x;, which proves ¢ € C(E).
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Assume now e, f € C(E). Then, foreveryx € E,
B) x=xnret+xAnéed=xnenftxrnerf ' +xAeEnf +xrnenf’

andinviewof 1l = eAf +enf ' +e€ANf +e€ ANf', we have (e A f)~ =
enf'+eénf +€Af. Ontheotherhand, 1 = f'+f = f'Ae+f'A
e+freé+fre=enf'+enf+éeAf' +enf,byProposition 2.6 (ii),
sothat (enf) " =enf '+ Af +e ANf = (enf) . Hence the mapping
fasG)=CAnenf,x AeAf +xANeEANf +xAe AS')isawell defined mapping
from E into [0, e A f] x [0, (e A f)~] which is injective in view of (3). Moreover, if
feAf(x)z(xl,xz),thenxl+x2 =x,andfeAf(eAf)=(eAf,0).

Assume x; € [0, enf ), x; € [0, (eAnf)™]. Thenx; < x;,sothatx =x;+x; € E.
Hence (x; +x)AeAf =xiAenf +x3AeAf =x1+x3AeAf. Onthe other side,
X2 < (eAnf) =enf'+éAf +éAf'sothatxsAe < eAf'+EAf AetedAf'Ae=
enf'andx, Aenf <enf'Af =0.

Similarly, (x; + x2) AeAf '+ xi+x)AEAf + X +x)AENSf =
XNAenf'+x AenNf '+ X AEAf +xonENf +x AEANf +x2A€ Af’. But
xy<enf.Thenx,nenf’ <eAf AeAf' =0andx A€Af <erf AEAf =0
which proves that f ., is surjective.

Finally, we show that f,.s (x + y) = feas (x) + fenr (y) Wwheneverx +y € E.

Calculate

(%) x+YAeAf '+ +VIAENf +x+Y)AENS
=xNeAf +yANeAf' +xAEANf +yAnENnS’
+xANEAf FyNENS.

Thenx AéAf <(yAeAf') sothatx AeAf +yAeAf’ € E. Weassert

(%) xANENf+ynenf'=xnenfIviynenf’)
=yAenf' +xAENS.

Letz>yAenf' . xANeéAnf.ThenzAeAf' > yAenf'andzAenf = xAEANS.
Hencez > zAenf’+ 2 A € A f which proves (*#). In a similar way we can prove
that yAéAf +xAeéNf ' =xneNf'+yAe Af. Therefore for (¥) we have that
itequalstox AeAf'+x AEAf +yAeAf' +xAEALf +yAEAf +YAEANS'.

In a similar way, we have that itequals tox AeAf ' +x AdAf +x A€ AN
flfrynenf'+ynenf+yne nf’. Consequently, e A f € C(E), and
xA(eANf)Y =xAenf ' +xAéANf +xAENS'. O

PROPOSITION 2.4. Let x € E and e € C(E). Then
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(i) xAe=0ifandonlyifx < e ifandonlyifx < e~ ifandonly ife < x~ if
andonly ife < x~.
(ii) e+ ec E impliese=0.

PROOF. (i)Letx Ae=0,thenx =xAe+xAe =xAe <e.Lletx <e.
Thenx Ae<e Ae=0.Letx Ae=0. Thenx <e ande <x~.Ife <x7, then
x<e =e.Ifxne=0,thenx =xAe+x Ae thatis,x <e ande <x~. If
e<x",thenx <e andx Ae=0.

(ii) It follows from (i). O

PROPOSITION 2.5. Lete;, ... ,e, € C(E), e;nej =0fori#j,ande+---+e,=1.
Thenx =xANej+---+x Aep

PROOF. If n = 1, then ¢; = 1. The general case follows mathematical induction.
Letn>2. Thene=¢, +---+¢, € =¢, € C(E)andx =x Ae+x ANey =
xAe+---F+xAe+xAe,. O

Let e € C(E), thén the mapping p. : E — [0, e] defined by
4) px):=xAMne, x€E,
is a homomorphism from E onto [0, e] whose kernel is [0, ¢'].

PROPOSITION 2.6. Let e, f € C(E).
() Perr =PePr =PsPe
(ii) Ifenf =0,thene+f =eVf =f+eandp.;(x)=p.x)+psx)=
pr(x)+p.x), x € E. '
(iil)) Iff <ethene\f =f ANé =f /e andp,s(x) =p.x)\pslx) =
prx) 7/ p.x), x € E.

PROOF. (i) follows from (4).

(i) If e A f = O, then by Proposition 24, e+ f € E and f + ¢ € E, and
e+f >evf <f+eHenceposle+f)=pos(e)+pes(f)=etf <eVf.
In an analogous way f +e<eV f.

Letx € E. Then ps(x) = x A(eV f)and pors(x) =x Ae Af'. Since
x=x/\e/\f+x/\e/\f’+er’Af+x/\e’/\f’=x/\e+x/\f+p(evf)r(x),
sothatpr(x) =xAe+xAf.Ifnowz>xAe,x Af,thenz=zAeAf +zA
eNf'HzNENf +zANENf ' ZzAe+2Af =x Ae+x A S, which proves

xA(evfi=@Ane)+xAf)=xAe)VXAS).
Gi)Letf <e. Thene=f+f/e=e\f+fande=enf t+tenf' =
enf'+enfsothateAf ' =f /e=e\f =enf' a
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PROPOSITION 2.7. Letey, ... ,e, € C(E), e, ne; =0fori #j.
(i) ex=V,,ei=e+---+e, € CE),and

x/\e=\/(x/\e,-)=x/\e1+---+x/\e,,, x € E.
i=1
(i) Ifx;<efori=1,... ,nthenx +---+x,=x1V---Vx, =x; +---+Xx;,
where (iy, ... , i,) is any permutation of (1, ... , n).
Giii) Ifay,...,a, € C(E), then

XA (\"/a,) =\n/(x Nna;), x¢€E.
i=1 i=1

PROOF. (i) If n = 1, 2, the assertion follows from Proposition 2.5 (ii). Let now
the statement is true for any integer i < n,n > 2. Thene = \/]_ & V €531 =
(e1 + - - + €,) + eq41 because (\/]_,; ) A e,+1 = 0 due to the induction assumption.
Hencex Ae=x A (V&) VxAe=xAer+ - +xAe,+X A en.

