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1. Introduction

In Serre’s work [11] on applications of his groundbreaking theory [10] on connections
between CM (Complex Multiplication) newforms and lacunarity, he characterizes the
vanishingness of the coefficients of the infinite products:

q
∞∏

n=1

(
1− q12n

)2
=

∞∑
n=1

A (n) qn, q
∞∏

n=1

(
1− q6n

)4
=

∞∑
n=1

B (n) qn, q
∞∏

n=1

(
1− q4n

)6
=

∞∑
n=1

C (n) qn

and shows the following:
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On the vanishing of the coefficients of CM eta quotients 1203

(1) A (n) = 0 if and only if n 6≡ 1 (mod 12), or n ≡ 1 (mod 12) has a prime factor
p 6≡ 1 (mod 12) with odd exponent.

(2) B (n) = 0 if and only if n 6≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor p ≡ 2
(mod 3) with odd exponent.

(3) C (n) = 0 if and only if n 6≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3
(mod 4) with odd exponent.

This characterization of the vanishingness also justifies that the series expansions
for the products are lacunary. Setting q = e2πiz for Im (z) > 0 and writing η (z) =

q
1
24

∏∞
n=1 (1− qn) for the Dedekind eta function, it follows that these infinite products

are all actually eta quotients, namely, η(12z)2, η (6z)
4
and η (4z)

6
, which as functions in

z are CM newforms by Q[i] or Q[
√
−3]. We call an eta quotient that is a CM newform a

CM eta quotient.
Martin [8] proved that there are only finitely many eta quotients that are newforms,

and thus, there are only a finite number of CM eta quotients. Martin’s work allows
us to deduce that there are exactly 28 CM eta quotients. This motivates the present
work describing necessary and sufficient conditions under which the Fourier coefficients
of the CM eta quotients vanish. The number of CM eta quotients under consideration
may be reduced by taking into account twists. For a series f (q) =

∑∞
n=1 a (n) q

n, the
coefficients of the series can be twisted by an arithmetic function χ via (f ⊗ χ) (q) :=∑∞

n=1 χ (n) a (n) qn. The twist f ⊗ χ has the same support as f assuming that χ (n) = 0
only if a (n) = 0. In light of this, one can reduce the number of CM eta quotients in
Martin’s list inequivalent up to twists. These CM eta quotients are tabulated in Table 1.
An index is assigned to each eta quotient in Table 1 for further reference.
For the reader’s reference, the remaining 10 CM eta quotients and their relations with

those in Table 1 are listed as follows:

η (4z)
9
η (12z)

9

η (2z)
3
η (6z)

3
η (8z)

3
η (24z)

3 = η (2z)
3
η (6z)

3 ⊗
(
−4

n

)
,

η (8z)
18

η (4z)
6
η (16z)

6 = η (4z)
6 ⊗

(
−8

n

)
,

η (8z)
8

η (4z)
2
η (16z)

2 = η (4z)
2
η (8z)

2 ⊗
(
−8

n

)
,

η (12z)
12

η (6z)
4
η (24z)

4 = η (6z)
4 ⊗

(
−4

n

)
,

η (4z)
3
η (44z)

3

η (2z) η (8z) η (22z) η (88z)
= η (2z) η (22z)⊗

(
−4

n

)
,

η (8z)
3
η (40z)

3

η (4z) η (16z) η (20z) η (80z)
= η (4z) η (20z)⊗

(
−8

n

)
,

η (16z)
4

η (8z) η (32z)
= η (8z) η (16z)⊗ (−1)

n−1
8 ,
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Table 1. A full list of CM eta quotients up to twisting.

