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Abstract

A predator-prey model in which the prey population is subdivided into nine geno-
types corresponding to a two-locus, two-allele problem is considered. Sufficient
conditions are given which lead to extinction of all the prey allele types except one,
as well as conditions which guarantee the persistence of all the allele types.

1. Introduction

In Freedman and Waltman [5, 6] and Freedman, So and Waltman [7], the
authors considered a predator-prey model in which the prey population con-
sists of three genotypes corresponding to a one-locus, two-allele problem.
In this paper, we extend that model to the case when the prey population
is subdivided into nine genotypes corresponding to a two-locus, two-allelle
problem. Let A and a denote the two allele types at the first (prey) locus
and let B and b denote the two allele types at the second locus. Since we
shall not distinguish between the genotypes AB/ab and Ab/aB (they will be
combined and denoted by AaBa), we denote the number of prey of the geno-
type AABB (resp. AABb,AAbb,AaBB,AaBb,Aabb,aaBB,aaBb,aabb) by
x\i (resp. x\i,x\i,xt\,XJI,X23,x-u,X32,X33). Also, let y denote the number of
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348 Joseph W.-H. So [2]

predators. The model we wish to consider is of the form:

xu = (u2/x2)B(x) - (xn/x)[D(x)+yPu(x)]
xi2 = {2uxu2/x2)B{x) - (xn/x)[D(x)+yPl2{x)]
xl3 = (u2

2/x
2)B(x) - (xl3/x)[D(x)+yPl3(x)] '

xn = (2Ulu3/x
2)B(x) - (x2i/x)[D(x) + yP2i(x)]

x22 = (2(ulU4 + u2u3)/x2)B(x) - (x22/x)[D(x) + yP22(x)]
x23 = (2u2u4/x

2)B(x) - (x23/x)[D(x)+yP23(x)] (1 A)

x3l = (u2
3/x

2)B(x) - (x3l/x)[D(x)+yP3i(x)]
x22 = (2u3u4/x

2)B(x) - (x32/x)[D(x)+yP32(x)]
x33 = (u2/x2)B(x) - (x33/x)[D(x)+yP33(x)]

3

*/y(0)>0 (i,j= 1,2,3), y(0)>0,
where " = j-t and s, k > 0. Here Mi (resp. W2, "3 and 1/4) is the number of
prey of the gamete type AB (resp. Ab, aB and ab); that is,

«2 = X\3 + Xi2/2 + X23/2 + X22/4

"4 = x33 + x23/2 + x32/2 + x22/4,
and x is the total prey population, that is:

3 4

B(x)/x (resp. D{x)/x) is the natural, intrinsic birth (resp. death) rate of
the entire prey population. The constant s is the death rate of the predator in
the absence of prey. Ptj{x) (i,j = 1,2,3) is the predator functional response
on the prey genotype xu. The constant k is the conversion factor from
prey biomass to predator biomass. B(x),D(x), and Pij(x) (i,j - 1,2,3)
are assumed to satisfy (H1)-(H6) of So and Freedman [10], namely,
(HI) B,D,PU: [0,oo) -> [0,oo) (i,j =1,2,3) are smooth (C2);
( H 2 ) B(0) = D(0) = Pu(0) (i,j = 1 , 2 , 3 ) ;
(H3) B'{x) > 0,D'(x) > Q,Plj{x) > 0 (/,; = 1,2,3) for all x e [O.oo);
(H4) 5'(0) > D'(0);
(H5) there exists a unique K > 0 (carrying capacity of prey) such that B(K) =
D{K); and,
(H6) B'{K) < D'{K) where ' = d/dx.
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The derivation of (1.1) is similar to that given in So [9]. Let / be the
common fertility of the nine prey genotypes. The total number of gametes in
the gamete pool is given by fu\ + fui + fu-s + fu4 = fx. By the assumption
of random union of gametes, the proportion of AABB genotypes produced
is {fu\/fx){fu\lfx) = u2jx2. This accounts for the coefficients of B(x) in
the first equation of (1.1). The other coefficients are derived similarly.

The main purpose of this paper is to obtain conditions under which sys-
tem (1.1) exhibits uniform persistence (that is, there exists rj > 0 such that
limmft->+ooXjj(t) > rj (i,j = 1,2,3) and liminf,_+oo > r\ for all solutions
(xu(t),...,xi3(t),y(t)) of (1.1) with x,,(0) > 0(1,7 = 1,2,3) and y(0) > 0),
as well as conditions which lead to the extinction of all the prey gamete types
except one. In the process, we show that if the predator is absent then the
prey genotypes converge to Hardy-Weinberg proportions. Also a compari-
son between the two-locus model (1.1) and the previously studied one-locus
model will be discussed.

