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Sufficient Fritz John

optimality conditions

B.D. Craven

The sufficient optimality conditions, of Fritz John type, given

by Gulati for finite-dimensional nonlinear programming problems

involving polyhedral cones, are extended to problems with

arbitrary cones and spaces of arbitrary dimension, whether real

or complex. Convexity restrictions on the function giving the

equality constraint can be avoided by applying a modified notion

of convexity to the other functions in the problem. This approach

regards the problem as optimizing on a differentiable manifold,

and transforms the problem to a locally equivalent one where the

optimization is on a linear subspace.

1. Introducti on

Gulati [9] has given sufficient optimality conditions of Fritz John

type for differentiable nonlinear programming problems in finite-

dimensional complex spaces. Both equality constraints, and inequality

constraints involving polyhedral cones, were included. Gulati obtained

sufficient conditions for optimality by adding appropriate convexity

hypotheses to the Fritz John necessary conditions for optimality, given by

Craven and Mond [7, 8].

Gulati's sufficient conditions are now extended to programming

problems involving arbitrary cones, not necessarily polyhedral, and spaces

of any dimension. These results, and Gulati's, place convexity

requirements on the function specifying the equality constraint, and these

may not always be fulfilled in a given problem. An alternative approach is
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therefore also given, in which there are no convexity restrictions on the

function specifying the equality constraint, tut a modified notion of

convexity is applied to the other functions in the problem. This approach

regards the problem as one of optimization on a differentiable manifold,

and transforms the problem to a locally equivalent one in which the

optimization is on a linear subspace. The quantities involved can be

calculated explicitly, if the functions have second (Frechet) derivatives.

2 . P r e l i m i n a r i e s

Let X, Y, Z, W be rea l or complex Banach spaces; U an open subset

of X ; 5 < = y , T c Z , and N c W closed convex cones. Let the maps

/ : U •*• R (or / : £ / - > C in the complex case), g : U -*- Y , and

h : U •* Z possess l inear Gateaux derivatives (which are then continuous

l inea r maps f'{x) : X -»• R , and so on). Define a continuous affine map

k : X ->• W by (» I E X)k(x) = d + Dx , where d € W and D : X -» W i s a

continuous l inear map. The dual cone of S i s

S* = {u € Y' : (V s 6 S) re M(S) € R+} ,

where R+ = [0, °°) , and Y' is the topological dual space of Y . The

transpose (or adjoint) of the continuous l inear map h' (x ) : X -*• Z i s the

rn

continuous l inear map h' [x ) : Z' -»• X' , defined by

z'{h'[xo)x) = [h'ixfz'](«)

for all x € X , z' € Z' . The topological interior of 5 is denoted

int S ; note that (int S) + 5 c int S , provided that int 5 * 0 .

The map / : U -»• R is pseudoconvex at a d U if

[* € y and /(*) < /(a)] ~ [/l(a)(x^z) < 0] .

The map g : U •*• Y i s S-convex {strictly S-convex) in U at a (. U if,

for each x € U ,

a) € 5 (€ int S) .

Use will be made of the following generalization of Motzkin's

alternative theorem, proved in [4] for locally convex spaces.

THEOREM 0. Let J, K, L be real or complex Banaoh spaces, H <=• K
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and Q c L closed convex cones, with int Q nonempty; and A : J -*• K

and B : J •*• L continuous linear maps. Assume either that the cone
rp

A(H*) is weak * closed in J' , or that A(J) = K . Then exactly one

of the two following linear systems has a solution:

(I) -Ax Z H , - & f int g ;

(II) (V x € J) re[w(Ax)+u(Bx)] = 0 , W € H* , 0 + u € Q* .

Define w*A (. K' by (V x € J) (w*A)(x) = re w(Ax) , and similarly

for u*B . Then (II) may be written eguivalently as:

W*A + u*B = 0 , W € H* , 0 * u € Q* .