Index Modular form Weight Level CM

1 η (3z)
2
η (9z)

2
2 27 Q[

√
−3]

2 η (4z)
2
η (8z)

2
2 32 Q[i]

3 η (6z)
4

2 36 Q[
√
−3]

4 η (z)
2
η (2z) η (4z) η (8z)

2
3 8 Q[

√
−2]

5 η (z)
3
η (7z)

3
3 7 Q[

√
−7]

6 η (2z)
3
η (6z)

3
3 12 Q[

√
−3]

7 η (4z)
6

3 16 Q[i]

8 η(4z)5η(8z)5

η(2z)2η(16z)2
3 32 Q[

√
−2]

9 η (3z)
8

4 8 Q[
√
−3]

10 η (z)
4
η (2z)

2
η (4z)

4
5 4 Q[i]

11 η(8z)38

η(4z)14η(16z)14
5 64 Q[i]

12 η (3z) η (21z) 1 63 Q[
√
−3],Q[

√
−7]

13 η (8z) η (16z) 1 128 Q[i],Q[
√
−2]

14 η (12z)
2

1 144 Q[i],Q[
√
−3]

15 η (4z) η (20z) 1 80 Q[i],Q[
√
−5]

16 η (z) η (23z) 1 23 Q[
√
−23]

17 η (2z) η (22z) 1 44 Q[
√
−11]

18 η (6z) η (18z) 1 108 Q[
√
−3]

η (12z)
3
η (36z)

3

η (6z) η (18z) η (24z) η (72z)
= η (6z) η (18z)⊗

(
−4

n

)
,

η (24z)
6

η (12z)
2
η (48z)

2 = η (12z)
2 ⊗

(
−8

n

)
.

For each eta quotient in Table 1, we use the index i from the first column to define a
corresponding indexed function fi (z) =

∏
d|N η (dz)

rd and write fi (z) =
∑∞

n=1 ai (n) q
n.

Theorem 1.1 is the main result of this work and characterizes the vanishing of the
coefficients of each indexed eta quotient.

Theorem 1.1. If ai(n) denotes the coefficient of qn in the eta quotient of index i
in Table 1, then:

(1) a1 (n) = 0 if and only if n 6≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor
p ≡ 2 (mod 3) with odd exponent,
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(2) a2 (n) = 0 if and only if n 6≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3
(mod 4) with odd exponent,

(3) a3 (n) = 0 if and only if n 6≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor
p ≡ 2 (mod 3) with odd exponent,

(4) a4 (n) = 0 if and only if n has a prime factor p ≡ 5, 7 (mod 8) with odd exponent,
(5) a5 (n) = 0 if and only if n has a prime factor p ≡ 3, 5, 6 (mod 7) with odd exponent,
(6) a6 (n) = 0 if and only if n 6≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor

p ≡ 2 mod 3 with odd exponent,
(7) a7 (n) = 0 if and only if n 6≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor

p ≡ 3 (mod 4) with odd exponent,
(8) a8 (n) = 0 if and only if n 6≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor

p ≡ 5, 7 (mod 8) with odd exponent,
(9) a9 (n) = 0 if and only if n 6≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor

p ≡ 2 (mod 3) with odd exponent,
(10) a10 (n) = 0 if and only if n has a prime factor p ≡ 3 (mod 4) with odd exponent,
(11) a11 (n) = 0 if and only if n 6≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡

3 (mod 4) with odd exponent,
(12) a12 (n) = 0 if and only if n 6≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor

p 6≡ 1, 4, 7, 16 (mod 21) with odd exponent,
(13) a13 (n) = 0 if and only if n 6≡ 1 (mod 8), or n ≡ 1 (mod 8) has a prime factor

p 6≡ 1 (mod 8) with odd exponent,
(14) a14 (n) = 0 if and only if n 6≡ 1 (mod 12), or n ≡ 1 (mod 12) has a prime factor

p 6≡ 1 (mod 12) with odd exponent,
(15) a15 (n) = 0 if and only if n 6≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor

p 6≡ 1, 9 (mod 20) with odd exponent,
(16) a16 (n) = 0 if and only if n has a prime factor p not a square modulo 23 with odd

exponent or a prime factor p not equal to 23 that is representable by 2x2+xy+3y2

with exponent ep ≡ 2 (mod 3),
(17) a17 (n) = 0 if and only if n 6≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor p

not a square modulo 11 or a prime factor p not equal to 11 that is representable
by 3x2 + 2xy + 4y2 with exponent ep ≡ 2 (mod 3),

(18) a18 (n) = 0 if and only if n 6≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor p ≡
2 (mod 3) with odd exponent or a prime factor p ≡ 1 (mod 3) that is representable
by 4x2 + 2xy + 7y2 with exponent ep ≡ 2 (mod 3).