(i) Sincee =¢, +---+e¢, € E,thenx = x;+---+x, € E, and x > x;
for any i. Assume z > x; for i = 1,...,n. Then by (ii) of Proposition 2.6
22 pA2) =P+ -+ P, (@) = pex)) +- -+ pe,(xp) =x1+ -+ x, = x.
Consequently, x =x; V---Vx, =x; +---4+x;.

(iii) It is sufficient to assume » = 2. Then define e; = a; A a3, ; = a; A a;, and
e; = a; A a;. Hence by (i)

xA{@aVa)=xA(egVveave)=xKAe)VExAe)V(xAe)
=((xNne)Vxreg)VxAe)V(xAey))
=xA{egve)vxa(eaVve)=xAa)V (xAa). O

PROPOSITION 2.8. Let ¢ € C(E) and f < e. Then f € C(E) if and only if
f € C(0, e]).

PROOF. Let f € C(E). Thene = f + e A f’ and the product [0, f] x [0, e A f']
is isomorphic with [0, e] underthemapping ffe(x) =xAf,xAf™),x €0, e],s0
that f € C([0, e]).

Conversely, let f € C([0, e]). Then E = [0, e] x [0, e~ ] and [0, ¢] = [0, f] x
[0,f]. Sincel=e+e" =f +f+e,thenf " =f"4+e" =enfT+e".
Ontheotherhand, f~ = f~Ae+f~"Ae” =f" A e+ e while e € C(E) so that
S Ae=f""ne=e\f =f".

Takex € E. Thenx Af~ =xAf " Ae+xAf " Ae” =xAf~+xAe”. Hence
the mapping ¢ : E — [0, f] x [0, f "] defined by ¢p(x) :=(x Af,xAf7),x € E,
is an isomorphism in question while E = [0, ¢] X [0,¢"]Jandx =x Ae+x Ae™ =
xAeAf+xAenfT +xAe  =xAf+xAfT+xne=xAf+xAf~. O
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We note that in the case that E is a quantum logic, for definitions see, for ex-
ample, [8], then the centre of E coincides with the set of all compatible elements
of E.

It is worth to recall that the notion of a central element can be defined also for unital
po-groups. We say that an element e € G of a unital po-group (G, u) is central if (1)
0 < e < uand (ii) e is a central element in the pseudo-effect algebra I'(G, u) = [0, u].
In the case that (G, u) is Abelian and with the Riesz interpolation property, then central
elements coincide with characteristic elements [14, page 129].

A pseudo-effect algebra E is said to be directly indecomposable if E is non-trivial
and whenever E = E, x E,, then either E; or E, is trivial.

PROPOSITION 2.9. A pseudo-effect algebra E is directly indecomposable if and only
if C(E) = {0, 1).

PROOF. Assume E is directly indecomposable and let e € C(E). Then E =
[0, e] x [0, €'] which means ¢ € {0, 1}.

Conversely, let C(E) = {0, 1}. The elements (1, 0) and (0, 1) are central elements
in E; X E,. If now E = E,| x E; and if ¢ is an isomorphism from E onto E; x E,,
set e = ¢~ '((1,0)). Then e~ = e~ = ¢~'((0,1)), and x A e,x A € € E for any
x € E. Hence ¢p(x) = dp(x) Ap(e) + d(x) A p(e) = ¢((x A e) + (x A €)) which
proves x = x A e+ x A €. Hence f (x) := (x A e,x A €) is an isomorphism of E
onto [0, e] x [0, €], so that, e € C(E). Therefore e € {0, 1} and ¢ (e) € {0, 1} which
proves E is directly indecomposable. O

We recall that a poset E is an antilattice if an infimum of two elements exists only
for comparable elements. Each linearly ordered poset is antilattice.

COROLLARY 2.10. Every linearly ordered or antilattice pseudo-effect algebra is
directly indecomposable.

PROOF. It follows from Proposition 2.9, while in view of 0 = e A € € {e, €'}, the
centrum of a linearly ordered pseudo-effect algebra or of an antilattice pseudo-effect
algebra is trivial, that is, C(E) = {0, 1}. O

3. Pseudo-effect algebras and Riesz decomposition properties

When we move from (commutative) effect algebras to pseudo-effect algebras, then
the notion of the Riesz decomposition property can be extended to different and
non-equivalent forms. Following [9], we introduce for pseudo-effect algebras the
following forms of the Riesz decomposition properties:

https://doi.org/10.1017/51446788700003177 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003177

9] Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras 129

(a) Fora,b € E, we write acomb to mean that for all ¢; < a and b, < b, a; and
b, commute.

(b) We say that E fulfills the Riesz interpolation property, (RIP) for short, if for any
a,,a,, by, b, € E such that a¢;,a; < b, b, thereisa c € E such that q;,a, < ¢ <
by, b,.

(c) We say that E fulfills the weak Riesz decomposition property, (RDPy) for short,
if for any a, by, b, € E such that a < b, 4 b, there are d;, d; € E such that d; < by,
d, <byanda =d, + d,.

(d) We say that E fulfills the Riesz decomposition property, (RDP) for short, if for
any a, az, b, b, € E such that a, + a, = by + b, there are d,, d;, d5, dy € E such
thatd, +dr = ay,ds +ds = a3, dy +ds = by, dy + dy = b,.