The remainder of the paper is organized as follows. In the next section
we introduce the necessary notations and summarize some elementary facts
about (1.1). In Section 3, the case when the predator is absent will be con-
sidered. Section 4 deals with the extinction cases, while the persistent cases
are considered in Section 5. We finish with a discussion and comparison of
our results for the two-locus model (1.1) with those for the one-locus model
in Section 6.

2. Preliminaries

We first introduce some notations which will be useful later. Let R" =
{(z\,..., zn) e R": z, > 0(/ = 1, . . . , n)} denote the non-negative cone in R".

o

For a set 5 c R", cl{S) denotes it closure, S1 denotes its interior and d(S)
o

denotes it boundary. In particular, R£ denotes the positive cone in R". Let
HZi denote the non-negative z, axis in R", i.e., HZi — {(0,. . . , 0, z,, 0 , . . . , 0) e
R": Zj > 0}. Similarly, HZitZj denotes the cone spanned by the non-negative
z, and Zj axes in R", i.e.,

i/r,,z,. = { (0 , . . . , 0 , z , , 0 , . . . , 0 , z , , 0 , . . . , 0 ) eR n : z , , z , > 0},

etc.
System (1.1) is not defined when (X,y) = {xu,...,x3i,y) = (0,...,0,y).

When {X,y) = (0,...,0,y), we define (1.1) to be

*/, = 0, y = -sy. (2.1)
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It is easily seen that with the extended definition (2.1), the right hand side

(RHS) of (1.1) is locally Lipschitz on R}° and is C2 on R}0. Thus (1.1) defines
a continuous semiflow on R|° which becomes a smooth (C2) local flow when

O

restricted to R+°. Moreover, it is j/-dissipative with

f
—^j

where Af = max{5(x) - Z)(x): JC e [O,AT]}. That is, for all solutions {X{t),
y(t)) = (xu(t),...,x33(t),y(t)) of (1.1), dist(j*,(X(t),y(t))) -» 0 as « - +oo
where dist (•, •) denotes the Euclidean distance (cf. p. 472-474 of So and
Freedman [10]). Hence, solutions of (1.1) are bounded for all positive time.
Further, Hx,,, HXli, HXil, HX}i, Hy, HXu>y, HXli,y, HX}uy, Hx^y are invari-
ant and HXutXntXx^, HXllrX2ltXil, HXntXliyXii, HX}ltX}2tXii, HXllrXl2tX^y, HXUtX2ltXyuy,
Hxn,xn,x»,y, HXiitX31<Xii<y, and //*,,,...^ are positively invariant. The vector

field F ( u ) defined by the RHS of (1.1) points into R}° on d(Ri°)\i/, where

V = "XuSHJujr U "xn^2\,X}\,y U ™X,},X2,,Xn,y ,~ o\
U HX}uXn,x}i,y U HXu_Xn.

Q

Thus, no point in d{U^)\v can lie in the omega limit set of any point in R^°.
We will now list some of the equilibrium points of (1.1) and discuss their

stability. More discussions will be given in later sections. By (2.1), £0 =
(0 , . . . , 0,0) is an equilibrium point of (1.1). System (1.1) when restricted to
the invariant set HXl]>y (i,j = 1,3) is the usual generalized Gauss predator-
prey model (cf. Chapter 4 of Freedman [4]). Thus HXij<y (i,j = 1,3) contains
a positive equilibrium point if and only if bij > 0 (i,j = 1,3), where

bu = -s + kPij(K) (1, . /=1 ,3) . (2.4)

Also, these equilibrium points are unique, by (H3). Let us denote them by
E, ( / = 1,...,4). That is, le t£ , = (xu,0,...,0,yn), E2 = (0,0,x1 3 ,0, . . . ,
0,^13), Ei = (0, . . . ,0,x3i ,0,0,y3i) , and E4 = (0,...,0,x33,^33) where *,•;,
pij > 0 (i,j — 1,3). System (1.1) when restricted to the positively in-
variant set HXlltXlltXiliy (resp. HXll,Xl2>Xli,y, HXxi,Xn,Xn<y, and HXiuXnyXn<y) is the
one-locus, two-allele model, considered in Freedman and Waltman [5,6] and
Freedman, So and Waltman [7], whose global dynamics is known when there
is an ordering of the predator functional responses. In particular, we point
out Theorem 3.1 of Freedman, So and Waltman [7], which will be used
repeatedly in Sections 4 and 5. The positively invariant sets HXiuX2ltXiuy,
Hxu,xl2,x,,,y, Hxn,xn,xn,y, and HX}l>X}2tXi},y may or may not contain equilibrium
points. Some conditions are known which guarantee the existence or non-
existence of these equilibrium points (see Freeman, So and Waltman [7]).
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However, we will not use these criteria in what follows. Finally, it will be
shown in Corollary 3.3 that HXnt_^}, contains a two-dimensional set of equi-
librium points.