The remainder of this work is organized as follows. In § 2, we review the notion of CM
newforms and their fundamentals, as well as express all the CM eta quotients in Table 1
in terms of generalized theta functions. Proofs of Theorem 1.1 are distributed into the
subsequent three sections in accordance with their commonness. In the final section, we
conclude with generalizations of the results on the cases of weight 1 in terms of binary
quadratic forms.

2. Review of CM newforms and their basic properties

Let f (z) =
∑∞

n=1 a (n) q
n be a newform of weight k, and level Γ0 (N) with some character

χ. Then one can first recall that its Fourier coefficients a (n) satisfy the recursive relation:

a (`) a (n) = a (`n) + χ (`) `k−1a (n/`) (2.1)
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for any positive integer n and any prime `, where a (x) is set to be 0 if x is not an integer,
and possess the multiplicative property that a (mn) = a (m) a (n) for any positive integers
m,n such that gcd (m,n) = 1. Therefore, investigations on a (n) can be boiled down to
analysis on a (p) for p prime.
For any Dirichlent character φ of conductor m, a newform f (z) is said to be with CM

by φ if a (p)φ (p) = a (p) for all p - Nm, also called a CM newform by φ. Characterizations
of CM newforms for certain different cases have been established by Ribet [9] and Kani
[7], which are briefly summarized as follows.

2.1. CM newforms of weight k > 1

It is known [4, (6.3)] that a CM newform of weight k > 1 exists only if φ is a quadratic
character associated to some quadratic field K. In such case, f (z) is also called a CM
newform by K. In his groundbreaking work [9], Ribet gives a full characterization of such
newforms and justifies that any CM newform of weight k > 1 by a quadratic field K must
come from a Hecke character ψK associated to K and be of the form:

f (z) =
∑

a⊂OK
integral

ψK (a)N (a)
k−1
2 qN (a),

where N (·) denotes the norm of an ideal. In particular, when K is imaginary of discrim-
inant −d < 0 and class number 1, one can show (see, e.g., [5, Corollary 2.2]) that f (z)
must be a linear combination of the generalized theta functions:∑

α∈β+m

αk−1qN (α) overβ ∈ (OK/m)
×
,

for some integral ideal m with N (m) = N/d. Building upon this, one can explicitly
express the CM eta quotients of weight k > 1 in Table 1 in terms of generalized theta
functions and obtain the following lemma.

Lemma 2.1. Write ζ3 for the primitive third root of unity e
2πi
3 . Then the following

identities hold:

η (3z)
2
η (9z)

2
=

∞∑
m,n=−∞

((3m+ 1) + (3n) ζ3) q
N ((3m+1)+(3n)ζ3), (2.2)

η (4z)
2
η (8z)

2
=

∞∑
m,n=−∞

(2m− 2n+ 1 + (2m+ 2n) i) qN (2m−2n+1+(2m+2n)i), (2.3)

η (6z)
4
=

∞∑
m,n=−∞

(2m− 4n+ 1 + (4m− 2n) ζ3) q
N (2m−4n+1+(4m−2n)ζ3), (2.4)

η (z)
2
η (2z) η (4z) η (8z)

2
=

1

2

∞∑
m,n=−∞

(
m+ n

√
−2

)2
qN

(
m+n

√
−2

)
, (2.5)
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η (z)
3
η (7z)

3
=

1

2

∞∑
m,n=−∞

(
m+ n

1 +
√
−7

2

)2

q
N

(
m+n

1+
√
−7

2

)
, (2.6)

η (2z)
3
η (6z)

3
=

1

2

∞∑
m,n=−∞

(m+ n+ (2n)ζ3)
2
qN (m+n+(2n)ζ3), (2.7)

η (4z)
6
=

1

2

∞∑
m,n=−∞

(2m+ 1 + 2ni)
2
qN (2m+1+2ni), (2.8)

η (4z)
5
η (8z)

5

η (2z)
2
η (16z)

2 =
1

2

∞∑
m,n=−∞

(
2m+ 1 + 2n

√
−2

)2
qN

(
2m+1+2n

√
−2

)

− 1

2

∞∑
m,n=−∞

(
2m+ 1 + (2n+ 1)

