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ON CRITICAL r, A-SYSTEMS 

BY 

J. VRANCH 

SUMMARY. Critical r, A-systems are introduced such that any 
nontrivial r, À-system must be an extension of some critical system. 
It is shown that parametric values for which critical systems can exist 
are restricted to A(u -1) < r(r-1) and, further, to A(r-1)< r(r-1) 
if the critical system is extendible. 

1. Introduction. An r, À-system is a collection of v objects (or varieties) 
arranged into b subsets (blocks) such that each variety appears in exactly r 
blocks and each pair of varieties appears in exactly À blocks. For A = 0, each 
block must contain a single variety and, for A = r, each block must contain all 
varieties. We call such designs trivial and avoid them by assuming 1 ^ A < r. 

A theorem by Ryser [1], proves that if b = v in an r, A -system, then 
A(u —1)= r ( r - l ) and the system is a symmetric balanced incomplete block 
design. The r, A-system, 

(abcdeg)(ag)(bd)(ce)(abcf)(adef)(befg)(cdfg) 

has u = 7, ft = 8, r = 4 and A = 2. Since ( t? - l ) = 12 = r ( r - l ) but b*v the 
converse of Ryser's theorem does not hold. We partition r, A-systems into 
three classes by defining D = A(u —l) — r(r—l) and calling a system elliptic, 
parabolic or hyperbolic according to whether D is negative, zero or positive 
respectively. 

2. Reducible r, A-systems. Consider any r, A-system S. Adding a complete 
block (that is, a block consisting of all v varieties) will result in a new 
r, A-system with the values of r and A each increased by one. Adding a 
complete singles set (that is each variety appears as a block consisting of a 
single element) will result in a new r, A-system with the value of r increased by 
one. These simple additions can be used to construct an infinite family of 
systems from any given system. Any r, A-system containing a complete block or 
a complete singles set will be called a reducible system. We will concern 
ourselves primarily with r, A-systems that are not reducible and which we call 
irreducible. 

Stanton and Mullin [2] proved that for A = 1, all irreducible systems are 
elliptic or parabolic. It is conjectured that this is true for any value of A and the 
following results support this conjecture. 
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3. Embedding r, A -systems. Let S be an r, A-system with v>l varieties. 
Deleting all occurrences of some variety, say x, will leave an r, A-system with 
v-1 varieties and the same values for r and A as S. The reverse process, of 
adding a new variety, say y, to r blocks to generate an r, A-system S' with v + 1 
varieties is not so simple and not always possible. When it is possible we say S 
is embedded in S'. If S is embedded in S' and S' is embedded in S" we say "S is 
embedded in S"". 

LEMMA 1. An irreducible system cannot be embedded in a reducible system. 

Proof. A reducible system must contain a complete block or a complete 
singles set. Deleting any variety still leaves a complete block or a complete 
singles set. Hence any system embedded in a reducible system would be itself 
reducible. 

4. Critical r, A-systems. If S is some irreducible r, A-system such that the 
complete removal of any variety from S yields a reducible system we call S a 
critical irreducible system or, more simply, we say "S is critical". 

THEOREM 1. All critical r, A-systems are elliptic or parabolic. 

Proof. Assume S is a critical r, A-system on v varieties with v > 3 . Let X be 
the set of varieties in S such that the complete removal of any xeX leaves a 
system with a complete block. For each x e X , S must contain a block 
consisting of all varieties of S except x. Let Y be the set of varieties in S that 
are not in X. Since S is critical, the complete removal of any y eX must leave a 
system with a complete singles set. Let T be the set of varieties in S that do not 
occur as single elements. Since S is irreducible, T is not empty. Then for each 
y e Y and each te T (y# t), S must contain a block consisting of precisely the 
pair (y, t). 