EQ is unstable and in fact we have the following proposition.

o

PROPOSITION 2.1. For all (X,y) = (xn,...,xi3,y) e R{°, we have, Eo £
co{X,y), the omega limit set of the point (X,y).

PROOF. First we observe that since the flow on Hy is given by y = -sy whose
negative orbits are all unbounded, (Q,...,O,y*) £ co(X,y) for any y* > 0.
Next, for (X,y) near EQ, we have

and

x > B{x) - D{x) - yP(x) >k{x for some kx > 0

y < y(s + kP{x)) < -k2y for some k2 > 0,

where P{x) = max{P0(;t): 0 < x < K,i,j = 1,2,3}. Therefore {Eo} is
an isolated invariant set and its stable set, Ws(Eo), is Hy. According to
Theorem 4.1 of Butler and Waltman [1], if Eo e (o(X,y) then WS{EO) n
co(X,y) contains a point other than Eo, which is a contradiction. (See also
Lemma 1 of Freedman and So [10].)

TABLE 1. M(E\) is given by

y

X\l

*13

*2I

Xll

*23

^31

JC32

X}3

?

+ve

0

0

0

0

0

0

0

0

y

-ve

0

0

0

0

0

0

0

0

0

X\2

?

?

7

0

0

0

0

0

0

0

*13

7

7

+ve

-ve

0

0

0

0

0

0

*21

7

7

0

0

?

0

0

0

0

0

*22

?

7

+ve

0

+ve

7

0

0

0

0

*23

?

7

+ve

0

0

+ve

-ve

0

0

0

X12

7

7

0

0

+ve

0

0

-ve

0

0

*32

7

7

0

0

+ve

+ve

0

0

-ve

0

*33

9

7

0

0

0

+ve

0

0

0

-ve

where +ve (resp. -ve, 0, ?) means that the entry is positive

(resp. is negative, zero, has indeterminate sign).
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The stability of Et(i = 1,2,3,4) is governed by the signs of the real parts
of the eigenvalues of the variational matrix M{Ei) {i = 1,2,3,4) of (1.1)
evaluated at Et (i =1,2 ,3 ,4) . For illustration we present M{E\) in Table 1.
Note that y is moved from the 10th to the 2nd position.

The nonzero entries of M(EX) are given by:

= -Pu(xn)<0

Ar,. ,22(£i)= -

MU<U(EX)= - B(Xu)/Xu
for (ij) = (1,3), (2,3), (3,1),(3,2) and (3.3)

!) = (kyn/Xu)[XnPli(Xu) + Pij(Xn) -
for ( / , ; ) ^ ( 1 , 1 )

= -J-WXn) -D(xn) -
X\i

n)] = ^ [p - P\i(X\i)
X\\ IK

>0
0

= -^[B(Xu)-D(Xn)-yuP2i(Xn)] = ^ ff -
X X ik

>0
>0

M23,2i(Ex) = - [/>(£„) +ynP23(xn)]/xn < 0

(^1) = - [D(XU) +ynPn(xu)]/Xu < 0
^33,33(^1)= -[D(Xu)+yiiPii(xu)]/Xn < 0.
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Therefore M(E\) has five negative eigenvalues: M\x\i{E\), A/23,23(£i)>
^31,31 (^i)» -^32,32(^1), ^33,33(^1); three real eigenvalues with indeterminate
signs: Mi2,n(Ei), A^uiC^i), ^22,22 (-Ei); and the sign of the real parts of the
two remaining eigenvalues (corresponding to eigenvectors lying on the xu-y
plane) is the same as that of the sign of MnM(E\).

In order to apply Theorem 3.1 and Theorem 4.1 of Butler and Waltman [ 1 ]
to show persistence in the latter sections, we need to know the stable set of a
boundary equilibrium point, for example, the JE/'S. The following proposition
is a very useful result, which allows us to show that the intersection of the
stable manifold of a hyperbolic boundary equilibrium point with the positive

o

cone R", is empty, by knowing only one unstable eigen-direction.

PROPOSITION 2.2. Consider x = f{x) (x e R"). Assume that f is C2 and that
R" is positively invariant. Let E e d(R") be a hyperbolic equilibrium point.
Denote the stable (resp. unstable) manifold of E by WS(E) {resp. WU{E)). If

WU{E) n (R"\R£) / <j>, then WS(E) n R"+ = 4>-

o

PROOF. Suppose not; that is, suppose WS{E) n R" ^ <j>. If we can show that
for fixed p\ e WS{E) and pi e WU{E) where P\,Pi ^ E and for arbitrary
e > 0, there exists a point p and a time t > 0 such that p is e close to p\
and n(p, t) is e close to P2, then this will contradict the positive invariance
of R". Since this can be reduced to a local question, by Hartman-Grobman's
theorem, it suffices to establish the following.