√
−2

)2
qN

(
2m+1+(2n+1)

√
−2

)
, (2.9)

η (3z)
8
=

1

3

∞∑
m,n=−∞

((m− 2n+ 1) + (2m− n) ζ3)
3
qN ((m−2n+1)+(2m−n)ζ3), (2.10)

η (z)
4
η (2z)

2
η (4z)

4
=

1

4

∞∑
m,n=−∞

(m+ ni)
4
qN (m+ni), (2.11)

η (8z)
38

η (4z)
14
η (16z)

14 =
∞∑

m,n=−∞
(4m+ 1 + 4ni)

4
qN (4m+1+4ni) (2.12)

−
∞∑

m,n=−∞
(4m+ 1 + (4n+ 2) i)

4
qN (4m+1+(4n+2)i).

Remark 2.1. Identities (2.6)–(2.8) were first discovered and proved by Chan et al. [1]
using properties of spherical theta functions.

Remark 2.2. In recent work [2], using a different approach, Chang characterizes a3 (p)
for prime p ≡ 1 (mod 6) and a7 (p) for prime p ≡ 1 (mod 4) and shows that a3 (p) =
X + Y for integers X, Y such that 2X ≡ Y + 1 (mod 6) and X ≡ 1 (mod 2), and
a7 (p) = 2

(
X2 − Y 2

)
for integers X, Y such that X2 + Y 2 = p and X ≡ 1 (mod 2) and

Y ≡ 0 (mod 2). A careful inspection of Equations (2.4) and (2.8) leads one to recover
Chang’s results.

2.2. CM newforms of weight 1

In recent work [7], Kani extends Ribet’s results to the case of CM newforms of weight 1
and level Γ0 (D) with character (−D/n) by an imaginary quadratic field K = Q[

√
−D],

where −D is a form discriminant. He showed that any such CM newform must be a linear
combination of

∞∑
x,y=−∞

qQ(x,y) =
∞∑

n=0

 ∑
Q(x,y)=n

1

 qn over
[
Q(x, y) = ax2 + bxy + cy2

]
∈ Cl (D) ,
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where Cl (D) denotes the class group of primitive positive definite binary quadratic forms
of discriminant −D. As a consequence, one can relate the CM eta quotients of weight 1
in Table 1 to classical theta series associated with binary quadratic forms.

Lemma 2.2. The following identities hold.

η (3z) η (21z) =
1

2

∞∑
n=1

 ∑
x2+xy+16y2=n

1−
∑

4x2+xy+4y2=n

1

 qn, (2.13)

η (8z) η (16z) =
1

2

∞∑
n=1

 ∑
x2+32y2=n

1−
∑

4x2+4xy+9y2=n

1

 qn, (2.14)

η (12z)
2
=

1

2

∞∑
n=1

 ∑
x2+36y2=n

1−
∑

4x2+9y2=n

1

 qn, (2.15)

η (4z) η (20z) =
1

2

∞∑
n=1

 ∑
x2+20y2=n

1−
∑

4x2+5y2=n

1

 qn, (2.16)

η (z) η (23z) =
1

2

∞∑
n=1

 ∑
x2+xy+6y2=n

1−
∑

2x2+xy+3y2=n

1

 qn, (2.17)

η (2z) η (22z) =
1

2

∞∑
n=1

 ∑
x2+11y2=n

1−
∑

3x2+2xy+4y2=n

1

 qn, (2.18)

η (6z) η (18z) =
1

2

∞∑
n=1

 ∑
x2+27y2=n

1−
∑

4x2+2xy+7y2=n

1

 qn. (2.19)

3. Proofs of Theorem 1.1 (1)–(11)

The proofs of items (1)–(11) of Theorem 1.1 are very similar to one another, which can
be generally elaborated as follows. Note that the coefficients ai (n) satisfy the multiplica-
tive property, ai (n) =

∏
p|n ai (p

ep), given the prime factorization n =
∏

p|n p
ep of n.