If X = C s and s denotes the complex conjugate of z € C , set

M = {{z 2 ) € X x X : z = z~] . Although U is not a complex vector

space, it is shown in [4] that Theorem 0 holds with J = M , if the maps A

and B are linear (with respect to R ). If, instead, X is any complex

Banach space, then with a suitable definition of conjugate (see [4]),

Theorem 0 continues to hold, assuming that the maps A and B are

continuous, and linear with respect to R .

Consider the minimization problem:

(P) minimize {re f(x) : -g(x) € S, h(x) = 0, -k(x) € N} ,
xdU

where U, f, 9, h, k, S, T, N are as described in the first paragraph.

Associated to (P) is the linear system:

(F) r*f'(a) + v*g'(a) + w*h'(a) + m*k'(a) = 0 ;

re vg{a) = 0 ;

re mk{a) = 0 ; •

r € R+ , v £ S* , w <L T* , m 6 N* ;

where a 6 IS . Note that, if (P) attains a local minimum at x = a £ U ,

and if certain other conditions are fulfilled, then (F) gives the Fritz

John necessary condition for the minimum [6], in the case where T = {0} .

In the complex case, if X = M , then (P) and (F) become (see [7],

[5])
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(PM) minimize {re f(z, z) : -g(z, z) € S, h(z, ~z) = 0 , -VXz, ~z) d N] ,
z<iM

where Y, Z, W are complex Banach spaces, and k is affine with respect

to R ; and

(FM) rif2
+7^ + ^ 2

+ u ^ > + $hz+wT$ + R= 3
+ m ^l = 0 ;

re vg(b, b) = 0 ;

re mk(b, b) = 0 ;

r 6 R+ , v € S* , w 6 T* , m Z N* ;

in which the partial derivatives / , and so on, are evaluated at

(z, z) = (b, b) € M . The notational conventions of [7] are followed here.

Note that, if the dimensions are finite, and the constraint -k(z, z) € N

is omitted, then (FM) agrees with equations (l) and (2) of Gulati [9], in

different notation.

3. Sufficient F. John conditions

THEOREM 1 . At a € U , let re f be pseudoaonvex, let g be

strictly S-aonvex, let h be strictly T-eonvex, let int S •£ 0 , and let

int T t 0 . Assume either that the map C = [k'(a) k(a)] is surjeotive,

or that the cone C (N*) is weak * closed in X' x C . Then, if (F) has

a solution r>, v, w, m with r, v, w not all zero, it follows that (P)

attains a local minimum at x = a .

REMARK. This resu l t applies both to rea l spaces, and to complex

spaces. For complex spaces, a l ternat ive expressions for the derivatives

involved wil l be given in Theorem 2.

Proof. If x = a i s not a minimum for (P), then there is a solution

x = x € U to the system

re[f(x)-f(a)] < 0 , -g{x) € 5 , -h(x) = 0 , -k(x) i N .

Set p = x - a . Since re / is pseudoconvex at a ,

-re[/ '(a)p] € int R+ . Since g is strictly 5-convex at a ,

~[g'(a)p+g(a)] = [g{xQ)-g(a)-g'(a)p~] + l-g[xQ)] € ( int S) + S c Int S .

A similar calculat ion shows that ~[h'(a)p+h{a) ] € int T , since h i s
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strictly T-convex. Since k is affine,

-[k'(a)p+k(a)} = -k{xQ) € if .

These results combine to show that there is a solution C, to the system

( + ) -AL, (. N , -Bt, € int V ,

where

A = [k'(a) 0 k{a)} , B =

V is the convex cone R x S x N , and

'f'(a) 0 0

g'(a) g{a) 0

h'{a) h(a) 0

R x R .

From the properties assumed for C , either A is surjective, or the
Tcone A (N*) i s weak * closed. Therefore Theorem 0 applies to the

system (+), showing that there is no solution m t N* , [r v w] € F*\{o}

to the system

m*A + [r v w] * B = 0 .