Choose some teT. If teX, then t occurs in at least |X| - 1 blocks of length 
f - 1 , one for each of the other elements in X. Also t occurs in \Y\ blocks of 
length two. Since v>3, these occurrences are distinct and t must occur in at 
least | Y |4- |X | -1 blocks. If te Y, then t occurs in |X| blocks of length v-1 and 
| y | —1 blocks of length two. Again t occurs in at least |X| + | y | —1 = v - 1 
blocks. Since t must belong to X or y we conclude r = (occurrences of 
i)>v-l. Substituting this result into the hyperbolic condition D-
À ( u - l ) - r ( r - l ) > 0 , we obtain A ( u - l ) > r ( r - l ) > ( u - l ) ( r - l ) or A > r - l . 
This contradicts A < r so S was not hyperbolic. 

Now suppose v^3. Any r, A-system with v = l or v — 2 is reducible so it 
couldn't be critical. For v = 3, the hyperbolic property becomes A • 2 > r ( r - 1 ) . 
Using A < r— 1 we obtain 2 • A > (A + 1)A or A < 1. This says that S was trivial 
so it couldn't be critical. We conclude that there are no critical hyperbolic 
r, A-systems. 
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A system obtained by taking as blocks all possible subsets of order v-1 
from v varieties is called a full combinatorial design. Counting arguments show 
that there will be b = v blocks, r = v -1 occurrences of each variety and 
A = v — 2 occurrences of each pair of varieties. The design is parabolic since 
\(v-1) = (v-2)(v-1) = r(r-1) and critical since the complete removal of any 
variety leaves a complete block. 

THEOREM 2. A critical parabolic system with v varieties must be a full 
combinatorial design with r=v-l and A = v-2. 

Proof. Suppose S is a critical design with v>3. Then 

(1) r > (v -1) as shown in Theorem 1. 

Assume that S is also parabolic. That is, \(v-l) = r ( r - l ) or r2-r-\(v-l) = 
0. Solving as a quadratic equation in r, r = ( l ± ( l + 4At> -4A)1/2)/2. Since r is a 
positive integer we omit the negative sign to obtain, 

(2) r = (l + (l+4Ai;-4A)1 /2)/2. 

Combining (1) and (2), l + ( l + 4 A u - 4 A ) 1 / 2 > 2 ( u - l ) . Simplifying, 
1 + 4 A D - 4 A > 4 D 2 - 1 2 I ; + 9 , or 

(3) 0> i> 2 - (3 + A)u + 2 + A = [ i ; - ( 2 + A)][i)-l]. 

Since the roots of the quadratic equation u 2 - ( 3 + A)t> + (2 + A) = 0 are v = l 
and v = A + 2 we obtain from (3) that 1 < v < A + 2. Suppose v < A + 1 . Then 
A 2 > A ( u - l ) and, using the parabolic property and A < r - 1 , we obtain 
A(v -1) = r(r-1) > (A + 1)A = A2 + A. Hence A2>A2 + A and no such non-trivial 
systems exist. Therefore v = A +2. From A(u - 1 ) = r ( r -1 ) we now get r = A + 1 . 

S contains I 1 distinct pairs, each occurring A = v - 2 times for a total of 

v(v — l)(v — 2)12 pairs. The maximum number of varieties per block is v -1 and 
blocks of this size contain (v - l)(v -2 ) /2 pairs. We have v • r = v(v -1) entries, 
so we can construct v blocks of length v -1 for a total of v(v - l)(v - 2)/2 pairs. 
Since this is precisely the number of pairs required and any other arrangement 
of varieties will produce strictly fewer pairs, then S must take this form and is 
the full combinatorial design. For u < 3 w e argue as in Theorem 1 and find the 
only critical parabolic system to be (ab)(ac)(bc) which is also a full combinator­
ial design. 

Theorem 4 from Stanton and Mullin [2] tells us that these full combinatorial 
designs can be embedded in other r, A-systems only if k (the constant block 
size) divides r - A. In this case that would imply that k -1 and the system 
would be reducible. Hence no critical parabolic r, A-system can be embedded 
in some other r, A-system. 
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Since all irreducible r, À-systems are critical or have some critical system 
embedded in them, we are now left with the fact that any irreducible hyper­
bolic r, À-systems must be extensions of critical elliptical systems. 
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