Therefore, the analysis of the vanishing of ai (n) may be decomposed into local parts
ai (p

ep). As observed in the remarks given at the beginning of § 2.1, when a newform
has CM by an imaginary quadratic field K of class number 1, its Fourier development is
enumerated by the norms of elements of OK . So for p inert in OK with ep odd, it is clear
that pep cannot be represented by the norm of any element of OK , and this justifies all
the if-parts of items (1)–(11).
For their only-if-parts, it suffices to show that ai (p

ep) 6= 0 for p not inert, or p inert with
ep even. This can be achieved by the explicit descriptions for ai (n) given in Lemma 2.1.
In what follows, we give the proof for item (11) as an illustration and leave the cases of
items (1)–(10) to the reader.
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Proof of the only-if-part of item (11). Suppose that p is an odd prime not inert
in Z[i]. Then there is a unique π ∈ Z[i] up to complex conjugation such that either π ≡ 1
(mod 4Z[i]) or π ≡ 1+2i (mod 4Z[i]), and N (π) = p, and therefore, by Equation (2.12),
a11 (p) = ±

(
π4 + π4

)
6= 0. Moreover, it follows that a11 (p) 6≡ 0 (mod p), since π and π

are coprime. Note by Equation (2.1) that:

a11 (p
m) ≡ a11 (p)

m
(mod p).

Therefore, a11 (p
m) 6≡ 0 (mod p), and thus, a11 (p

m) 6= 0.
Now suppose that p is inert with ep even. Since Z[i] is a PID, it is clear that any

α ∈ Z[i] such that N (α) = pep must be of the form α = ±pep/2, ±ipep/2. Thus,
by Equation (2.12), a11 (p

ep) = p2ep 6= 0. �

4. Proofs of Theorem 1.1 (12)–(15)

Instead of directly proving items (12)–(15) of Theorem 1.1, we do a bit more and
establish explicit formulas for their associated ai (p

m), after which the assertions follow
immediately. These formulas are summarized in the following proposition.

Proposition 4.1. For i = 12, . . . , 15, let ai (n) be defined as in § 1. Given a non-
negative integer m and a prime p. The following assertions hold.

(1) (a) For n= 7, a12 (7
m) = (−1)

m
,

(b) for p ≡ 1, 4, 16 (mod 21),

a12 (p
m) =

m+ 1 if p = X2 +XY + 2Y 2 with 3|Y,
(−1)

m
(m+ 1) otherwise,

(c) for p ≡ 2, 8, 11 (mod 21),

a12 (p
m) =

0 if m is odd,

(−1)
m/2

otherwise,

(d) for p ≡ 5, 10, 13, 17, 19, 20 (mod 21),

a12 (p
m) =

0 if m is odd,

1 otherwise.

(2) (a) For p ≡ 1 (mod 8),

a13 (p
m) =

m+ 1 if p = X2 + 2Y 2 with 4|Y,
(−1)

m
(m+ 1) otherwise,
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(b) for p ≡ 3 (mod 8),

a13 (p
m) =

0 if m is odd,

(−1)
m/2

otherwise,

(c) for p ≡ 5, 7 (mod 8),

a13 (p
m) =

0 if m is odd,

1 otherwise.

(3) (a) For p ≡ 1 (mod 12),

a14 (p
m) =

m+ 1 if p = X2 + Y 2 with 6|Y,
(−1)

m
(m+ 1) otherwise,

(b) for p ≡ 5 (mod 12),

a14 (p
m) =

0 if m is odd,

(−1)
m/2

otherwise,

(c) for p ≡ 7, 11 (mod 12),

a14 (p
m) =

0 if m is odd,

1 otherwise.

(4) (a) For n= 5, a15(5
m) = (−1)m,

(b) for p ≡ 1, 9 (mod 20),

a15 (p
m) =

m+ 1 if p = X2 + 5Y 2 with 2|Y,
(−1)

m
(m+ 1) otherwise,

(c) for p ≡ 3, 7 (mod 20),

a15 (p
m) =

0 if m is odd,

(−1)
m/2

otherwise,

(d) for p ≡ 11, 13, 17, 19 (mod 20),

a15 (p
m) =

0 if m is odd,

1 otherwise.
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Proofs of items of Proposition 4.1 are very similar, especially the first three cases,
whose corresponding maximal quadratic orders are all of class number 1. The last case
has to make use of the classical fact [3, p. 31] that a prime p is not equal to 5 can be
represented by X2 + 5Y 2 if and only if p ≡ 1, 9 (mod 20). As such, we give the proof of
item (1) only and leave the others to the reader.

