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Abstract. We present results from an SED analysis of two lensed high-z objects, the z = 6.56
galaxy HCM6A behind the cluster Abell 370 discovered by Hu et al. (2002) and the triple arc at
z ~ 7 behind Abell 2218 found by Kneib et al. (2004). For HCM 6A we find indications for the
presence of dust in this galaxy, and we estimate the properties of its stellar populations (SFR,
age, etc.), and the intrinsic Lya emission. From the “best fit” reddening (E(B — V) ~ 0.25)
its estimated luminosity is L ~ (1 —4) x 10 Lo, in the range of luminous infrared galaxies.
For the arc behind Abell 2218 we find a most likely redshift of z ~ 6.0-7.2 taking into account
both our photometric determination and lensing considerations. SED fits indicate generally a
low extinction but do not strongly constrain the SF history. Best fits have typical ages of ~ 3 to
400 Myr. The apparent 4000 A break observed recently by Egami et al.(2004) from combination
of IRAC/Spitzer and HST observations can also well be reproduced with templates of young
populations (~ 15 Myr or even younger) and does not necessarily imply old ages. Finally, we
briefly examine the detectability of dusty lensed high-z galaxies with Herschel and ALMA.

1. Introduction

Little is known about the stellar properties, extinction, and the expected intrinsic
Lya emission of distant, high redshift galaxies. Indeed, although it has in the recent
past become possible through various techniques to detect already sizeable numbers of
galaxies at 225 (see e.g. the reviews of Taniguchi et al. 2003 and Spinrad 2003) the
information available on these objects remains generally scant. For example, in many
cases the galaxies are just detected in two photometric bands and Ly« line emission,
when present, serves to determine the spectroscopic redshift (e.g. Bremer et al. 2004,
Dickinson et al. 2004, Bunker et al. 2004). Then the photometry is basically used to
estimate the star formation rate (SFR) assuming standard conversion factors between
the UV restframe light and the SFR, and nothing is known about the extinction, and the
properties of the stellar population (such as age, detailed star formations history etc.)

At higher redshift (z 2 6) even less information is generally available. Many objects are
found by Ly« emission, but remain weak or sometimes even undetected in the continuum
(e.g. Rhoads & Malhotra 2001, Kodaira et al. 2003, Cuby et al. 2003, Ajiki et al. 2003,
Taniguchi et al. 2004). In these cases the Lya luminosity can be determined and used to
estimate a SFR using again standard conversion factors. Also the Ly« equivalent width is
estimated, providing some possible clue on the nature of these source. However, this has
lead to puzzling results e.g. for the sources from the LALA survey (Malhotra & Rhoads
2001, Rhoads et al. 2003) leaving largely open the question of the nature of these objects,
their stellar populations, extinction etc.
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Strong gravitation lensing is extremely “helpful” for a large number problems discussed
at this conference, including also the present one. In particular strong lensing has allowed
to detect several of the highest redshift galaxies known today (e.g. Ellis et al. 2001, Hu
et al. 2002, Kneib et al. 2004, Pellé et al. 2004a, and the review of Pell6 et al. 2003).
Also, thanks to the lensing magnification, it has been possible to obtain photometric
observations of reasonable quality in several bands for some of these objects. For exam-
ple it has even very recently been possible to image a z ~ 7 galaxy with the Spitzer
observatory at 3.6 and 4.5 ym (Egami et al. 2004) ! As we’ll show below (Sects. 2 and 3)
this allow us to perform a quantitative SED analysis to constrain properties of the stellar
populations, such as age and star formation (hereafter SF) history (burst or constant
SF?), their extinction, intrinsic Ly« emission etc. A detailed account of this work will be
published elsewhere (Schaerer & Pell6 2004).

As such, gravitational lensing provides a unique opportunity to learn more about some
selected high-z galaxies. If generalised and applied to larger samples in the near future,
systematic studies of the properties of lensed high-z galaxies could provide unique insights
and complementary information to other deep/ultra-deep surveys targetting blank fields.
Also, extensions to wavelengths beyond the optical and near-IR with existing facilities
(e.g. in the radio, mm, and possibly sub-mm) and future observatories should be of great
interest, as briefly outlined for Herschel and ALMA in Sect. 4.

2. Stellar populations and dust in a lensed z = 6.56 starburst galaxy

The lensed z = 6.56 galaxy HCM6A was found by Hu et al. (2002) from a narrow-band
survey in the field of the lensing cluster Abell 370. Its redshift is established from the
broad-band SED including a strong spectral break, and from the observed asymmetry of
the detected emission line identified as Lya.