Consider the system x = Ax, y = By where x e Rm, y e R", and all
the eigenvalues of A have negative real parts and all the eigenvalues of B
have positive real parts. Fix p\ = {x*,0) and pi = (0,y*) e Rm+" with
x* ^ 0 and y* ^ 0. Then there exists (xN,yN) e Rm+" and tN > 0 such that
{xN,ys)^> (x*,0) and n((xN,yN),tN) -> (0,y*) as N ->• oo.

For a proof of the above statement, let t^ = N,x^ - x* and y^ = e~'sBy*.
Then clearly XN —• x* and ys -* 0 as N —> oo, since all eigenvalues of B have
positive real parts. Furthermore, we have,

n{{xN,yN),tN) = {e<»AxN,e'»ByN) = {e'»Ax\y*) -> (0,y*)

as N —• oo.

3. The case of no predators

In this section we shall consider the global dynamics of (1.1) when the
predator y is absent. For the sake of future reference, let us refer to the
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resulting system with nine equations as (NP). As in Section 2, we define the
RHS of (NP) as the zero vector (0,. . . ,0) e R9 when X = (xu,...,xi3) =
(0 , . . . , 0). Then the RHS of (NP) will be a locally Lipschitz vector field F{N?)

and (NP) defines a continuous semi-flow on R^ which becomes a smooth
o

(C2) local flow when restricted to R+. Since

we have

x = B{x) - D{x),

lim x(t) = K for all x(0) > 0. (3.2)
(-•oo

Let a denote the simplex

= (xu,...,xx)eR9
+: £ > „ = tf 1. (3.3)

Then a is positively invariant and is globally stable over R^.\{(0,...,0)}.
(0, . . . ,0) is a repelling equilibrium point. HXu, HXn, HX}1 and HXji are invari-
ant and HXlltXl2tXli, HXluX2lyXM, HXliiX2}tX}} and HX}uXi2tXi} are positively invari-
ant. The vector field F{NP) points into R:j. on d(R9

+)\{HXllyXl2yXnUHXluX2uXM u
H U / / )

Clearly, by (3.2), all equilibrium points of (NP) other than (0,. . . ,0) lie
in a. The following proposition and its first corollary describe the set of
equilibrium points of (NP), which will be referred to as the Hardy-Weinberg
manifold of (NP).

o

PROPOSITION 3.1. Define / / : R£ —• a by

H{cuc2) = (Hll(cuC2),...,Hii(ci,c2)) for (c,,c2) e R |

where
c2) = c\c\KI\{\ + c,)2(l + c2)

2]

c2) = 2c2
lc2K/[(l+c1)

2(l+c2)
2]

H2l(cuc2) = 2c,c2tf/[(l +c,)2(l +c2)2]

2) = 4clc2K/[(l+cl)
2(l+c2)

2] (3.4)

Hi2(ci,c2) = 2c2K/[(l + c,)2(l + c2)
2]

//33(c,,c2)=Jfi:/[(l+cI)
2(l+c2)2].

https://doi.org/10.1017/S033427000000669X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000669X


[9] A predator-prey model 355

o o

Then #(R+), the image ofR\ under H, is the set of all equilibrium points of

(NP) in R».

o

PROOF. First we show that all points of the form H(c\, Ci) where {c\, c2) € R+
are equilibrium points of (NP). Let H(c\,ci) = X* = (x^,..-,x^3). Clearly
X*eR9

+. Define, as in (1.2),

u\ = x*n + x\2/2 + x|,/2 + x2y4

"2 = 1̂*3 + *r2/2 + xyi + xy4
(3.5)

and

Then

u\ = cxc2KI[{\+cx){\+c2)], u\ = cxKI[{\+cx){\+c2)l

M ; = C 2 ^ / [ ( 1 + C 1 ) ( 1 + C 2 ) ] , « ; = ^ / [ ( 1 + C , ) ( 1 + C 2 ) ]

and x* = K. Therefore the first component F(NP)n of the RHS of (NP) when
evaluated at X* is given by

(u?/x*2)B(x-) - (xU/x')D(xn = (uf - x*nK)B{K)/K2 = 0.

Similarly, one shows that the other components of the RHS of (NP) are all
equal to 0 and hence X* is an equilibrium point.