But this system is exactly (F), which by hypothesis has a solution with

r, v, W not all zero.

THEOREM 2. At ib, b) € M , let f : M -»• 1 have pseudoconvex real

part, let g : M •+ I be strictly S-convex, let h : M •+ Z be strictly

T-aonvex, let int S # 0 , and let int T # 0 . 4ssime either that the map

k

K =
S 3

z z
, b)

is surjeative (onto W ), or that the cone K ( N * ) is weak * closed.

Then, if (FM) has a solution r, v, w, m with r, v, w not all zero, it

follows that (PM) attains a local minimum at (z, s) = (b, b) .

REMARK. The cone ifiN*) is to be weak * closed in M' x C , where

M' is the space of continuous functionals on M , linear with respect to

R .
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Proof. The result follows from Theorem 1, provided that C can be

identified with K . And this follows from the relations, given in [5],

pages 619-622, relating derivatives with respect to z and z to

derivatives with respect to real and imaginary components. Set

k(z, 3) = k(x, y) , where z = x + iy , and k = k + ik

If (PM) is expressed as an equivalent problem in real spaces, then m*C

becomes (if m = m + im J

re \m
r r %-\[m m J

k1 kz

x y = h\m m]

k +k— . k
z z

x y

after calculation. The factor % does not affect the hypothesis of the

theorem.

REMARKS. The f i r s t component of m*C equals re\mk +mk—\ which is

the rea l part of the corresponding term in (FM).

The cones need not be polyhedral, as was assumed by Gulati. However,

the hypothesis tha t C (N*) , or 1C(N*) , i s closed holds automatically in

case N i s polyhedral. The resul ts apply equally to f in i t e and to

in f in i t e dimensional spaces. In Theorems 1 and 2, the constraint

-g{x) € S cannot include an affine constraint , since g must be s t r i c t l y

S-convex. However, affine constraints may be included in -k(x) ? N ,

where no such convex hypothesis is required.

THEOREM 3. The conclusion of Theorem 1 remains valid, omitting the

hypothesis tliat int T # 0 , and requiring that h is T-convex (rather

than strictly T-convex), provided that (F) has a solution with r and v

not both zero, and the hypothesis on C is replaced by the hypotheses that

either

Ik'(a) Ha)'
E =

Ih'(a-) 0 J

is surjeotive, or the cone K (N* x T*) is weak * closed.

Proof. In the proof of Theorem 1, replace A and B respectively "by
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'k'(a) 0 k{a)

h'{a) 0

and

'f'(a)

g'(a) g(a) 0_

and the corresponding cones by N x T respectively R+ x S .

REMARKS. In Theorem 3, T could be {0} ; but then convexity would

require h to be affine, and so includable in k . In the next section, a

result is given, for real spaces, which avoids any convexity hypothesis for

the equality constraint.

4 . N o n c o n v e x e q u a l i t y c o n s t r a i n t s

In t h i s section, no convexity hypothesis i s made for h , and the

spaces considered are r e a l . Assume now that h : U •* Z i s continuously

Frechet-differentiable, h{a) = 0 , and that C = h'(a) i s such that

C(X) = Z , and there i s a continuous projection q of X onto the kernel

C~ (o) . I t then follows [2, 3] that there i s a homeomorphism cp of a

neighbourhood Q of zero in the l inear subspace C (o) onto

U. n {x : h{x) = 0} , where U c U i s a neighbourhood of a £ X ; cp and

cp are Frechet-differentiable at 0 and a respectively; and

< P ' ( 0 ) ( O = X, f X for each X, € ^ ( O ) .

Given such a cp , the res t r i c t ions to Q of the vector space

operations on C~ (0) may be transferred to cp(S) = Un {x : h{x) = 0}

by defining [3 ] , for a l l x, y € <f>(Q) and scalars a ,

x © y = <p(cp~ ai+cp" y) and a © x = cp(acp~ x) .