(e) We say that E fulfills the commutational Riesz decomposition property, (RDP,)
forshort, if forany a,, a,, b, b, € E suchthata,+a, = b, +b; thereared,, dy, ds, ds €
E suchthat 1) d,+d; = a1, ds+dy = a, dy+ds = by, dy+ds = by, and (ii) d; com d;.

(f) We say that E fulfills the strong Riesz decomposition property, (RDP;) for short,
if for any ay, a3, by, b, € E such that a; + a; = b; + b, there are d|, dy, d3,dy € E
suchthat i) d,+d; = ay,ds+dy = a3, d\+d; = by, d»+ds = by, and (i) dy Ad; = 0.

We have the implications
(RDP,) = (RDP;) = (RDP) = (RDP,) = (RIP).

The converse of any of these implications does not hold. For commutative effect
algebras we have

(RDP;) = (RDP,) & (RDP) < (RDPy) = (RIP).
The following result was proved in [9, Lemma 3.2].

LEMMA 3.1. If E satisfies (RDPy), then a A b = 0 impliesa+ b,b+aandav b
exist in E and are all equal.

THEOREM 3.2. Let a pseudo-effect algebra E satisfy (RDP). Then e € E is central
ifandonlyifene™ =0ifandonlyifene =0.

PROOF. Let e € C(E),then e A e = 0 = e A e”. In view of Proposition 2.2 (iii)
and (v),ene” =0ifandonlyif ene” = 0.

Conversely, let eAe™ = 0. Thenx <1 = e+ ¢~ forany x € E. There are
x; < e and x; < €~ such that x = x; + x,. We show thatif y, < eand y, < e~
and x = y; + y;, then x; = y; and x; = y,. Due to (RDP), there are four elements
Ci1, €12, €21, €2 € E such that x; = ¢y + ¢12, X2 = ¢ + €22, y1 = ¢nn + ¢ and
Y2 = ¢2+ ¢p. Since ¢ < x; < eand ¢ < y; < €7, we conclude ¢;; = 0.

Sum‘larly, Cyy = 0. Hence X1=C1 =y and X2 = Cpp =Y3.
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Define p.(x) = x,ifx =x,4+x,(x € E). Thenp,: E — [0, e]. Ifx, € [0, e] and
x; € [0, 7], thenx; Ax, = 0,sothatby Lemma 3.1, x = x,+x2 = x24+x; =X, Vxa,
and hence p.(x) = x,. Consequently, p, restricted to [0, €] is the identity.

We show that p, is a homomorphism. Let x +y € E and x = x; + x, and
y = y1 + y2, where x;, y; < e, x3,y, < ¢”. Thenx +y =x; + x2 + y1 + y2. Since

x; A y; =0, thenx +y = x; + y; + x, + y;. On the other hand, letx +y =z, + 23,
where z; < e and z; < e~. Hence there are four elements d,, di2, d2, daz such that

X1+ y1 =dy +dp, z=dy+dy, -
X3+ y; =dy +dn, 22 =dp +dn.

d’"<y. Thend <xy <eandd <d; <z <e sothatd =0,andd”" <y, <e

andd” < z; < e proving d” = 0 and therefore d; = 0. In a similar way we can prove

dy; = 0 which yields x; + y; = z; and x; + y, = z;, so that, p, is a homomorphism.
Since by Proposition 2.2 (v), €~ = e~, we can write ¢ = ¢~ = ¢, and let

Pe(x) =x3ifx = x;+x; (x € E). Then p, is a homomorphism from E onto [0, €].
Consequently, the mapping f. : E — [0, e] x [0, €] defined by

We claim dj; = 0. Since dj; < x; + ¥y, then dj; = d' + d”, where d’ < x, and

fex) = (Pe(x),pe(x)), x€E

is an isomorphism with f.(e) = (e, 0), so that ¢ € C(FE). In addition,

px)y=x,=xAe, x€E. |

4. General comparability

We say that a pseudo-effect algebra E satisfies general comparability if, given
x,y € E, there is a central element ¢ € E such that p.(x) < p.(y) and p.(x) >
pe(y). This means that the coordinates of the elements x = (p.(x), p.(x)) and
y = (p.(y), pe(¥)) can be compared in [0, €] and [0, £], respectively.

For example, (i) every linearly ordered pseudo-effect algebra trivially satisfies
general comparability; (i) also any Cartesian product of linearly ordered pseudo-
effect algebras. For an ‘MV-analogue’ of the next result see [2, Proposition 3].

PROPOSITION 4.1. Let M be a o-complete pseudo MV-algebra and x € M. Then
the element e := \/ 7. | (x; ® - - - © x,), where x, = x for every n, is a central element
of M such that p,(x) = x. If f is any central element of M such that p;(x) = x, then
e < f. Moreover, M satisfies general comparability.
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PROOF. Let M be a o-complete pseudo MV-algebra. According to [7, Theo-
rem 4.2], M is commutative, that is, an MV-algebra. Let + be its partial addition
defined viaa + b = a® bif and only if a < b*. Let (G, u) be the unital £-group such
that M = I'(G, u); such a group is guaranteed by Mundici’s representation of MV-
algebras, see [20]. Then G is Dedekind complete, and by (14, Lemma 9.8], the element
e= \/f:,(nx A u) € C(E) (compare with Theorem 3.2), and p.(x) = x. Moreover,
if ps(x) = x for some f € C(E), then e < f. Applying now [14, Theorem 9.9],
(G, u) satisfies general comparability, so M satisfies general comparability. a

THEOREM 4.2. Let E be a pseudo-effect algebra satisfying general comparability.
Then E is a lattice, and E can be organized into a pseudo MV-algebra such that the
partial addition derived from E as the pseudo MV-algebra coincides with the original
+ taken in the pseudo-effect algebra.

PROOF. Let x,y € E and let e € C(E) such that p,(x) < p.(y) and p,(x) >

pe(y). Thenx = p,(x) + po(x) > p.(x) + pe(y) = v € E.
Claiml. v=x A y.