We have recently analysed the SED of this object by means of quantitative SED fitting
techniques using a modified version of the Hyperz code of Bolzonella et al. (2000) t. The
observed VRIZ JHK' data are taken from Hu et al. (2002). The gravitational magnifica-
tion of the source is p = 4.5 according to Hu et al. The main free parameters of the SED
modeling are the spectral template, extinction, and the reddening law. Empirical and
theoretical templates including in particular starbursts and QSOs (SB4+QSO templates),
and predictions from synthesis models of Bruzual & Charlot (BC+CWW group) and
from Schaerer (2003, hereafter S03) are used.

Overall the SED of HCM 6A (see Fig. 1) is “reddish”, showing an increase of the flux
from Z to H and even to Ki. From this simple fact it is already clear qualitatively that
one is driven towards stellar populations with a) “advanced” age and little extinction
or b) constant or young star formation plus extinction. However, for HCM6A a) can be
excluded as no Ly« emission would be expected in this case.

Quantitatively, the best solutions obtained for three “spectral template groups” are
shown in the left panel of Fig. 1. The solutions shown correspond to bursts of ages ~
50-130 Myr and little or no extinction. However, as just mentioned, solutions lacking
young (< 10 Myr) massive stars can be excluded since Lya emission is observed. The
best fit empirical SB+QSO template shown corresponds to the spectrum of a metal-poor
starburst galaxy with an extinction of Ay ~ 1. On the basis of the present observations
a narrow line (type II) AGN cannot be ruled out. To reconcile the observed SED with

t To convert the observed/adjusted quantities to absolute values we adopt the following
cosmological parameters: Q,, = 0.3, Qx = 0.7, and Hy = 70 km s~! Mpc™?.

I The significance of a change of the SED slope between JH and HK seems weak, and difficult
to understand.

https://doi.org/10.1017/5174392130500219X Published online by Cambridge University Press


https://doi.org/10.1017/S174392130500219X

226 galaxies 389

Abell 370 HCM BA, z=6.58 (Hu et al. 2002) Abell 370 HCM BA, z=6.56 (Hu et al. 2002)
0.6 T T T T — L L ML | 122 e T

0.5 —

flux F, [ud]
flux F, [pd]

SFR=const 4

v/ Y
[ P P I PR L el e e by e b e e b e b

5000 10+ 1.5x10% 2x10* 2.6x10* 104 2x10% 3x10* 4x10% 5x10* 6x10*
wavelength [A] wavelength [A]

Figure 1. Best fits SEDs to the observations of Abell 370 HCM 6A. The red crosses indicate
the corresponding model broad band fluxes. Solid lines show the best fit for a template from
the BC+CWW group, dotted from SB+QSO group, and dashed from the S03+ group Left:
Observed spectral range. Right: Predicted SED in Spitzer/IRAC domain for best fit models.
Dashed lines show the bursts from the BCCWW and S03+ template groups. The dotted line 1is
the spectrum of SBS 0335-052 from the SB4+QSO group with additional Ay = 1. The solid lines
show best fits for constant star formation using different extinction/attenuation laws (Calzetti
starburst law versus SMC law). The solid triangles illustrate the IRAC point-source sensitivity
(1 o) for low and medium backgrounds excluding “confusion noise”.

Lya, a young population or constant SF is required. In any of these cases fitting the
“reddish” SED requires a non negligible amount of reddening.

Although all best fit models require reddening, this result is at present indicative and
need to be firmed up. Quantitatively (e.g. for constant star formation, solar metallicity
models, Calzetti law) Ay is typically ~ 0.5-1.8 mag at the 68 % confidence level. Also
somewhat smaller extinction can be obtained if the steeper SMC extinction law of Prévot
et al. (1984) is adopted. Zero extinction cannot be ruled out at the ~ 20 level. Better
photometric accuracy, especially in the JHK bands, is needed to reduce the present
uncertainties and hence confirm the indication for dust.

From the best fit constant SF models we deduce an extinction corrected star formation
rate of the order of SFR(UV) ~ 11 — 41 M, yr~*! for a Salpeter IMF from 1 to 100 Mg
or a factor 2.55 higher for the often adopted lower mass cut-off of 0.1 M. For continuous
SF over timescales tgr longer than ~ 10 Myr, the total (bolometric) luminosity output
is typically ~ 10! Lg per unit SFR (in Mg yr—!) for a Salpeter IMF from 1-100 Mg,
quite independently of metallicity. The total luminosity associated with the observed SF
is therefore L ~ (1 —4) x 101 L, in the range of luminous infrared galaxies (LIRG). For
tsp ~ 10 Myr the estimated stellar mass is M, ~ tgp x SFR ~ (1 —4) x 108 M. Other
properties such as the “Lya transmission” can also be estimated from this approach. A
relatively high Ly« transmission of ~ 20-50 % but possibly up to ~ 90 % is estimated
from our best fit models (see Schaerer & Pellé 2004).

