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Sufficient Fritz John

optimality conditions

B.D. Craven

The sufficient optimality conditions, of Fritz John type, given
by Gulati for finite-dimensional nonlinear programming problems
involving polyhedral cones, are extended to problems with
arbitrary cones and spaces of arbitrary dimension, whether real

or complex. Convexity restrictions on the function giving the
equality constraint can be avoided by applying a modified notion
of convexity to the other functions in the problem. This approach
regards the problem as optimizing on a differentiable manifold,
and transforms the problem to a locally equivalent one where the

optimization is on a linear subspace.

1. Introduction

Gulati [9] has given sufficient optimality conditions of Fritz John
type for differentiable nonlinear programming problems in finite-
dimensional complex spaces. Both equality constraints, and inequality
constraints involving polyhedral cones, were included. Gulati obtained
sufficient conditions for optimality by adding appropriate convexity
hypotheses to the Fritz John necessary conditions for optimality, given by
Craven and Mond [7, §].

Gulati's sufficient conditions are now extended to programming
problems involving arbitrary cones, not necessarily polyhedral, and spaces
of any dimension. These results, and Gulati's, place convexity
requirements on the function specifying the equality constraint, and these

may not always be fulfilled in a given problem. An alternative approach is
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therefore also given, in which there are no convexity restrictions on the
function specifying the equality constraint, but a modified notion of
convexity is applied to the other functions in the problem. This approach
regards the problem as one of optimization on a differentiable manifold,
and transforms the problem to a locally equivalent one in which the
optimization is on a linear subspace. The quantities involved can be

calculated explicitly, if the functions have second (Fréchet) derivatives.

2. Preliminaries

Let X, Y, Z, W be real or complex Banach spaces; U an open subset
of X3 Sc¥Y, T<Z ,and N < W closed convex cones. Let the maps
f:U>»R (or f:U~>C in the complex case), g : U+ Y , and
h : U= 17 possess linear GAteaux derivatives (wﬁich are then continuous
linear maps f"(x) : X >R, and so on) . Define a continuous affine map
k:X>¥%W vy (Vx €X)k(x) =d+Dx , where d €W and D : X > W is a

continuous linear map. The dual cone of S 1is
s*={u €y : (VY5 €5) reuls) €R},

where R+ = [0, ©») , and Y' is the topological dual space of Y . The

transpose (or adjoint) of the continuous linear map #' (:co] : X+ 272 1is the

continmuous linear map h'[.'x: ]T : 2"+ X', defined by

0
r 1 ! T ]
2 (1" (z,)a) = [h (2,) 7 ](x)
for all x € X , z' € Z' . The topological interior of S 1is denoted
int § ; note that (int S) + §C int § , provided that int S # @ .
The map f : U > R is pseudoconvex at a € U if
[x €U and f(x) < fla)] = [f'(a)(xz—a) < 0] .

The map g : U+ Y is S-convex (strictly S-convex) in U at a € U 1if,

for each x € U ,
glx) - gla) - g'(a)(xz-a) € S (€ int ) .

Use will be made of the following generalization of Motzkin's

alternative theorem, proved in [4] for locally convex spaces.

THEOREM 0. Let J, X, L be real or complex Banach spaces, H C K
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and @ © L closed convex cones, with int @ nonempty; and A : J > K
and B : J > L continuous linear maps. Assume either that the cone
AT(H*) is weak * closed in J' , or that A(J) = K . Then exactly one
of the two following linear systems has a solution:

(I) -Ax € H, -Bxr € int @ ;
(11) (Vx € J) refw(dx)+u(Bx)] =0, w €H*, 0# u €@+,

Define w*4 € XK' vy (V x €J) (w*4)(x) = re w(dx) , and similarly

for u*B . Then (II) may be written equivalently as:

wh + u*B = 0 w € HY | 0# u €Q*

El

r x =C" , and 2 denotes the complex conjugate of 2z € c”* , set

M= {(zl, 32) €EXxX:z,= EZ} . Although M is not a complex vector

space, it is shown in [4] that Theorem O holds with ¢ =M , if the maps 4
and B are linear (with respect to R ). 1If, instead, X 1is any complex
Banach space, then with a suitable definition of conjugate (see [4])},
Theorem O continues to hold, assuming that the maps 4 and B are

continuous, and linear with respect to R .
Consider the minimization problem:

(P) pinimize {re f(x) : —g(x) €8, h(x) = 0, -k(z) € N} ,
x€el

where U, f, g, b, k, S, T, N are as described in the first paragraph.

Associated to (P) is the linear system:
(F) rif'(a) + vig'(a) + wih'(a) + m*k'(a) = 0 ;

re vgla) = 0 ;

re mk{a) 0 ;
r € R+ , vV ESY, we€TH, me€Nt,

where a € U . Note that, if (P) attains a local minimum at x =g € U »
and if certain other conditions are fulfilled, then (F) gives the Fritz

John necessary condition for the minimum [6], in the case where 7T = {0} .