Next, we show that every interior equilibrium point of (NP) is of the form
o

H(C\,ci) for some {ci,ci) e R+. Let X* — (x*, , . . . ,*^) be an equilibrium
point (NP) with x*xj > 0(i,j = 1,2,3). Define u\, u*2, u*3, u\ and x* as in
(3.5). Clearly x' = K. Also define

dij = xyX;3 (i, j= 1,2,3) (3.7)

and

n = uUxU (i = i , . . . , 4). (3.8)
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Then

rfxj, = </„* (i)
(ii)

(iii)

33 = d22K (v)

</23tf t (vi)

rf32A: (viii)

* . (ix)

Define C\,c2 > 0 by c\ — x^Klx^) and c2 = X32/(2x3*3). Then 2cx = dn
and 2c2 = ^ 3 2 . Moreover, (ii)/(i): 2r2/r! = dnfdw and (ii)/(iii): 2r ( / r 2 =
dn/dn give d\2 = 4dndl3. (viii)/(vii): 2r4 / r 3 = ^32/^31 and (viii)/(ix):
2r3 / r 4 = ^32/^33 = ^32giverf3i = c\. ( iv)/(i): 2r3/r i = d2i/dn and(iv)/(vii) :
2n//-3 = d2i/dn give d2i = 2c2\f<U~\- (vi)/(iii): 2r4/r2 = ^3/^13 and
(vi)/(ix): 2r 2 / r 4 = ^23^33 = ^23 give d\i — c\. Thus, d\2 = 2cx\fd~\\. Since
ri/rx = Ci/y/dTi, r%lrx = c2/^/dTi, r4/r{ = l/y/dTi, and (v)/(i): 2r4/ri +
2r2r-ilr\ = d22/d\\, therefore d22 = 2c\c2 + 2\fd~n. Substituting all of the
above into the equation x* = K, we get

(du + 2ci\/dTi + c^ + 2c2\/d7\ + 2cic2 + 2\/dTi + 2ci + c | + 2c2 + l ) ^ = K

which in turn implies that X33 = AT/(\/^i7 + C\ + c2 + I)2. Now, substituting
the latter into (i) and by noting rx = du + d\2/2 + d2\/2 + d22/4, we have
du = c\c\. From this, one can easily deduce that X* = H(c\,c2).

COROLLARY 3.2. Cl{H{R2
+)) = H{U\) is the set of equilibrium points o/(NP)

COROLLARY 3.3. H(W+) x {0} is the set of equilibrium points o / ( l . l ) in
HX{ ,

The main result of this section is a complete description of the global
dynamics of (NP): all solutions X(t) of (NP) other than X{t) = 0 converge
to the Hardy-Weinberg manifold ast—> +00. In order to describe this result
more precisely and to present its proof, we need to introduce some auxiliary
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quantities. Define

XAA = *11 + -X|2 + *13

XAa = X2\ + X12 + X23 (3.9)

Xaa = *31 + *32 + *33>

XBB =Xn + X2i + X31

xBb = xn + x22 +xi2 (3.10)

Xbb = X\3 + X23 + Xj3,

uA = xAA + xAa/2, ua = xaa + xAa/2, (3.11)

and

uB = XBB + xBb/2, ub = xbb + xBb/2. (3.12)

Clearly

uA + ua = XAA + xAa + xaa = x

ub= XBB + xBb + xbb = x,

and
UA = U\+U2, U4,

U4.

THEOREM 3.4. Define cx = uA(0)/ua(0) and c2 = uB(0)/ub(0). Then

(xn(t),...,x3i(t))^H(cuc2) (3.15)

as t -> +00, where H{c\,c2) was given in (3.4).

Before we prove Theorem 3.4, we need a couple of lemmas describing the
long term behaviour of the auxiliary quantities denned in (3.9)—(3.12), as
well as that of the M,'S.

LEMMA 3.5. Let cx = uA(0)/ua(0) and c2 = uB(0)/ub{0). Then

(I) uA(t) = ciutt(t), uB(t) = c2ub(t) forallt>0, (3.16)

(II) (M0,««(0)-(ci*/(l+c,),tf/(l+<:,)) (3-17)
(uB(t),ub(t)) -» (c2K/(l+c2),K/(l+c2)) (3.18)
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as t -* +00, and,

(HI) (XAA(t),XAa(t),Xaa(t)) -* ( ( 1 ^ l ) 2 ' ( l 2 + ^ ) 2 ' (1 ^ C | )2 ) ^A9">

(xBB(t),xBb(t),xbb(t)) -> ((l
clK

)2, ,??*)2> (1 fc,)2)
\(i +c2) (i +c2) (i+c2) ) {7il!^

as t —> +00.
PROOF. Clearly

xAA = (u2
A/x2)B(x) - (xAA/x)D(x)

xAa = (2uAua/x
2)B(x) - (xAa/x)D(x) (3.21)

Xaa = (U2JX2)B(X) - (xaa/x)D(X)

and

xBB = (u2
B/x2)B(x) - (xBB/x)D(x)

xBb = (2uBub/x
2)B(x) - (xBb/x)D(x) (3.22)

*bb = (u2
b/x

2)B(x) - (xbb/x)D(x).