It is interesting to examine the SEDs predicted by the various models at longer wave-
lengths, including the rest-frame optical domain, which is potentially observable with the
sensitive IRAC camera onboard the Spitzer Observatory and other future missions. In
the right panel of Fig. 1 we plot again the 3 best fits. We see that these solutions have
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fluxes comparable to or above the detection limit of IRAC/Spitzer . On the other hand
the strongly reddened constant SF or young burst solutions do not exhibit a Balmer
break and are hence expected to show fluxes just below the IRAC sensitivity at 3.6 um
and significantly lower at longer wavelengths. As Ly« emission is expected only for the
reddened SEDs the latter solutions are predicted to apply to HCM 6A. If possible despite
the presence of other nearby sources, IRAC/Spitzer observations of HCM 6A down to
the detection limit or observations with other future satellites could allow to verify our
prediction and therefore provide an independent (though indirect) confirmation of the
presence of dust in this high-z galaxy.

3. A lensed galaxy at z ~ 6—7 behind Abell 2218

This interesting triply imaged object, a possible z ~ 7 galaxy, has recently been
discovered by Kneib et al. (2004, hereafter KESR) from deep Z band observations
with ACS/HST. In the meantime it has also been observed with Spitzer (see Richard
et al., these proceedings; Egami et al. 2004). The currently available observations in-
clude Vﬁoﬁw(undetectedL Igl4w, Z850LP > J, HllOW; Hlﬁo\]\]7 and 3.6 and 4.5 pm with
TRAC/Spitzer. The photometry from these authors has been adopted here to analyse the
properties of this object in a similar way as for HCM 6A. In practice, small differences
are found in the published photometry; we therefore adopt three different SEDs (SED1-
3) to describe this object (see Schaerer & Pellé 2004 for details). No emission line has
so far been detected for Abell 2218 KESR. Its spectroscopic redshift remains therefore
presently unknown but the well-constrained mass model for the cluster strongly suggests
a redshift z ~ 6.5-7 for this source. The magnification factors of both images a and b is
w = 25 =+ 3, according to KESR.

As a spectroscopic redshift has not been obtained (yet) for this galaxy we here exam-
ine its photometric redshift estimate. In Fig. 2 (left) we show the photometric redshift
probability distributions P(z) for the three SEDs (SED1-3) of Abell 2218 KESR using
three spectral template groups and adopting a minimum photometric error of 0.15 mag.
For each redshift, P(z) quantifies the quality of the best fit model obtained varying all
other parameters (i.e. extinction, fryf, spectral template amoung template group). Given
the excellent HST (WFPC2, ACS and NICMOS) photometry, P(z) is quite well defined:
the photometric redshift ranges typically between zphot ~ 5.5 and 7.3. Outside of the
plotted redshift range P(z) is essentially zero.

To summarise (but cf. Schaerer & Pell6 2004), given the absence of a spectroscopic
redshift, a fair number of good fits is found to the observations of Abell 2218 KESR when
considering all the free parameters. Three of them are illustrated in Fig. 2 (right). The
main conclusions from these “best fits” are:

1) Generally the determined extinction is negligible or zero quite independently of
the adopted extinction law. For few empirical templates we find good fits requiring an
additional Ay ~ 0.2-0.6 mag, depending on the adopted extinction law.

2) Although generally burst models fit somewhat better than those with constant star
formation among the theoretical templates, the data does not strongly constrain the star
formation history.

3) Typical ages between ~ 15 and 400 Myr are obtained. A reasonable 1-c upper bound
on the age of ~ 650 Myr can be obtained assuming constant star formation. Young
solutions (~ 15 and even younger) are obtained with burst models or some empirical

t See http://ssc.spitzer.caltech.edu/irac/sens.html
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Figure 2. Left: Photometric redshift probability distributions P(z) of Abell 2218 KESR using
three spectral template groups (solid, dotted, long dashed), three different variants of the SED,
and the photometry from all filters in which the object is detected (Isiaw to 4.5 um) assuming
a minimum photometric error of 0.15 mag. Right: Best fits SEDs to the observations of Abell
2218 from Egami et al. 2004 (SED2) The red crosses indicate the corresponding model broad
band fluxes. The solid line shows the best fit for a template from the S03+ group, and dotted
from the SB+QSO group. The redshift for these solutions are z ~ 6.63 and 6.54 respectively.
See text for more information

templates. The relatively modest strength Balmer break observed between the HST and
Spitzer broad-band photometry does not necessarily imply old ages.