In the complex case, if X =M , then (P) and (F) become (see [7],
[51)

https://doi.org/10.1017/50004972700024655 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024655

414 B.D. Craven
(PM) minimize {re f(z, z) : -g(z, 3) €8, hiz, z) = 0, -k(z, z) € N} ,
€M

where Y, Z, W are complex Banach spaces, and k is affine with respect

to R ; and

(FM) r(f;@ + Cz?gzw@ + [5h3+w'}72—) + (Tn'kz+m@ =0,
re vg{b, b) = 0 ;
re mk(b, b) = 0 ;
re€R, , veS*, wert, ment;

in which the partial derivatives fz , and so on, are evaluated at

(z, z) = (b, B) € M . The notational conventions of [7] are followed here.
Note that, if the dimensions are finite, and the constraint -k(z, z) € N
is omitted, then (FM) agrees with equations (1) and (2) of Gulati [9], in

different notation.

3. Sufficient F. John conditions

THEOREM 1. 4t a € U, let re f be pseudoconvex, let g be
strictly S-convex, let h be strictly T-convex, let int S # @ , and let
int T # @ . Assume either that the map C = [k'(a) k(a)]l ie surjective,

or that the cone CT(N*) is weak * closed in X' x C . Then, if (F) has
a solution v, v, w, m with r, v, w not all zero, it follows that (P)

attains a loecal minimum at x = a .

REMARK. This result applies both to real spaces, and to complex
spaces. FoOr complex spaces, alternative expressions for the derivatives

involved will be given in Theorem 2.
Proof. If x =a is not a minimum for (P), then there is a solution
x = xo €U to the system
re[f(z)-fla)] <0, -glz) €5, -h(x) =0, -k(z) €N
Set p = xo - a . Since re f 1is pseudoconvex at a ,
—re[f'(a)p] € int R+ . Since g is strictly S-convex at a ,

-[g'(a)p+g(a)] = [g(xo)—g(a)-g'(a)p] + [-g(xo)] € (int §) + SC int S .

A similar calculation shows that -[h'(a)p+h(a)] € int T , since h is
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strictly T-convex. Since k is affine,

-[k'(a)p+k(a)] = —k(xo) €N .

These results combine to show that there is a solution ¢ to the system
(+) ~Ay € N, -By € int V ,
where

fla) o o0
A=1{k"(a) 0 k(a)] , B =\g'la) gla)
h'(a) kla) 0

(=4
-

V is the convex cone R+ X S x N, and

z = € x xR xR,

M

From the properties assumed for C , either 4 1is surjective, or the

cone AT(N*) is weak * closed. Therefore Theorem O applies to the
system (+), showing that there is no solution m € N* , [r v w] € VA\{0}

to the system
m*4 + {r v w] *B=0.

But this system is exactly (F), which by hypothesis has a solution with

r, v, w not all zero.

THEOREM 2. 4t (b, b) €M, let f : M~> Y have pseudoconvex real
part, let g : M >~ Y be strictly S-convex, let h : M+ Z be strictly
T-convex, let int S # @ , and let int T # @ . Assume either that the map

k_+k— k(b, b)
z 2

K= _
k(b, b)

%k +
2

w7

is surjective (onto W ), or that the cone KT(N*) i8 weak * closed.
Then, if (FM) has a solution r, v, w, m with r, v, w not all zero, it

follows that (PM) attains a local minimum at (z, z) = (b, b)

REMARK. The cone KT(N*) is to be weak * closed in M' x C , where
M' 1is the space of continuous functionals on M , linear with respect to

R .
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Proof. The result follows from Theorem 1, provided that C can be
identified with X . And this follows from the relations, given in [5],
pages 619-622, relating derivatives with respect to 2z and 2z to

derivatives with respect to real and imaginary components. Set

k(z, z) = k(xz, y) , where 3z =2 + 7y , and k =k o+ kb .

If (PM) is expressed as an equivalent problem in real spaces, then m*(C

becomes (if m = 4 im" )
KR LK k_+k— . Kk
. |Tx Ty _ 2 2 .
reﬁf mﬂ . = %[m m]| .
Lot kz+fg Tk
x Y '

after calculation. The factor % does not affect the hypothesis of the

theorenm.

REMARKS. The first component of m*C equals reE;kz+mE§1 , Which is
the real part of the corresponding term in (FM).

The cones need not be polyhedral, as was assumed by Gulati. However,

the hypothesis that CT(N*) , or KT(N*) , is closed holds automatically in
case N is polyhedral. The results apply equally to finite and to
infinite dimensional spaces. In Theorems 1l and 2, the constraint

-g{x) € S cannot include an affine constraint, since g mst be strictly
S—convex. However, affine constraints may be included in -k{zx) € ¥ ,

where no such convex hypothesis is required.