Proceeding as in the one-locus case (c.f. p. 369 of Freedman and Waltman
[5], and p. 231 of So [9]) one can easily show that (I) holds and that

xAA(t) - c2xaa(t) -» 0, xAa{t) - 2clxaa{t) -»0

xBB{t) - c\xbb{t) -» 0, xBb{t) - 2c2xbb{t) -» 0,

as t - +00. (II) and (III) now follow from (3.2), (3.13) and (3.23).
REMARK. Lemma 3.5 and (3.14) show that

«1 (0 = C2Ub(t) - Ua(t) + U4(t) = C\Ua{t) ~ Ub(t) + UA{t)

"2(0 = Ub(t) - M4(0, "3(0 = "a(0 - "4(0

for all t > 0, where cx = uA(0)/ua(0) and c2 = uB{0)/ub{0).

LEMMA 3.6. Let cx = uA(0)/ua(0) and c2 = uB(0)/ub(0). Then

c2K c ^ i + C 2 ) )
c2y (

(3.25)

OO.
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PROOF. The proof is divided into three steps.
Step 1: «,(/ = 1,2,3,4) satisfy the following system of differential equations.

/ 2 1 1 JW D(X)
« i = ( u i + u i u 2 + u i u i + - u u + u 2 u 3 ) ^ " i j j

/ 2 1
M2 = («2 + M,M2 + M2«4 + X (3.26)

1 .XMAJ L»UI
M3M4+ ~l

, 2 1 1 ^ ( * ) ^ ( * )
«4 = ("4 + «2«4 + M3W4 + ^"l"4 + ^«2M3)—V^ ~ «4

where x = «i +M2 + «3 + W4- This follows directly from (NP), (1.2) and (1.3).
Step 2:

- c2u2(t)

(3.27)
This can be proved by writing down the linear differential equation that each
of the functions on the LHS of (3.27) satisfies. For example, by (3.24) and
(3.26)

«2 - C1M4 = («2 - C1U4) [(1 + c2)ubB(x)/(2x2) - D(x)/x]

= ("2 - c, «4) [(1 + c, )«a5

Step 3:

Ui(t) - C2U2(t) ^ 0, M3(0 - C2M4(0 - 0,

«i(O-ciu3(O-o, «2(O-ci«4(O-+o,
as f -• +00. This can be proved by noting that (3.2), (3.7) and (3.18) imply

(l+Cl)ua(t)B(x(t)) D(x(t)) B{K)
x{t) ~* 2K
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as t -> oo. Therefore, the integral in (3.27) is divergent and consequently we
have (3.28).

Using (3.28) and (1.3), it is then easy to see that (3.25) holds.

PROOF OF THEOREM 3.4. To show (3.15), it suffices to show

x.,(t) - c\c\xn{t) -• 0; x,2U) - 2clc2x23(J) -> 0, x! 3(0 - c?*33(0 -> 0,

x2i(t) - 2c,c|x33(0 -» 0, x22{t) - AciC2X3i(t) - 0, x23{t) - 2ciJC33(0 - 0,

f 0, jr32(O - 2C2X33(O - 0

as t -> +00. We illustrate this by showing z(t) = x-n{t) - 2C2J>C33(0 - » 0 a s
t —> +00. Clearly z(f) satisfies the linear differential equation

where (2,(0 = D(x(t))/x(t), Q2(t) = 2u4(t)[u3(t) - c2u4(t)]B(x(t))/x2(t).
Solving this equation yields

jT'= z(0)exp ^fi,(T)rfT] + jTexp [ - ^ Q ^ T ) ^ ] Q2(s)ds.

We shall show that both the first and the second term tend to 0 as t tends to
+oo.

Since l im^ + o o <2i(0 = D(K)/K, by (3.2), /0
+o° (M0<fc = +oo, and hence,

lim,^+00 exp [- /0' QI(T) C?T] = 0. On the other hand, by (3.27),

-Jf Qi(T)dT\(h{s)ds

= 2(w3(0) - C2M4(0))exp f- j D{*^ dx\ (3.29)

, , fl +ci fs ua(T)B{x(r)) , 1 5(x(5)) ,

To show that the LHS of (3.29) tends to 0 as t tends to +oo, it suffices, by
L'Hospital's rule, to show that

:-®- = 0. (3.30)

Since lim,_+oo M 4 (0 = K/(l + c,)(l + c2) > 0,limt^+oo B(x(t))/x(t) =
B{K)/K > 0, and, lim^+oo D(x(t))/x(t) = D(K)/K > 0, it suffices to show
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But this follows from
rD(x(t)) (1 + Cl)ua(t)B(x(t))] D(K) 1 + c, K B(K)

x(t) 2x2(t) \ K 2 ' 1 + c, ' K2

= B(K)
2K

In the following corollary we reformulate Theorem 3.4 in terms of propor-
tions.