4) Given degeneracies of the restframe UV spectra between age and metallicity (cf.
above) no clear indication on the galaxian metallicity can be derived, in contrast to the
claim of KESR. Good fits to the available data can even be found with solar metallicity
starburst templates.

5) Depending on the star formation history and age one may or may not expect
intrinsic Ly« emission, i.e. an important H 11 region around the object. The apparent
absence of observed Lya emission does therefore not provide much insight.

The theoretical templates can also be used to estimate the stellar mass involved in the
starburst or the star formation rate when constant star formation is assumed. For this
ailm we assume a typical redshift of z = 6.6, and the magnification y = 25 determined
by KESR. For constant SF we obtain SFR ~ (0.9 — 1.1) Mg yr~! (for a Salpeter IMF
from 1 to 100 Mg). For the best fit ages of ~ 400-570 Myr the total mass of stars formed
would then correspond to ~ (3.6 —6.3) x 108 M. The mass estimated from best fit burst
models (of ages ~ 6-20 Myr) is slightly smaller, M, ~ (0.3 — 1) x 108 M. If we assume
a Salpeter IMF with Mo, = 0.1 Mg the mass and SFR estimates would be higher by a
factor 2.55, and in good agreement with the values derived by KESR and Egami et al..
In all the above cases the total luminosity (unlensed) is typically Lo ~ 2 x 100 L.

4. 226 starbursts: with Herschel and ALMA, and now ...

Let us now assume that starburst galaxies with dust exist at z 2 6 and briefly examine
their observability with facilities such as Herschel and ALMA. To do so we must assume
a typical galaxy spectrum including the dust emission. For simplicity we here adopt the
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SED model by Melchior et al. (2001) based on PEGASE.2 stellar modeling, on the Désert
et al. (1990) dust model, and including also synchrotron emission. Their predicted SED
for a galaxy with an SFR and/or total luminosity quite similar to that estimated above
for HCMG6A is shown in Fig. 3.
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Figure 3. Predicted spectrum for a “moderate” starburst with SFR=32 Mg yr~" and

L~18x10"Lg
placed at redshift z =0.1, 0.5, 1, 2, 3, 5, 10, 20, and 30. The thresholds of the JWST (here
NGST), PACS and SPIRE onboard Herschel, and ALMA are also presented. Figure taken from
Melchior et al. (2001) with kind permission

Figure 3 shows the exquisite sensitivity of ALMA in the various bands allowing in
principle an easy detection of such objects up to redshift ~ 10 or even higher!

On the other hand, with the sensitivity of PACS and SPIRE on Herschel blank field
observations of such an object are limited to smaller redshift (z < 1-4). However, already
with a source magnification of p ~ 3-10 or more the “template galaxy” shown in Fig.
3 becomes observable with SPIRE at ~ 200-670 pm. In fact, such magnifications (and
even higher ones) are not exceptional in the central parts of massive lensing clusters.
E.g. in our near-IR search conducted in two ISAAC fields (~ 2.5x2.5 arcmin?) of two
lensing clusters, a fair number (~ 10-20) of z2 6-7 galaxy candidates with pu>5 are
found (Pell6 et al. 2004b and these proceedings, Richard et al. 2004, in preparation).
More than half of them have actually magnifications p 2 10. Such simple estimates show
already quite clearly the potential of strong gravitational lensing to extend the horizon
of SPIRE /Herschel observations beyond redshift z > 5!

Obviously a more rigorous feasibility study must also address the following issues: How
frequent is dust present in high-z galaxies? and up to what redshift? We now have some
indications for dust in one lensed z = 6.56 galaxy (see Section 2) and of course in high-z
quasars. But how general/frequent is this? How typical is the SED adopted above? The
long wavelength emission due to dust depends on various parameters such as metallicity,
the dust/gas ratio, geometry, the ISM pressure etc. Furthermore spatial resolution and
source confusion are key issues which must be addressed and which should vary quite
strongly between blank fields and cluster environments. Last, but not least, the field
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of view of the various instruments is determinant for the efficiency with which high-z
candidates can be found and studied. Several of these issues have already been partly
addressed earlier (cf. the 2000 Herschel conference proceedings of Pilbratt et al. 2001,
also Blain et al. 2002).

It is evident that various ground-based and space bourne facilities and instruments
will be used together to provide an optimal coverage in wavelength, spatial resolution
and field size, and to obtain imaging as well as spectroscopy. Near-IR wide field imagers
and near-IR multi-object spectrographs on 8-10m class telescopes and later with ELTs
will undoubtably “team up” with the JWST, Herschel and ALMA to explore the first
galaxies in the Universe and their evolution from the Dark Ages to Cosmic Reionisation.
The wonderful power offered by gravitational lensing will continue to provide deeper or
“enhanced” views of prime interest for the exploration of the early Universe.
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