The map g : U -> 1" i s then called h, S-convex ( s t r i c t l y h, S-convex) on

<p(<3) i f for a l l x, y € <p{Q) and a l l T € [0, l ] ,

(l-T)^(a;) + Tg(y) - ^ ( ( 1 - T ) © a ; © T • y] € S ( € in t S) .

Thus g i s h, S-convex ( s t r i c t l y h, S-convex) i f f <? O cp is S-convex

( s t r i c t l y S-convex) at each point of Q . If ^ and ft are twice

continuously Frechet-differentiable, then g o <p i s S-convex ( s t r i c t l y

S-convex) at 0 in a neighbourhood of 0 i f

0 * W € Q =» (gf o cp)"(0)[w]2 € S\{0) (€ int S) .

https://doi.org/10.1017/S0004972700024655 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024655


4 18 B.D. Craven

I t i s shown in [3] t h a t , under the same hypotheses,

ig o ( p ) » ( 0 ) = g"ia) - g'ia) o [h'ia) o ( l ^ ) ] " 1 o h"ia) .

Under these hypotheses, the problem (P), with the constraint

-kix) € N omitted, and with a; r es t r i c ted to a suitable neighbourhood of

x = a , is equivalent t o :

(EP) minimize { ( / o <p)(O : -ig o cp)(e) € S} .

THEOREM 4. For problem (P) in real spaces, at a (. U , let f be

pseudoconvex, let h satisfy the above hypotheses (so that <p exists),

let g be strictly h, S-convex, and let int S + 0 . (The constraint

-k(x) € N is omitted.) Then, if (F) has a solution r , v, w , not all

zero, it follows that (P) attains a local minimum at x = a .

P r o o f . From ( F ) ,

ty E r ( f o < p ) ' ( 0 ) + v ( g o < p ) ' ( 0 ) = [ r f ( a ) + v g ' ( a ) ] o ( p ' ( 0 )

= -wh'(a) o (p'(0) .

Since cp'(O) i s the ident i ty map of fe'(a)~1(O) onto h'ia^io) c X , i t

follows that the r e s t r i c t i o n of \p to domain 7z'(a) (o) i s zero.

Since g i s s t r i c t l y h, S-convex, g o <p i s s t r i c t l y 5-convex.

Since / i s pseudoconvex, and cp'(O) i s the ident i ty ,

[a; € UQ, h{x) = 0, f(x) < fia)] =» [ / ' (a)(x-a) < o' and x^x = ?-w(lkll)]

for some ? E « c ^ ' (a )~ 1 (0) , where o(||dl)/lkll * 0 as ||x-a|| -> 0 .

Hence

( / o <p)(c) = / ' ( a ) o cp'(o)U) < 0

for suff icient ly small |k|| ; so f ° <P i s pseudoconvex, in a

neighbourhood of 0 .

The hypotheses of Theorem 1 are therefore sat isf ied for the problem

(EP), for Z, in a neighbourhood of 0 . Consequently (EP), and therefore

(P), a t t a ins a local minimum (at 0 respectively a ) .

REMARKS. Sufficient conditions for g to be h, 5-convex are given

above, in terms of f i r s t and second derivatives of g and h . There is

no need to ac tual ly calculate ip .

https://doi.org/10.1017/S0004972700024655 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024655


F r i t z John c o n d i t i o n s 419

The hypotheses on h , stated at the beginning of th i s section, are

sufficient but not necessary. In order to construct <p , i t is sufficient

tha t , to each X, satisfying h'{a)c, = 0 , there i s a solution

x = a + \C, + o(X) to h(x) = 0 , valid for a l l sufficiently small posit ive

X , where

(V e > 0) (3 6 > 0) [|k|| S I and 0 < X < 6] => ||o(A)|| < eX .
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