COROLLARY 3.7. If (X\i{t),...,x33(t)) is a solution o/(NP) other than the
trivial solution (0 , . . . , 0), then

Xn(t): xn(t): xl3(t): x2l(t): x22(t): x23(t): x3l(t): x32(t): x33(t)

-> c\c\: 2c\c2: c\: 2c\c\: 4c\C2: 2c\\ c\\ 2c2: 1

as t —> +00, where

_ xu(0) + xl2(0)
1 x3l(0) + xn(0)

and
r =xu(0) + x21(0) + x3l(0)

" *23(0) + X33(0) + 2^12(0) + 5*22(0)

4. Conditions which lead to evolution of pure strains

In this section, conditions leading to the global stability of one of the
boundary equilibrium points Et (i — 1,2,3,4) will be considered. First we
describe a condition which guarantees the persistence of y.

PROPOSITION 4.1. Let

d(cuc2) = - s + {X + c^{l+^)2[c]c2
2Pu{K) + 2c\c2Pn{K)

2ClclP2l(K) + 4clC2P22(K) + 2ClP23(K) {4A)

If there exists f > 0 such that

</(ci,c,)>C forallcltC2>0, (4.2)

then y is uniformly persistent, that is, there exists t] > 0 such that lim ,-.+ooy(t)

>r,forall(xu(0),...,x33(0),y(0))eRl°.
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o

PROOF. Let (xu,---,xa,y) e R+°. Since the acyclic condition is satisfied
on HXu Xii, by Butler, Freedman and Waltman [2, Section 3], it suffices
to show that y is persistent. We note that d{c\,c2) is the eigenvalue of
the variational matrix, M(ECl<C2), of (1.1) evaluated at the equilibrium point
ECltC2 = (H(cuc2),0) corresponding to eigenvectors of M{ECuCl) which have
a nonzero y component. Let e be the set of all equilibrium points of (1.1) in
HXl ^3 3\{(O,. . . , 0,0)}, that is, e = {ECl,C2 :cx,c2> 0}. Then by center man-
ifold theory, e is an isolated invariant set. According to hypothesis (4.2), the

o

stable set, Ws(e), of e has an empty intersection with R|°. By Theorem 4.1
of Butler and Waltman [1], in order for limf_| c cy(f) = 0, the omega-limit
set, co(xi i (0) , . . . , x33(0), y(0)), of the point (JCTI (0) , . . . , x3i{0), y{0)) must in-
tersect Ws(e) at a point other than those in e. Now Ws{e) n R{° c HXu<_,.tXn,
with the global dynamics on HXn Xii as given in Theorem 3.4, implies that
(w(xn(0),.. -,x33(0),y(0)) either contains E0 or is unbounded. In either case,
we have a contradiction (cf. Proposition 2.1).

Since the analysis for the rest of this section and the next requires a knowl-
edge of the global dynamics of (1.1) on the boundary positively invariant set
v, we will make the following additional assumptions.

(Al) The predator y persists. (By Proposition 4.1, it suffices to assume
that d(cuc2) > C > 0 for all cuc2 > 0).

(A2) Ei (resp. E2, E3, £"4) exists and is globally exponentially stable on
O O O O

HXny, the positive xu - y cone (resp. HXny, Hx^, HXiiy). (Some
sufficient conditions for the global stability of a positive equilibrium
point of generalised Gauss predator-prey systems were given in Hsu
[8] and in Cheng, Hsu and Lin [3].)

(A3) Ej(i =1 ,2 ,3 ,4) are hyperbolic. (By looking at M{Et) (cf. Table 1),
one can easily show that it is equivalent to assume

VU [s/k - P22(xu)] ± B(xu)/2 for (/,; - 1,3).)

The following theorem provides conditions under which the equilib-
o

rium point E\ is globally stable (on R+°).

T H E O R E M 4.2. Suppose (H1)-(H6) and (A1)-(A3) hold. If the Pu (i,j =
1,2,3) are totally ordered:

Pn<Pn<Pli< P2l < P22 < P23 < P3l < P32 < />33

where P,j < Phi means that there exists e > 0 such that Pf,i(x) - Pjj(x) > ex

for all x e [0, K], then Ex is globally stable on R^0.
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o

PROOF. Let (x\\,...,xa,y) e R+°. Denote the omega limit set of (xu,...,
X3i,y) by co = co(xu,...,x-si,y). The proof proceeds in two steps. In step
1, we will show that co c d(R+°) and in step 2, we show that no point in
d(R+°) can lie in co except E\. Therefore, E\ e co. Now, by assumption, E\
is asymptotically stable and thus co — {E\}. Hence, E\ is globally stable.