PROOF. We have y = p.(y) + po(¥) = p.(x) + ps(y) = v, thatis, v < x, y. Let
z <x,y. Then p.(z) < p.(x) and p.(z) < p.(y), thatis, z = p.(z) + p.(2) <
PeX)+pe(y) =v,thatis,v =x A y. d

Claim2. w:=p.(y)+psx)e Eandw =x Vv y.

PROOF. Since p.(y) A p.(x) = 0, then w := p.(y) + p-(x) € E. We conclude
nowx Vy = w. Wehave x = p.(x) + po(x) < p.(y) + pe(x) = wand y =
p.(y) +pe(¥) < p(y) + po(x) = w. If now z > x, y, then p.(z) > p.(y) and
pe(2) Z po(x) thatis,z = p(z) + p,(2) = w. O

Claim3. x \(xAy)=@xVvy)\yandy \(xAy)=(xVy)\x.
PROOF. Calculate

P N AY)) =plx \@(x) +pe(y)) =pelx) \ pe(x) =0,
Pex \xAY)=psx)\pe(y), Py \(xAY)=p.(y)\ p.x),
pe(y\xAY)=pes(y)\ pe(y) =0,

PlxVvy)\x)=p(p.(y) +pc(x) \x) =p.(¥) \ p.(x),

pe((x VY)\x) =ps(x) \ pelx) =0,

p((xVy)\y)=p.y)\ p.(y) =0,

pe((x VY)\y)=pex)\ pely),

which proves Claim 3. O
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Finally, according to [10, Proposition 8.7], Claim 3 is a necessary and sufficient
condition in order to convert E into a pseudo MV-algebra (E; ®,”,~, 0, 1); we define

a®b:=(@ \(@ Ab))", abekE.

In such the case, the original 4+ and the derived one from & coincide. O

5. Monotone o-complete pseudo-effect algebras

We say that a pseudo-effect algebra E (i) is monotone o -complete if any sequence
x; < X, < --- in E has a supremum V:°=1x,, in E; (ii) is o-complete if E is a
o-complete lattice; (iii) satisfies the countable Riesz interpolation property, (o-RIP)
in abbreviation if, for countable sequences {x, x2, ...} and {y;, y2, ...} of elements
of E such that x; < y; forall i, j, there exists an element z € E such thatx; <z <y;
for all 4, j ; (iv) is Archimedean if nx := x + -- - + x is defined in E for any integer
n>1,thenx =0.

It is evident that (o -RIP) implies (RIP), and E is monotone o -complete if and only
if each nonincreasing sequence of elements in E has an infimum. Moreover, if E is a
lattice, then E is monotone o-complete if and only if E is o-complete.

PROPOSITION 5.1. Let E be a pseudo-effect algebra with (RIP). Then E has (o -RIP)
if and only if whenever
(@ xy<x;<---inEandy,,y, € E,or
b) x,x€ Eandy,>y,>--- inE, or
(©) xi<x;<---andy; >y, >---ink,

and x; < y; for all i, j there exists z € E such thatx; <z <y, foralli,j.
PROOF. It follows the same steps as that in {14, Lemma 16.2]. O
PROPOSITION 5.2. Let E be a pseudo-effect algebra. Assume also that \/, a; and
(V,a)+x €E, then\/,(a; + x) € E and (Via)+x = Va+x). If\V,a,
x+(V,a)€E then\/,(x + a) € E andx + (\,a)) = \/,(x + ).

PROOF. We have (\/, a,») +x > a; + x foreach i. If now z > a; + x for all {, then
z\xza,-,thatis,z\xzvia,»andzz(\/,.a,-)+x. a

PROPOSITION 5.3. Let E be a monotone o -complete pseudo-effect algebra. Then E
is Archimedean. If, in addition, E satisfies (RIP), then E has countable interpolation.
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PROOF. Assume x, := nx = x + -+ + x be defined in E for any n > 1. Then
Xp < Xn41 and there exists xo := /e, X,. Since x, < x~ for every n, then xo < x~,
so that xo + x € E. Hence by Proposition 5.2,

o0 [o o]
Xo+x = \/(x,. +x)= \/x,. = Xy,
n=1 n=2

which proves x = 0.
If now E has (RIP), then by Proposition 5.1, E has countable interpolation. O

The notion of monotone o-complete pseudo-effect algebras is important while
there are even (commutative) effect algebras which are monotone o-complete but not
a lattice.

EXAMPLE 5.4. There exists a monotone o-complete effect algebra which is not a
lattice.

PROOF. Let X be an uncountable set and fix two distinct elements a, b € X. Let E
be the set of all functions f : X — Z such that f (x) = (f (a) + f (b))/2 for all but
countably many x € X and0 < f (x) <2 forany x € X. Then E is an effect algebra
which is monotone o-complete but not a lattice. For example, let u be the function
which is the constant function 1 and let v be a mapping in E such that v(a) = 0 and
v(b) = 2 while v(x) = 1 forall x € X \ {a, b}. Then u and v have no infimum in E
(see [14, Example 16.1, Example 16.8]). O

We say that two elements a and b of a pseudo-effect algebra E are compatible, and
write a <« b if there are three elements a,, b;, c € E suchthata = a,+c¢, b = b, + ¢,
anday+b+c=b+a+c,aa Ab =0.

PROPOSITION 5.5. Lete € C(E) and x € E. Then x < ¢, and

(i) x=xAd+xnee=eAx +xNee=eAx+erx", x =eAx+xAe€.
(i) xAd=x\(xAe)=(xAe)/x,eAx  =e\(eAnx),enx” =(enx) / x.
(ili) xVe=xA€+enx +xNe=eAx +xAéd+xAe=xAe+x"Ne+x" Ae.
iv) (xve)ve=x\(xAe),(xVe)\x =e\(xAe),ande / (xVe) = (xAe) / x,
x/(xvey=(xne)/x.