Proof of Proposition 4.1 (1). Item (a) follows from a12 (7) = −1 and the recursive
formula (2.1). Note that

x2 + xy + 16y2 = (x− y)
2
+ (x− y) (3y) + 2 (3y)

2
, (4.1)

4x2 + xy + 4y2 = (x+ 2y)
2
+ (x+ 2y) (x− y) + 2 (x− y)

2
. (4.2)

Then for p ≡ 1, 4, 16 (mod 21), since p ≡ 1, 2, 4 (mod 7), p must be uniquely repre-
sentable by X2+XY +2Y 2 up to complex conjugation and multiplication by a unit. The
induced fact that p ≡ 1 (mod 3) implies that such a representation verifies either Y ≡ 0
(mod 3) or X−Y ≡ 0 (mod 3). Up to a multiplier of a unit, there are exactly two repre-
sentations for the former case and one for the latter case. Therefore, by Equations (4.1)
and (4.2), p is representable by either x2 + xy + 16y2 or 4x2 + xy + 4y2, each of which
has exactly four solutions. Whence by Equation (2.13), a12 (p) = 2 if p can be repre-
sented by X2 +XY + 2Y 2 with 3|Y , since otherwise a12 (p) = −2. These facts, together
with Equation (2.1), yield the desired formula for p ≡ 1, 4, 16 (mod 21).
For p ≡ 2, 8, 11 (mod 21), since p ≡ 2 (mod 3) and x2+xy+16y2 ≡ 4x2+xy+4y2 ≡

x2+xy+y2 ≡ 0, 1 (mod 3), neither of x2+xy+16y2 and 4x2+xy+4y2 represent p, and
thus a12 (p) = 0, and with (−7/p) = 1 and Equation (2.1), the corresponding formula
follows.
For p ≡ 5, 10, 13, 17, 19, 20 (mod 21), clearly, p is not a square modulo 7, while both

x2 + xy + 16y2 and 4x2 + xy + 4y2 are of discriminant −63 = −7× 32, neither of them
can represent p. Therefore, a12 (p) = 0, and with (−7/p) = −1 and Equation (2.1), the
corresponding formula follows. �

Remark 4.1. The common vanishing in these four cases is related to the fact that
their attached form class groups are all Z/4Z, and the principal genus classes of the form
class groups associated with their corresponding maximal orders consist of exactly one
form class. This also explains why the representability of p by the binary quadratic forms
of these four cases can be interpreted in terms of congruences, which, however, is not the
case for items (16)–(18) of Theorem 1.1. Moreover, following this observation and using
the genus theory of binary quadratic forms, one can find a uniform interpretation and
extension of Proposition 4.1. We shall return to this in § 6.

Remark 4.2. In fact, one can check that both quadratic forms involved in
Equation (2.13) lie in the same genus of Cl(63), so by the classical Siegel–Weil theorem
(see, e.g., [12, Chapter 7]), one can replace one of them by Eisenstein series and obtain
the alternative expression:
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η(3z)η(21z) = −1 +
∞∑

n=1

 ∑
x2+xy+16y2=n

1− 1

2

∑
d|n

(
−7

d

)
+
∑
d|n

(
−3

d

)(
21

n/d

) qn

− 3

2

∞∑
n=1

∑
d|n

(
−7

d

) q9n.

Combining this with Equation (4.2), one can also recover Proposition 4.1 (1). For the
reader’s reference, we also record the analogous expressions for the other companions as
follows:

η(8z)η(16z) = −1 +
∞∑

n=1

 ∑
x2+32y2=n

1− 1

2

∑
d|n

(
−8

d

)
+
∑
d|n

(
−4

d

)(
8

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−8

d

) q2n −
∞∑

n=1

∑
d|n

(
−8

d

)
+
∑
d|n

(
−4

d

)(
8

n/d

) q4n

+
∞∑

n=1

∑
d|n

(
−8

d

) q8n − 2
∞∑

n=1

∑
d|n

(
−8

d

) q16n,

η(12z)2 = −1 +
∞∑

n=1

 ∑
x2+36y2=n

1− 1

2

∑
d|n

(
−4

d

)
+
∑
d|n

(
−3

d

)(
12

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−4

d

)
−
∑
d|n

(
−3

d

)(
12

n/d

) q2n

−
∞∑

n=1

∑
d|n

(
−4

d

)
+
∑
d|n

(
−3

d

)(
12

n/d

) q4n

− 3

2

∞∑
n=1

∑
d|n

(
−4

d

) q9n +
3

2

∞∑
n=1

∑
d|n

(
−4

d

) q18n,

η(4z)η(20z) = −1 +
∞∑

n=1

 ∑
x2+20y2=n

1− 1

2

∑
d|n

(
−20

d

)
+
∑
d|n

(
−4

d

)(
5

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−20

d

)
−
∑
d|n

(
−4

d

)(
5

n/d

) q2n

−
∞∑

n=1

∑
d|n

(
−20

d

)
+
∑
d|n

(
−4

d

)(
5

n/d

) q4n.
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Remark 4.3. In [11], Serre justifies Theorem 1.1(14) by finding the Hecke theta series
for η(12z)2 using Galois representations. We literally use an alternative expression for
η(12z)2 to recover Serre’s result.

5. Proofs of Theorem 1.1 (16)–(18)

Similar to the cases of (12)–(15), we establish the following formulas for ai (n) for i =
16, . . . , 18 as an intermediate step towards items (16)–(18) of Theorem 1.1.

Proposition 5.1. For i = 16, . . . , 18, let ai (n) be defined as in Section 1, and let Di

denote 23, 44 and 108, respectively. Also write Qi (x, y) for the principal binary quadratic
form of discriminant −Di, i.e., x

2+xy+6y2, x2+11y2 and x2+27y2, respectively. For
a non-negative integer m and a prime p, the following assertions hold.

(1) One has that a16 (23
m) = a17 (11

m) = 1,

(2) for p such that
(

−Di
p

)
= 1,

ai (p
m) =


m+ 1 if p is representable by Qi (x, y) ,

1 if p is irrepresentable by Qi (x, y) and m ≡ 0 (mod 3),

−1 if p is irrepresentable by Qi (x, y) and m ≡ 1 (mod 3),

0 otherwise,

(3) for p such that
(

−Di
p

)
= −1,

ai (p
m) =

0 if m is odd,

1 otherwise.

Proof. Items (1) and (3) are straightforward by Equations (2.17)–(2.19) and
Equation (2.1). For item (2), first note that the form class groups Cl (Di) are all of
class number 3, and thus, all three form classes of Cl (Di) lie in the same genus. Here,
two of them are equivalent by GL2 (Z). By the theory of quadratic orders (see, e.g., [3]),
it is well known that for a split prime p, it is representable by either the principal form
Qi (x, y) with exactly four solutions or a non-principal form with exactly two solutions.
Therefore, by Equation (2.17)–(2.19), one can find that ai (p) = 2 if p is representable by
Qi (x, y); otherwise ai (p) = −1. From these, together with Equation (2.1), the desired
formulas follow. �
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Remark 5.1. Similar to what is noted in Remark 4.4, Proposition 5.1 can also be
derived by the following alternative expressions for the CM eta quotients associated with
ai (n),

η (z) η (23z) = −3

4
+

∞∑
n=1

3

4

∑
x2+xy+6y2=n

1− 1

2

∑
d|n

(
−23

d

) qn,

η (2z) η (22z) = −3

4
+

∞∑
n=1

3

4

∑
x2+11y2=n

1− 1

2

∑
d|n

(
−11

d

) qn

−
∞∑

n=1

∑
d|n

(
−11

d

) q4n,

η (6z) η (18z) = −3

4
+

∞∑
n=1

3

4

∑
x2+27y2=n

1− 1

2

∑
d|n

(
−3

d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−3

d

) q3n − 1
∞∑

n=1

∑
d|n

(
−3

d

) q4n

− 3

2

∞∑
n=1

∑
d|n

(
−3

d

) q9n + 1
∞∑

n=1

∑
d|n

(
−3

d

) q12n

− 3
∞∑

n=1

∑
d|n

(
−3

d

) q36n.