Step 1. Using REDUCE (an algebraic manipulation computer language),
one shows that

"a UA y r •
< [̂ 33*13*33 + non-negative terms],

"a uA uAua

where e^ is a positive constant. Therefore as in the proof of Theorem 3.1 in
Freedman, So and Waltman [7].

MO <

If the integral diverges, then lim,_+ooMa(0 = 0 so that co n d(R}°) ^ 0 .
Otherwise, z{t) = (x\2X-uy)(t) e Ll[0, +oo). Since z(t) is bounded, we have,
lim^+oo z(t) = 0. Hence, limf_ [ocX\2(t) = 0 or limf_|0CiJC33(f) = 0 (since
h'mf_|0Oy(?) > 0 by (Al)). This again implies co n 9(/?+°) ^ 0 .

Step 2. It was pointed out in Section 2 that no point in C)(R+0)\J/ can
lie in co. Therefore, it suffices to consider only points in v. By looking at
the eigenvalues of the variational matrix M{E{) (i — 1,2,3,4) (cf. Table 1),
we see that the dimension (dim) of the unstable manifolds, W"(Ei), of £,
(i = 1,2,3,4) satisfy d i m ^ " ^ , ) = 0, dim W(E2) > 1, dimW"(£3) > 1
and dim WU(E4) > 2. Therefore Ex is asymptotically stable and Wu(Et)
(i — 2,3,4) have a nonempty intersection with R10\R+°. Consequently, by
Proposition 2.2, we see that Ws{Et) n Rj? C a(R^°). On the other hand the
main result for the one-locus model (cf. Theorem 3.1 of Freedman, So and

o

Waltman [7]) tells us that E2 (resp. E^E^) is globally stable on HXn<X2i<Xn>y

(resp. HXiuXi2,X}}>y, HXnf). Thus, WS(E2) nRl
+° c HXliiXi3tXnty, W'iE^nR}? C

Hxujcil*iS,y and Ws{En)P[R^ c HXn<y. Knowing the global dynamics on v, it
follows easily (using Theorem 4.1 of Butler and Waltman [1]) that E\ is the
only point in d(R}°) that can lie in co.

5. Some persistence results

In this section we consider conditions which lead to the uniform persis-
tence of system (1.1). Due to the large number of possibilities, we shall re-
strict ourselves to the cases when Theorem 3.1 of Freedman, So and Waltman
[7] applies; that is, the predator functional responses for the heterozygotes
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are ordered between the homozygote ones. Under this restriction, the global
dynamics of (1.1) on the boundary invariant set v is known. By interchang-
ing the roles of the allele type A and a, or B and b if necessary, there are
three cases to consider.

CASE 1: i>,, < Pn < Pl3, Pu<P2i<Piu Pn< Pn < Px, P31 < Pn < ^33-

CASE 2: Pu<Pn<Pn, Pn<P2i<Pi\> P33 <" P23 < Pn, ^33 <^32 < ^31-

CASE 3: P n < Pn <P\i, P\i<Pi\ < ^31, ^13« P23 < P33, P33 < Pn < P31 •

THEOREM 5.1. Under the assumptions (H1)-(H6) and (A1)-(A3), system
(1.1) is uniformly persistent if

(i) ?u(s/k - P22(xu)) - B{xu)/2 > 0 under Case 1 and Case 3, and

(ii) j>ii(s/k - P22(Xii)) - B{xu)/2 > 0, 1 = 1,3 under Case 2.

PROOF. We only discuss Case 1. The other two cases are similar. Let
Q = cl{upeuco{p)) be the global attractor in v. Then {^/}f=0, where ^ =
{£•,},(/ = 1,...,5) and ^ 5 = e, is an acyclic isolated covering of Q. Ac-
cording to Theorem 3.1 of Butler and Waltman [1], it suffices to show that

W(Jti) D Ri° = 0(i = 1.....5). Firstly, W*{Jg%) n R^0 = 0 follows from

(Al). Secondly, dim W{E4) > 2 implies WU(E4) n (R10\Ri°) ? 0 and hence

by Proposition 2.2, WS(E4) n Rl+° = WS{J?A) n Ul
+° = 0 . Similarly, one can

show that W'{Jtt) n Ri° = 0) (/ = 1,2,3), since dim WU{E{) > l(i = 1,2,3).

Finally, Ws(Jt0) n R^0 = WS{E°) n R^0 = 0 follows from Proposition 2.1.

6. Discussion

In Section 4, we demonstrated one case where all the prey allele types in
system (1.1) become extinct except one. This is analogous to the previously
studied one-locus model. In contrast to that, we also illustrated in Section 5
that there are cases for which, when considered as a one-locus problem, some
prey allele types becomes extinct, whereas by making the predator functional
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response P22 for the double heterozygote sufficiently small, we get persistence
for all the prey allele types (as well as the predator).
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