PROOF. (i) x = x A € + x A e by Proposition 2.2. On the other hand, p.(e) =
e=eN(x+x")=px)+pxT)=xAe+x"ANeande=eA(x" +x) =
px”+x)=p.x7) +p.x) =eAnx+eAx.

(iDx \(xAe)e E.Ifx \(xAe) =a,thenx =a+(xAe),butx =xAe+xAe
which gives a = x A €. Similarly, (x A €) 7 x = x A €, and also for other two
equalities in (ii).
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(iii) Wehavee=eAl=eA(x " +x)=x"Ae+x Ae Sincex A <¢,then
xAN€+ecEandx,e <x A€ + e Moreover,ifz > x A€, e, thenp,(z) > eand
pe(2) > pe(x A€)=x A€ which proves (x A €) Ve =x A€ + e. Itis clear that
xVe<xAé+x Aetenx.Ifnowy > x,e,theny >xAé,eandy > (xAe)Ve
which provesx Ve=xAée +x " Aetx Ae.

Onthe otherhand, x " Ae <x",wehavex  Ae+x € E. Thenx" Ae+x >x
andx" Ae+x=x"Ae+xAe+xne =e+xAée > e Therefore,if u>x,e,
then p.(u) > e and p,(u) > p.(x) = x A € which entails ¥ > x~ A e + x that is,
X" ANe+xAéd+xAe=xVe.

(ivyBy(i)xve)\e=xAed=x\(xAe)=(xAe)/xandx /(x Ve) =
x/x+x"ne)y=x"Ne=(eAx)/x.

From (ii1)) we have (x Ve) \ x = x~ Ae = e \(x A ¢). In a similar way we can
prove the last equalities in (iv).

From the above we have also x < e. O

We recall that according to Proposition 5.5, if e is a central element of E, then
e « x for any x € E. The converse statement is not true, for example, in any
MV-algebra M every two elements are compatible, and C(M) = M if and only if M
is a Boolean algebra, see Theorem 3.2.

PROPOSITION 5.6. Let a pseudo-effect algebra E have (o -RIP). Let \/:’:l e, € C(E)
fore; € C(E), i > 1. Then

&) x/\(\/ei) =<o/(x/\e,-), x €E.
i=1 i=1

PRrOOEF. First we show that

(6) /\(x V(x Ae)) =x\ (x A (\/ e,—)) .

i

Wehavex \(x Aeg) > x \ (x A (\/‘ e,-)). Letnowd < x \ (x A ¢) foreachi. By
Proposition 5.5,

de\(x/\e,-)=(xvef)\xf(xv<\/e‘>) \x=X\<xA<\i/ei)>

which proves (6).

It is clear that (\/,. e)Ax > e; Ax foreach i. Letnow ¢; Ax < z foreach i. Then
e; Ax < z,x foreach i. Applying (o-RIP), there exists an element zy € E such that
einx <zp<z,x. Hencex \ zp < x \(e; Ax). Thus x \ zg < x \ (x A (V,.e,-))

which gives x A (\/, e,-) < zp < z and consequently (5) is proved. 0
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PROPOSITION 5.7. Let a pseudo-effect algebra E have (o-RIP). Lete=\/., e.€ E
fore; € C(E), i > 1. Then, foreveryx € E,x/\(\/:’:1 e,~) = Vf:l(x Ae),xVec€ E,
andx & e.

PROOF. We have ¢; A x < x,e forall i. Let x, € E be any element such that
e; Ax < xp < e, x for every i; such an element always exists due to (o-RIP).

Claim 1. x = (x \ xp) + xg, € = (€ \ xg) + xp, (x \ x0) + (e \ x0) + xo € E.

PROOF. Indeed, we have ¢; < (x \(e; Ax))” < (x \ xp)” sothat e < (x \ xq)~
which gives (x \ x¢) + e € E.

Similarly, ¢; < (x \(e; AXx))” < (x \ xg)” so that e < (x \ xp)~ which gives
e+ (x \ xo) € E.

It is evident that (x \ xo) + e > x, eand e+ (x \ xg) > x, e. ]

Claim2. \;(x \(x A e;)) = x \ xq.
PROOF. It is evident that x \ (x A e;) > x \ xo forevery i. Letd < x \(x A ¢)
for each i. Then by Proposition 5.5, d < x\(x A ¢) = (x V ¢) \ ¢;. Then

d+e <xVe < (x \xp)+esothate, <d /((x \ xo)+e)ande < d / ((x \ xo) + &)
which givesd + e < (x \ xg) + eand d < x \ x,. O

Claim 3. \/,;(x A &;) = x.

PROOF. Assume x A ¢; < y for every i. Then x A e; < y, xq so that there exists
Yo € Esuchthat x A e; < yo < y,xo forevery i. Thenx \ yo < x \(x A ¢). By
Claim2,x \ yo < A,(x \(x A &)) =x \ xgsothatxg < yo < y. O

Claim 4. (x \ x¢) A (e \ x9) = 0.

PROOF. Assume z < x \xgand z < e\ xg. Thenz+xy < x, 7+ xy < ¢, and

xAe; < z+xg < e, x foreach i. Using Claims 1-3, we have z+xo = \/,(x Ag;) = xo,
that is, z = 0. O

Claim 5. x A e = x,.

PROOF. Let u < x,e. Then u,xy < x, e and there exists ug € E such that
u,xo < ug < x,e, in particular, x A ¢; < ug, and using Claims 1-3, we have
up=V,x Ae) =xgthatis, u < ug=xpandxo =x Ae. a

Claim6. xo+x \xo € E,xo+x \ xg=x and (e \ x¢) + (x \ xp) + xp € E.
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PROOF. By Claim 1, e + (x \ xo) € E so that (e \ xo) + (xo + (x \ x¢)) € E and
xo +x \ xo € E. Applying Proposition 5.2, we have

() xo+x v xo = \/((x A e) + (x \ x0)).