6. Further remarks on Proposition 4.1

As noted in Remark 4.3, those analogous formulas deduced in Proposition 4.1 via
Lemma 2.12 are by some means related to the fact that their attached form class groups
are all Z/4Z, and the principal genus classes of the form class groups associated to their
corresponding maximal orders all consist of one form class. We now detail how these
work.
Let −D = f2(−d) < 0 with −d a fundamental discriminant be a form discriminant

such that the attached form class group Cl(D) = 〈[Q]〉 ∼= Z/4Z, and Cl(d)2 = {[Q̃0]},
where Q̃0 denotes the principal form of discriminant −d. Take the character χ of Cl(D)
such that χ([Q]) = i. Then writing [Q0] = [Q]4 for the identity of Cl(D), where Q0 is
the principal form, and [Q2] = [Q]2, the difference:

∞∑
n=1

a(n)qn =
1

2

∞∑
n=0

 ∑
Q0(x,y)=n

1−
∑

Q2(x,y)=n

1

 qn =
1

2

4∑
j=1

χ([Q]j)
∞∑

x,y=−∞
qQ

j(x,y)
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is actually a normalized T(f)-eigenform [6, Theorem 12] with quadratic character
(−D

·
)
,

where T(f) denotes the algebra generated by Hecke operators Tn with gcd(n, f) = 1.
Therefore, for n coprime to f, the coefficients a(n) satisfy the recursive relation (2.1) and
multiplicativity, so to compute a(n), it is sufficient to find a(p) for p|n.
By the genus theory of binary quadratic forms, for p split in Q[

√
−d] and such that

p = Q̃0(X,Y ) (mod d) is solvable, p is uniquely representable by Q̃0(X,Y ) up to com-
plex conjugation and multiplication by a unit, since Cl(d)2 = {[Q̃0]} by assumption.
Furthermore, if p = Q0(x, y) (mod D) is also solvable, then p is representable by either
of Q0 and Q2, which accordingly implies that a(p) = 2 or a(p) = −2, and the former case
is equivalent to that p = Q̃0(X,Y ) with f |Y . Otherwise, neither of Q0 and Q2 represent
p, which yields that a(p) = 0. In summary, one obtains the following generalization of
Proposition 4.1: for any positive integer m,

(1) for p such that
(

−d
p

)
= 1, and both p = Q̃0(X,Y ) (mod d) and p = Q0(x, y)

(mod D) are solvable,

a(pm) =

m+ 1 if p = Q̃0(X,Y ) with f |Y,
(−1)m(m+ 1) otherwise,

(2) for p such that
(

−d
p

)
= 1, and p = Q0(x, y) (mod D) is unsolvable,

a (pm) =

0 if m is odd,

(−1)
m/2

otherwise,

(3) for p such that
(

−d
p

)
= −1,

a (pm) =

0 if m is odd,

1 otherwise.

Finally, it is noteworthy to mention that one can generalize Proposition 5.1 in a similar
manner by noticing that the form class groups are all Z/3Z. Specifically, if we suppose
that −D < 0 is a form discriminant such that Cl(D) = 〈[Q0], [Q1], [Q1]

−1〉 ∼= Z/3Z,
where Q0 denotes the principal form of discriminant −D, and define

∞∑
n=1

b(n)qn =
1

2

∞∑
n=0

 ∑
Q0(x,y)=n

1−
∑

Q1(x,y)=n

1

 qn =
1

2

3∑
j=1

χ([Q1]
j)

∞∑
x,y=−∞

qQ
j
1(x,y),

where the character χ of Cl(D) is chosen by χ([Q1]) = e
2πi
3 , then for any positive

integer m,
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(1) for p such that
(

−D
p

)
= 1,

b (pm) =


m+ 1 if p is representable by Q0 (x, y) ,

1 if p is irrepresentable by Q0 (x, y) and m ≡ 0 (mod 3),

−1 if p is irrepresentable by Q0 (x, y) and m ≡ 1 (mod 3),

0 otherwise,

(2) for p such that
(

−D
p

)
= −1,

b (pm) =

0 if m is odd,

1 otherwise.
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