THEOREM 3. The conclusion of Theorem 1 remains valid, omitting the
hypothesis that int T # @ , and requiring that h is T-convex (rather
than strictly T-convex), provided that (F) has a solution with r and v
not both zero, and the hypothesis on C 1is replaced by the hypotheses that
either

k'(a) k(a)
kh'(a) 0

18 surjective, or the cone ET(N* x T*) 1ig weak * closed.

Proof. 1In the proof of Theorem 1, replace A and B respectively by

https://doi.org/10.1017/50004972700024655 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024655

Fritz John conditions 417

k'(a) 0 k(a) f'(a) 0 0
and ]

h'(a) 0 0 "(a) gla) o
and the corresponding cones by N X I respectively R+ x S .

REMARKS. 1In Theorem 3, T could be {0} ; but then convexity would
require % to be affine, and so includable in k . In the next section, a
result is given, for real spaces, which avoids any convexity hypothesis for

the equality constraint.

4. Nonconvex equality constraints

In this section, no convexity hypothesis is made for % , and the
spaces considered are real. Assume now that % : U > Z 1is continuously
Fréchet-differentiable, #h{a) = 0 , and that ¢ = k'(a) 1is such that
C(X) = Z , and there is a continuous projection q of X onto the kernel

-1

C 7(0) . It then follows [2, 3] that there is a homeomorphism ¢ of a

neighbourhcod § of zero in the linear subspace C‘l(o) onto

UO n {x : h(x) = 0} , where UO C U is a neighbourhood of a € X ; ¢ and

w‘l are Fréchet-differentiable at 0 and a respectively; and
0'(0)(L) = £ € X for each [ € CT-(0)

Given such a ¢ , the restrictions to & of the vector space
operations on C-l(O) may be transferred to o(@) = UO n {x : wlz) = 0}
by defining [3], for all =, y € ¢(Q) and scalars o ,

@y = oo xroly) end 0@z = olw )

The map ¢ : U > Y is then called h, S-convex (strictly #, S-convex) on
$(Q) if for all =z, y € ¢(Q) and all T € [0, 1],

(1-T)g(z) + t9(y) - g((1-1) @z @t + y) €5 (€ int S) .

Thus g is h, S-convex (strictly #h, S-convex) iff g O ¢ is S-convex
(strictly S-convex) at each point of & . If g and h are twice
continuously Fréchet-differentiable, then g © ¢ is S-convex (strictly

S-convex) at 0O in a neighbourhood of 0 if

0Fw€Q=(g0e)0)wl® e s\o} (¢ int 5)
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It is shown in [3] that, under the same hypotheses,

(g ©9)"(0) = g"(a) - g'(a) 0 [A'(a) o (1-q)]™" 0 #"(a) .

Under these hypotheses, the problem (P), with the constraint
-k(x) €V omitted, and with & restricted to a suitable neighbourhood of
x =a , is equivalent to:

(EP) minimize {(f 0 @)(T) : -(g 0 o)(g) € S} .
3%}

THEOREM 4. For problem (P) in real spaces, at a €U , let f be
pseudoconvex, let h satisfy the above hypotheses (so that ¢ exists),
let g be strictly h, S-convex, and let int S # @ . (The constraint
-k(xz) € N is omitted.) Then, if (F) has a solution r, v, w , not all

zero, it follows that (P) attains a local minimum at x = a .
Proof. From (F),

v =r(foe)(0)+vigoe)(o)=[rf'la)+tvg'(a)] 0 ¢'(0)
wh'(a) o ¢'(0)

Since ¢'(0) is the identity map of h'(a)_l(O) onto h'(a)_l(o) <X, it
follows that the restriction of % to domain h'(a)_l(O) is zero.

Since g is strictly h, S-convex, g © ¢ is strictly S-convex.

Since f is pseudoconvex, and ¢'(0) is the identity,

[z €Uy, n(z) =0, flx) < fla)] = [f'(a)(z-a) < 0 and z-a = g+o(lizl)]

for some ¢ € @< h'(a)(0) , wnere o(llz)/lzl » 0 as laall > 0 .

Hence
(foo)(t) = f'{a) o @'(0) L) <0

for sufficiently small |lzll 3 so f © ¢ is pseudoconvex, in a

neighbourhood of 0O .

The hypotheses of Theorem 1 are therefore satisfied for the problem
(EP), for r 1in a neighbourhoocd of 0 . Consequently (EP), and therefore

(P), attains a local minimum (at O respectively a ).

REMARKS., sufficient conditions for g to be h, S-convex are given
above, in terms of first and second derivatives of g and h . There is

no need to actually calculate ¢ .
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The hypotheses on h , stated at the beginning of this section, are
sufficient but not necessary. In order to construct ¢ , it is sufficient
that, to each ¢ satisfying #4'(a)z = 0 , there is a solution
x=a+ A + o(A) to h{x) = 0, valid for all sufficiently small positive

A , where

(Ve>0) @A6>0) (lzl =1 and 0 < A < 8] = {lo(A)] < eX .
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