We show that, foreach i, x A e; +x \ xp = x \ xg +x A ¢;. We recall that due to
Claim 5 and Proposition 5.2, x \ xo + x A ¢; € E forall i.

Pe(xANe+x \xg)=xAe+xAe)\(xpAhe)=xANe =p,(x\xo+x Ae),

Po(x Aei+x \Xo) =pg(x \ Xo) =Ppe(x \ Xo+X A e&).
Applying again Proposition 5.2, we have for (x)

(*)=\/(x \xot+x Ae)=x \x0+\/(x/\e,-)=x \ X0+ Xo =x.

Consequently, e+x \ xo = (e \ xg)+xo+(x \ x0) = (e \ x0)+(x \ xo)+xo € E. O

Claim7. xVe=x \xy+e.
PROOF. We have x, e < x \ x¢ + e so that by (iii) of Proposition 5.5,
xXVe=xANe+e<x\x+e.

Assume x V ¢; < v forall i. Then there exists vp suchthatx Ve; < vg < v,x \ xo+e.
Thenx Ve =x\(xAe)+e > (x\xy)+e € E. Sincex\xg+e € E, we
can apply Proposition 5.2 and \/;((x \ xp) + &) =x \ xo+ \/,;&s =x \ xo+ e < v
which yields vo = x \ xo + ¢ < v, thatis,x \ xo+e=xVe. O

Claim 8. N, (e\(x Ae)) = e\ xo.

PROOF. It is clear that e \(x A ¢) > e\ xo. Assume w < e \(x A ¢;). There
exists an element wy € E such that w, e \ xo < wy < e \ (x A ¢;) for each i. Hence
wo+x Ne < esothat x A e < wp/ e and by Claim 5, xo < wp / e, that is,

wy +xg < eand wy < e\ x. a

Claim9. x Ve=¢e\ xg +x.

PROOF. By (iii) of Proposition 5.5, x Ve, = ¢ Ax  +x = ¢, \(x Ae) +x <
e\xg+x.Thene, \(x Aeg) <e\xyg <e\(x A e¢) (Claim 8).
We now show that \/,(e; \(x A &)) = e\ xo. Assume w > & \(x A ¢) for

each i. Then there exists wy € E such that e; \ (x A ¢;) < wo < w, e \ xo. Therefore
(evxo)\wy < (ev(x Ae))\(es\(x ANe)) = e\ e, that is, ((e \ xo) \ wo) +
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e <eand ¢, < ((e\xp) \ wy) / e, and e < ((e \ xp) \ wy) / e. Consequently,
((e \ x0) \ wg)+e < e, thatis, e \ xo = wy < w which proves e \ xo = \/,.(e,- V(X A
e:;)). Applying Proposition 5.2, e \ xo +x = \/,(e; \(x A &) +x) = \/,(e; Vx) =
evx. |

Claim 10. x < e.
It follows from the previous Claims. a

PROPOSITION 5.8. Let E be a pseudo-effect algebra, a = \/, a; € E. Then
N@rva)y=0= A/ a).

PROOF. It is straightforward. O

PROPOSITION 5.9. Let E satisfy (o-RIP). If a = \/:’:1 a; € E and ¢ < a; for any i,
then\/;(a;i\ ¢), \/,(c/ a)€ E,anda\c=\(a;\ ¢),c/a=\(c/a).

PROOF. Since ¢ < a; < a,thenag;\ ¢ < a\cforanyi Leta \c < v for
any i. Then there exists an element vy € E such that g, \ ¢ < vy, < v,a\ c.
Hence, (a\c)\ vy < (@\¢)\(a; \ ¢) = a\ a. By Proposition 5.8, we have

(@a\c)\vyy=0,thatis,a\ c=vy <v,sothata\ c=\,(a \ o).
In a similar manner we can prove the second equality. O

THEOREM 5.10. Let a pseudo-effect algebra E satisfy (c-RIP). Lete=\/., e, € E,
where e; € C(E), i > 1. Then e € C(E).

PROOF. We recall that ¢~ = e¢~. Indeed, e~ = ;€ = /\; e . Using Proposi-
tion57, € ne=\V (€ re) <\ (€ne)=0. Letx € Eandxo = V,(x A &).
Claiml. x \(x Ae)=xANe" =e Ax=(xAe)/x.

PROOF. In view of Proposition 5.7, x " Vee E,;and(x " Ve)" =x Ae” € E. On
the other hand, using Claim 2 of the proof of Proposition 5.7, we have

x\(xne)=x \xo=/\(x \(x/\e,))=/\(x/\e,.~)=x/\/\e,.~=x/\e~.

H H H

It is possible to show (x Ae) / x = A, ((x A &) / x). Define p.(x) := x A e and
pe(x) :=x A ™. Then p,(x) + pe(x) = x = po(x) + p.(x). =

Claim2. If y <x,then(x \ yY)Ae=(x Ae)\(y Ae)
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PROOF. We have (x Ay) Ae = \/(x\y)Ahe) = Vilx Ae)\(y Ae)) >
(x A e) \ (¥ A e). Applying Proposition 5.9, we have

(%) Vixre) vy re) = (\/(x Ae) \(y A e))

=(xA)\(yAe)<(x\y)Ae.

On the other hand, (x \ y) A e = \/‘.((x Ae)\(YAeg)) < xAne)\(yAe)
Assume d < (x A e) \(y A ¢) for each i. Then there exists dy € E such that
d,x\y)Ae<dy<(xAe)\(yAe)forany i. Therefore,dy + (y A ¢;)) < x Ae,
yAe <dy/(x A e),sothat

(k%) yAe<dy/(xAe) and dy<(xAne)\(yAe.
Combining (*) and (%x), we have (x \ e) Ae=(x Ae) \(y Ae). O
Claim3. Ifx +ye E,then(x +y)Ae=xAe+yAe

PROOF. DuetoClaim2, x Ae=((x+y)\y)Ae=({(x+y)Ae)\(y Ae). O
Claim4. Ifx +ye E,then(x +y)Aed >xne+yAe.

PROOF. (x +y)ne = N\, ((x+y)ne) = N\ixre+yne) =xAe+yne. O

Claim 5. Ifx <e,y<ée,thenx +y=xVy=y+ux.

PROOF. Duetoe+ ¢ =1=¢ +e,wehavex +y,y+x € E,andx +y > x,y.
Assume z > x,y. There exists zp € E such that z,x +y > zp > x + y. Then
Pe(20) = x, pe(z9) = y, thatis, zg = p.(z0) + Pe(20) = x + y, thatis, x +y =x VvV y.

Wehavex +y =p.(x +y) +pex +y) =pe(x +y) +p.(x+y) =y +x. But
y+x=>x,y,theny+x>xVy=x+4y. O

Claim6. Ifx <e,y <€, then(x +y)ne =xNe+yne.
PROOF. Using Claim 5, we have

X+y=px+y)+psx+y)=p.x)+p.(y)+pex)+pey)
=p.x)+px)+p.(Y)+ps(y)=x+y,

which proves po(x + y) = po(x) + po (). O
Claim7. E=[0,¢e] x [0, €}

https://doi.org/10.1017/51446788700003177 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003177

{19] Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras 139

PROOF. Define f.(x) ;== x Ae,x Aé€),x € E. Thenx =x Ae+x A€ and
if f.(x) = f.(y), then x = y. According to Claim 3 and Claim 6, f, is an injective
homomorphism from E into [0, e] x [0, €7], f.(e) = (e, 0) and due to Claim 5, f, is
surjective. O

Summarizing all claims, we finally have ¢ € C(E). d

THEOREM 5.11. Let a pseudo-effect algebra E be monotone o-complete. Let
e=\/" e € E, where e; € C(E), i > 1. Then e € C(E), and

i=1
x A (Qei) =<7(x Ne), xeE.

i=1 i=l1

PROOF. Since by Theorem 2.3, C(FE) is a Boolean algebra, without loss of gener-
ality we can assume e, < ¢, < ---. Therefore, e € E. In addition x A ¢; € E, which
entails xo := \/,(x A ¢;) is defined in E, and xy < x, e.

Using a slightly modified proof of Proposition 5.7, we can show that if x§ is any
element of E such thatx Ae; < x5 < x, eforany i, then xy = x4. In addition, Claim 1,
Claim 2, Claim 4, Claim 6, and Claim 8 in the proof of Proposition 5.7 are also true,
andx \xo = A\,;(x \(x A e)) =xp / x,hencex \ xo+x9=x =x0+ xo / x.

Claiml. enée =0.

PROOF. Assume z < e, ¢, thenzy = \/,(zA¢;) <z < e, €. Therefore,z A e; < ¢
andzAe <z, <€ < ¢€sothatzg =0. Thenz \ z < e\ z and by Claim 4 of
Proposition 5.7, we have z \ 2o = (z \ zo) A (e \ ) =0, thatis, z = 0.

Define two mappings ¢. : E — [0, e} and g, : E — [0, €] by

g.(x) = \/(x A e;) =: Xo, go(x) :=x\ x¢

forany x € E. Then g.(e) = e and g.(e) = 0. O

Claim 2. Ifx + y € E, then q.(x + y) = q.(x) + q.(y), and q. is monotone.

PROOF. Calculate, g, (x + y) = V(x +y)re) = VxAe+yne) <
g.(x) + g.(y) € E.

Assume (x + y) A ¢; < z for any i, and fix an integer i, > 1. Then x,, ys < z and
xAe+yAne, < zforanyi > iy. Hencex Ae; <z \(yAey), thatis,xg < z \(x Aey)
and y A e;, < xo / z which gives yo <xo / zand xo + yo < z. Od0

Claim3. Ifx +y € E, then q.(x + y) = q.(x) + q-(y), and q. is monotone.
Indeed, g, (x +y) = A{(x+y)A€) = N\(xAei+yne)>xAne+yne €E.
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Claim4. Ifx < e y < ¢, then q,(x) =x and g.(y) = y.

Calculate, g.(x) = x¢ and g-(x) = x \ xg < e, € which by Claim 1 means
x \ xp = 0. Similarly we prove ¢.(y) = y.
Claim$. Ifx <eandy < é,thonx +y=xVy=y+x.

PROOF. Since x < eandy < ¢,wehavex +y,y+x € E,andx +y > x,y.
Assume z > x,y. Then q.(z) > q.(x) = x and g.(z) > g.(y) = y which gives
2=q.(z) +q+(z) > x + y, thatis,x +y =x V y.

We assert that g.(x +y) = y. Indeed, x +y = q.(x + ¥y) + go(x +y) >
Ge(x) + g.(y) + go(x) + o (y) =x + y.

Assumenowx +y =y +d forsomed € E. Thenx = q.(x + y) = q.(y + d)
g(d)andy = q.(x +y) = q.(y +d) > y + g (d) whichimpliesx +y =y +d
y+qd=y+x.Buty+x>x,y,theny+x>xvy=x+y.

aw

Claim6. Ifx +y € E, then q.(x + y) = qo(x) + g« (¥).
Calculate and use Claim 5,

x+y=qx+y)+q.x+y)>q.(x)+q.(y)+ q.(x) + g.(y)
=g, (x)+g.(x) + q.(y) + q.(¥) =x +y.

Claim7. Iff.: E — [0,¢e] x [0, €] is defined by f.(x) = (q.(x), g.(x)), x € E,
then f, is an isomorphism and e € C(E).

Indeed, f.(e) = (e, 0), and if f.(x) = (x, x3), then x = x5 + x;, and by Claim 2
and Claim 6, f, is an injective homomorphism. Assume x < eand y < ¢, then
x +ye€ Eandf.(x +y) = (x,y), which proves that e is a central element of E.

Therefore, x A e € E, so that x A e = xy, and in addition, ¢, = p., where p, is
defined by (4). O

6. The Cantor-Bernstein theorem for pseudo-effect algebras

In the present section, we apply the notion of central elements to show that an
analogue of the Cantor-Bemstein theorem for pseudo-effect algebras can be obtained.
We will study the case when the centre of a pseudo-effect algebra E is a Boolean
o-subalgebra of E with the central decomposition property.

We say that a finite or countable sequence {e;} of central elements of a pseudo-
effect algebra E is a central decomposition of unity if e; A ¢; = 0 for any i # j,
and \/;z; = 1. E is said to satisfy the central decomposition property if (i) any
sequence of central elements {f;} has a supremum in E and belongs to C(E) and
XA (\/,.f,») = \/,.(x A fy) forany x € E, and (ii) if {¢;} is a central decomposition
of unity and x; < e¢; for any i, then x = \/,x; € E. That is if {¢;}; is a sequence of
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central elements of E, thene = \/, ¢; € E and e € C(E). For example, any monotone
o-complete pseudo-effect algebra has such a property, see Proposition 6.1 below and
Theorem 5.11, and every linearly ordered pseudo-effect algebra has the centrum
C(E) = {0, 1} which is a Boolean o -algebra but E is not necessarily monotone o-
complete and it has this property as well as any Cartesian product of finitely many
linearly ordered pseudo-effect algebras.

PROPOSITION 6.1. (i) Let e, ... e, be a finite central decomposition of unity
in a pseudo-effect algebra E. The mapping ¢ : E — []_,[0, &] given by ¢(x) =
(x A e);, x € X, is an isomorphism.

(ii) Let {e;}; be a countable central decomposition of unity in a monotone o -
complete pseudo-effect algebra E. The mapping ¢ : E — [],[0, e;] given by ¢ (x) =
(xAe;)i, x € E, isanisomorphism, and E satisfies the central decomposition property.

PROOF. (i) It follows from Proposition 2.7.

(it) It is clear the mapping ¢ is an injective homomorphism. Assume now x; < ¢;
for any i. By (ii) of Proposition 2.7, x" = x; + --- 4+ x, € E forany n > 1. Then
x =\, ,x" = \V,x; € E and ¢(x) = (x A ¢); = (x;); which proves that ¢ is
surjective. The central decomposition property follows now from Theorem 5.11. O

PROPOSITION 6.2. Let E and F be two pseudo-effect algebras and let f € C(F).
Assume that h is an isomorphism from E onto [0, f ). Ife € C(E), then h(e) € C(F).

PROOF. In view of Proposition 2.8, it is sufficient to show that A(e) € C([0, f 1).
Put fo := h(e). Then f,' = f,’. Foranyy € [0,f], Yy A fo.Yy Afo' € [0,f];
indeed, we have h(x) = y forauniquex € Eandx Ae € E,x A e™ € E, so that
h(xAe)=h(x)Ah(e) =enfoandh(x Ae™) =h(x)Ah(e™) =y /\f{’. Therefore
the mapping ¢ : [0, ] — [0, fol x [0, f, '] defined by ¢ (¥) = (y A fo, y A fo /),
y € [0, f ], is an isomorphism in question proving f, € C([0, f ]). O

THEOREM 6.3 (Cantor-Bernstein). Let E and F be pseudo-effect algebras satisfy-
ing the central decomposition property. Let e € C(E) and f € C(F) and let there
are two isomorphisms of pseudo-effect algebras o : E — [0, fland 8 : F — [0, e].
Then E and F are isomorphic pseudo-effect algebras.

PROOF. Without loss of generality we can assume that0 < e < land0 < f < 1.
Define recursively two sequences {e,}52, and {f,}32, by

e =1, €py1 = ﬂ(fn)v
fo=1, Srne1 = a(en).

https://doi.org/10.1017/51446788700003177 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003177

142 Anatolij Dvurecenskij [22]

Due to Proposition 6.2, ¢, € C(E) and f, € C(F) for each n > 0. In addition,
e >e >e >---inEand fo > f, > f, > --- in F. By the assumptions, the
elements e, = /\i’f=1 e,and fo, = /\:’;0 [ are defined in E and F, respectively, and,
in addition, e,, € C(E) and f., € C(F). For all n we have e,,; = (8 o a)(e,) and
frni2 = (@ o B)(fn). The mapping B o « is an isomorphism of E onto [0, e,], and it
preserves countable infima and suprema. Therefore, (B oa)(ex) = (Boa)(/\, €,) =
A, (B oa)e,) = )\, ens2. Analogously, foo = (&t 0 B)(f), and e, = 0 if and only
if foo = 0 while a(ex) = foo and B(fo) = €. It is evident that the sequences
(ex,€ \ €1, €\ €,...)and (feo, fo \ f1,f1 \ f2,...) are decompositions of unity
in E and F, respectively.

Moreover, if x € E and y € F, then [0, x] is isomorphic with [0, ¢(x)] and [0, y]
is isomorphic with [0, B(y)]. The restrictions of « and f~! induce isomorphisms

[0’ eoo] = [0’ foo], [01 €m-2 \ e2n—l] = [O’ f2n—l \on]’
[0, e2,-1 \ €] = [0, fon-2 \ f2n-1]-

By assumptions,

x e ¢}

E=[0,ex] x [ JI0,en\ €a1] and F Z [0, foc] X [ 1O, fu \ Frsal,

n=0 n=0
consequently E = F, a
REMARK 6.4. (1) Theorem 6.3 generalizes the result of {4] for o-complete MV-
algebras.

(2) Theorem 6.3 generalizes the result of Jenca [18] for monotone o-complete
(commutative) effect algebras.
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